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P. Felber

x
, M. Pasin

x
, V. Schiavoni

x
, J. Ménétrey

x
, K. Gugala

xi
, P. Zierhoffer

xi
, E. Knauss

xii
, H. Heyn

xii

∗Bielefeld University, Germany — †christmann informationstechnik + medien GmbH & Co. KG, Germany
‡Osnabrück University, Germany — §Chalmers University of Technology, Sweden — ¶University of Lisbon, Portugal
‖VEONEER Inc., Sweden — ∗∗Siemens AG, Germany — ††EMBEDL AB, Sweden —

xii
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Abstract—The VEDLIoT project targets the development of
energy-efficient Deep Learning for distributed AIoT applications.
A holistic approach is used to optimize algorithms while also
dealing with safety and security challenges. The approach is
based on a modular and scalable cognitive IoT hardware plat-
form. Using modular microserver technology enables the user to
configure the hardware to satisfy a wide range of applications.
VEDLIoT offers a complete design flow for Next-Generation
IoT devices required for collaboratively solving complex Deep
Learning applications across distributed systems. The methods
are tested on various use-cases ranging from Smart Home to
Automotive and Industrial IoT appliances. VEDLIoT is an H2020
EU project which started in November 2020. It is currently in
an intermediate stage with the first results available.

I. THE VEDLIOT APPROACH

Deep Learning has become a strong driver in IoT appli-
cations. Typically, those applications have very challenging
computational demands coupled with a low energy budget.
The goal of VEDLIoT is to integrate IoT with Deep Learning,
accelerate applications, and optimize them towards energy
efficiency. Figure 1 shows the architecture of VEDLIoT.
The project is presented following a bottom-up approach,
starting with customizable hardware platforms using modular
microservers and specialized hardware accelerators for hetero-
geneous computing. The optimization of use cases is system-
atically accompanied from an early stage of development by
using requirement engineering and verification techniques for
AIoT, also developed within VEDLIoT. Expert-level knowl-
edge of different domains is combined to create a powerful
middleware for optimizing the underlying neural networks
of deep learning algorithms and ease the development with
frameworks for testing, benchmarking and deployment. A lot
of development work goes into guaranteeing a high level of
safety and security, which is essential for the VEDLIoT use
cases.

II. ACCELERATED AIOT HARDWARE PLATFORM

The hardware development within VEDLIoT focuses on ex-
tending and refining the already available platforms RECS|Box

This publication incorporates results from the VEDLIoT project, which
received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 957197.

and t.RECS, which primary targets cloud and near edge com-
puting. uRECS is developed from scratch within VEDLIoT
and focuses on compact dimensions, low cost, and high energy
efficiency to better suit low-cost / low-power devices for AI
and ML applications (Figure 1). Using the RECS hardware
platform, VEDLIoT covers the complete range from embedded
via edge to cloud computing.

A. Heterogeneous hardware platform

All RECS hardware platforms share a modular approach,
which leads to a heterogeneous, adaptable hardware archi-
tecture supporting a wide range of applications and allow-
ing for a future-proof design by an exchangeable/upgradable
hardware basis [1] and [2]. Another common feature is the
scalable communication-driven infrastructure, realizing effi-
cient communication between heterogeneous microservers via
1 G/ 10 G Ethernet and high-speed low-latency connections,
reconfigurable during run-time [3].

Most supported microservers are based on mid- or high-
performance Computer-on-Module (COM) form factors, e.g.,
RECS|Box supports COM Express microservers and t.RECS
the recently released COM-HPC Server and Client standards.
As shown in Figure 2, several other, well-established form
factors focus on low-power embedded computing. SMARC
modules, for example, provide a smaller footprint and support
with x86, ARM and FPGA-SoC more target architectures.

uRECS closes the gap in hardware platforms towards em-
bedded/ far edge computing with a power consumption of
less than 15W as required by some use cases. Next to
SMARC microservers, it also natively supports Jetson Xavier
NX modules. By using adaptor-PCBs, uRECS also integrates
Xilinx Kria, and Raspberry Pi compute modules. Extension
slots based on USB and M.2 can be used to use additional
hardware accelerators or peripherals.

VEDLIoT extends the classically static hardware architec-
ture towards a dynamically configurable infrastructure for in-
creased resource-efficiency and robustness. The RECS ecosys-
tem enables easy exchange of computing resources and seam-
less switching between the different heterogeneous compo-
nents on the system level. On the communication level, e.g.,
the networking topology or protocol parameters can be adapted
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Fig. 1: VEDLIoT architecture overview

to cope with changing real-time or bandwidth requirements.
Finally, reconfigurable devices (FPGAs) are utilized to enable
the integration of new architectural concepts developed in
VEDLIoT. On this level, partial reconfiguration is used to
adapt to changing application requirements at run-time, e.g.,
using implementations with different power/performance foot-
prints.

B. Accelerators and Microservers

One of the key components to delivering the required
performance for the Deep Learning (DL) applications are the
hardware accelerators. VEDLIoT focuses on developing new
dedicated hardware accelerators tailored explicitly towards
specific applications requirements. However, the software ab-
straction layers that have helped the independent development
of both software and hardware in the past cannot be used
any longer to achieve the best performance and efficiency for
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Fig. 2: Computer-On-Module (COM) form factors supported
by VEDLIoT hardware platforms

the most demanding workloads. The solution is to focus on
hardware-software co-design [4]. In VEDLIoT, four different
types of DL accelerators are explored: (1) existing off-the-
shelf; (2) statically configured; (3) dynamically reconfigurable;
and (4) fully simultaneous co-design accelerator. Evaluation
and exploration are done using existing accelerators for fast
deployment of the required performance. FPGAs are used
to develop accelerator prototypes that can achieve higher
performance and efficiency for use-case applications. In ad-
dition, different modes of operation are identified that offer
dedicated accelerators to those modes of operation. These
accelerators follow the partial co-design principles by mapping
the DL models into the hardware components. Nevertheless,
preliminary results have shown that no single accelerator can
provide a better match to different models. Consequently, the
fully simultaneous co-design is explored where the hardware is
developed together with the software. In addition to mapping
the models to hardware, feedback is given to the models so
that optimizations can be tuned for better hardware utilization.
In addition to the accelerator design, an in-depth study of how
the memory is utilized in current accelerators and exploring
new approaches for the memory hierarchy for future DL
accelerators is performed.

With the many moving parts in the space of DL processing
acceleration, VEDLIoT uses Renode, an open-source simula-
tion framework [5], to test the FPGA accelerator prototypes.
Renode, a functional simulator for complex heterogeneous
systems, provides an ability to simulate complete SoCs and run
the same software that would be used on hardware. VEDLIoT
benefits from Renode’s testing and introspection capabilities,
using it both for interactive development of accelerator proto-
types and within a Continuous Integration environment. This
does not only ease the development process but also makes
the final result more reliable. During the course of the project,
Renode is enhanced with capabilities of simulating Custom
Function Units, or CFUs. A CFU is an accelerator tightly cou-
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Fig. 3: Peak Performance of DL Accelerators

pled with the CPU, providing functionality explicitly designed
for the planned ML workflow. Programmed in a Hardware
Description Language, CFUs are used as an input for Renode
to extend simulated cores.

C. Performance Evaluation

A wide variety of hardware accelerators for deep learning is
emerging on the market, targeting a wide range of applications
from small embedded systems with power budgets in the order
of milliwatt to cloud platforms with a power consumption
exceeding 400 W. Figure 3 summarizes the accelerators, that
have been analyzed in detail in [6]. It has to be noted that the
diagram shows a very high-level view. The data is based on
the peak performance values (in Giga Operations per Second),
provided by the vendors. No normalization to a specific
technology node is performed, and the architectures vary in the
used precision, ranging from FP32 to INT8 and even binary
weights are included. Nevertheless, an interesting fact is that
most architectures cluster around an energy efficiency of about
1 Tera Operation per Ws (1 TOPS/W), independent of their
individual performance (or power demand).

For performance evaluation, the DL models ResNet50, Mo-
bileNetV3 and YoloV4 were chosen to determine comparable
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Fig. 4: YoloV4 performance evaluation of DL accelerators

performance values of available DL accelerators. Depending
on the supported quantization of the hardware, the tests were
executed using INT8, FP16 or FP32 datatypes. The tools used
for best utilization are chosen based on the manufacturer’s
recommendations, e.g., TensorRT for NVIDIA. In addition,
performance and hardware utilization were optimized by vary-
ing the batch size from 1 to 8, which is represented in Figure 4
by B1, B4 and B8. In this figure, the performance (in GOPS)
and the measured power consumption (in Watt) are shown
exemplarily for YoloV4. The investigated platforms include
x86 CPUs (Epic3451 and D1577), GPUs (GTX1660), eGPUs
(Xavier AGX (in high performance and low power mode),
Xavier NX and Jetson TX2), FPGAs (Zynq ZU15 and ZU3)
and ASICs (Myriad). In VEDLIoT, performance and energy
efficiency evaluations are an important basis for selecting DL
accelerators to be integrated into the RECS platform, tailoring
it towards the use cases.

III. OPTIMIZING TOOL CHAIN FOR HETEROGENEOUS
HARDWARE

Trained deep learning models have redundancy in their
computational graph that can be exploited for optimizations.
In some cases, models have been compressed down to 49x
of their original size, with negligible accuracy loss. This can
be achieved by combining methods that remove connections
and/or neurons, quantize parameters and activations and en-
code the parameters in a more compact form [7]. Although
there has been much recent research in the area, most of the
results are theoretical speed-ups based on metrics, e.g. number
of operations and reduction of parameters. The theoretical
speed-ups do not always translate to more efficient execution
in hardware [8]. In the VEDLIoT project, novel methods
for hardware-aware optimization are developed. Furthermore,
the industry-standard ONNX, which is an open format to
represent machine learning models [9], is used as input to
ensure compatibility with the current open ecosystem. The
model’s computational graph undergoes significant surgery in
the optimization phase to optimize its execution latency, power
consumption and/or memory footprint. Utilizing the knowl-



edge of the target hardware leads to optimizations that translate
to improved execution metrics when deployed. Deploying deep
learning models on edge devices usually involves the following
steps: (1) Preparation and analysis of the dataset, preparation
of data pre-processing and output post-processing routines. (2)
Model training (usually transfer learning), if necessary. (3)
Evaluation and improvement of the model until its quality is
satisfactory. (4) Model optimization, usually hardware-specific
optimizations (e.g., operator fusion, quantization, neuron-wise
or connection-wise pruning). (5) Model compilation to a
given target. (6) Model deployment and execution on a given
target. There are many different frameworks for most of the
above steps (training, optimization, compilation and runtime).
The cooperation between those frameworks differs and may
provide different results.

Kenning [10], an open-source framework developed by
Antmicro, addresses the problem of enabling the tools to
cooperate with each other. The interoperability is achieved by
converting the models into a common representation using
the Open Neural Network Exchange (ONNX) format. All
intermediate conversions and optimizations are performed on
ONNX models. At the final stage, Kenning converts the
model to a selected neural network runtime and deploys it
on the target hardware. Based on the implemented interfaces,
the Kenning framework can measure the inference duration,
resource usage, and processing quality on a given target.
Depending on a target, Kenning can monitor inference time,
mean CPU usage, and CPU and GPU memory usage. Kenning
can automatically benchmark the processing quality of a given
neural network mode and generate a confusion matrix for
classification models and recall/precision graphs for detection
algorithms. In addition to Kenning, VEDLIoT uses Renode,
an open-source simulation framework [5], which has been
introduced in Section II-B.

IV. SAFETY, SECURITY AND REQUIREMENTS FOR
DISTRIBUTED AIOT SYSTEMS

When combining deep learning with the properties of IoT,
new concerns might arise that are not yet foreseen by standards
and literature. The new concerns include aspects such as
data quality, heuristic deep learning modelling, learning of
the models, or even new ethical considerations. Additional
stakeholders such as data engineers enter the stage, and
common languages or interfaces need to be found between the
different stakeholders. Typical architectural frameworks, such
as the ISO 42010 [11] or the IEEE 2413 [12] standard, cannot
cope with concerns for systems that include some form of
machine learning. One major challenge identified in VEDLIoT
is the difficulty to keep track of dependencies, e.g. through cor-
respondence rules, between the different architectural views.
Another problem of current architectural frameworks is the
lack of a clear system development hierarchy, which would
support the early identification and mapping of dependencies
between different architectural views [13].

A. Requirements concepts for AIoT

Designing a large, distributed system is a hierarchical pro-
cess [14]. The architectural framework for VEDLIoT not only
supports the seamless design and integration of traditional
software components and deep learning components but also
allow for all necessary quality concerns to be taken into ac-
count as early as possible in the design process. The VEDLIoT
architectural framework is organized by two aspects: Clusters
of concerns, and level of abstraction. These aspects form
a 2-dimensional grid of architectural views that guide the
concept and design of a VEDLIoT system. Typical clusters
of concerns for a system with deep learning components are
logical behavior, process behavior, context and constraints,
learning setting, deep learning model, hardware, information,
communication, ethical concerns, safety, security, privacy, and
energy. Levels of abstraction are knowledge level, conceptual
level, design level, and run-time level. Each architectural view
is categorized by the two aspects cluster of concern and level
of abstraction. In VEDLIoT, it is shown that dependencies
between the architectural views only exist vertically between
the views of the same cluster of concern or horizontally be-
tween architectural views on the same level of abstraction. This
reduces the complexity of the system design challenge and
allows for better traceability. Knowledge can become available
on all levels of the architectural framework at any time.
Traditionally, requirement engineering would be organized in
a top-down fashion. However, the architectural framework
supports middle-out systems engineering, which is a widely
common practice, combining traditional top-down systems
design with integration of designated lower-level hardware,
software, AI models, or other components [15].

B. Safety aspects

Safety requirements must guide any model construction
for systems using deep neural networks. Safety standards
emphasize processes for software development that help with
avoiding systematic mistakes during the design of systems.
However, safety standards that base on the EN-IEC 61508
standard1, such as ISO 26262 for the automotive industry, as-
sume that for software, only systematic faults exist. However,
due to the probabilistic nature of deep learning, the assumption
that only systematic faults exist in software does not hold
anymore. There is no absolute guarantee that a deep neural
network performs as intended under the desired circumstances.
The desired behavior of the deep neural network depends on
the data used for training and validation. Therefore, safety
standards for deep neural networks must encompass the deep
neural networks and especially the data used for training and
validation.

From the perspective of defining an architecture and im-
plementing system solutions to increase the robustness of
deep learning processes, VEDLIoT focuses on monitoring
approaches to detect faulty situations and trigger appropriate

1Functional Safety of Electrical/Electronic/Programmable Electronic
Safety-related Systems



reactive measures. The work is being developed in two direc-
tions. Firstly, the problem of characterizing the quality of the
input data is considered, detecting situations in which these
data may have been accidentally or even maliciously compro-
mised. A large set of data errors may be easily identified, may
be corrected, or the affected data may be removed to avoid the
propagation of these errors through the DL models. Different
monitoring and error detection mechanisms are developed,
depending on the kinds of input data (e.g., time series, image)
and on the error types (e.g., outliers, image noise). Secondly,
the problem of detecting errors on the output data is analyzed
when these errors derive from systematic faults affecting
the execution of DL models on devices or edge nodes. It
is considered that these faults may have been triggered or
injected during run-time (e.g., hardware faults, attacks). In
brief, the approach consists in periodically submitting both
the input and the output data to a robustness service, which
holds a copy of the DL model and can verify the correctness of
the output data. To support all these monitors and monitoring
mechanisms, an architectural pattern comprising two separate
parts is considered, based on the concept of architectural
hybridization [16].

C. Security considerations

VEDLIoT implements several hardware- and system-level
tools to improve the dependability and security of edge appli-
cations. Hardware features are leveraged for trusted execution
environments combined with well-established dependability
techniques to support both middleware and applications layers
of the project. So far, the project has focused on developing
end-to-end trust through a distributed attestation mechanism,
secure execution and communication of critical code (e.g. for
monitors, see Section IV-B) on edge devices. The hardware
protection offered by Intel SGX enclaves is leveraged, and an
open-source WebAssembly runtime implementation to build a
trusted runtime environment without dealing with language-
specific APIs. An evaluation shows that SQLite can be fully
executed inside an SGX enclave via WebAssembly and exist-
ing system interface, with small performance overheads [17].

As part of developing a hardware-trusted execution environ-
ment, a novel Trusted Execution Environment (TEE) support
for VexRISC-V, an open-source RISC-V soft processor, has
been developed. The implementation takes the form of a
highly optimized RISC-V Physical Memory Protection (PMP)
unit that enables secure processing by limiting the physical
addresses accessible by software running on a processor. The
PMP unit is configurable in the highest privilege level (the
machine mode) and can be used to specify read, write and ex-
ecute access privileges for a specific memory region. In small
devices that only support machine mode (M-mode) and user
mode (U-mode), the PMP configurations can efficiently ensure
the secure execution of software in M-mode and U-mode.
The PMP implementation is part of the official VexRISC-V
implementation, and the source code and documentation are
openly available for the research community.

Apart from x86 and RISC-V, also ARM SoCs are consid-
ered, using TrustZone as a TEE, combined with the open-
source and trusted operating system OP-TEE. TrustZone splits
the operating system into two parts: the normal and secure
worlds. Trusted applications can only run in the secure world,
and the operation necessary to change context between worlds
is rather complex and cannot be done at user-level. To im-
plement remote attestation for WebAssembly code running in
ARM processors, a TEE specification defining how the trusted
environment behaves and how the normal world can interact
with the secure world is realized. The implementation is based
on a root-of-trust provided by the hardware and a secure
boot mechanism, preventing an attacker from substituting the
trusted software.

V. VEDLIOT APPLICATIONS

VEDLIoT applications focus on both very high energy
efficiency and high-security and safety requirements. These
requirements are in line with the general need for “trusted
IoT and edge computing platforms” and “development and
deployment of next-generation computing components” as
identified in the EU research agenda [18].

A. Automotive

Amongst the numerous potential problems in the automo-
tive sector, the Pedestrian Automatic Emergency Breaking
(PAEB) was chosen as a well-specified example, which can be
benchmarked and compared against state-of-the-art systems.
The major development goals are the distribution of the deep
learning models and the decision making between different on-
car systems and edge devices at varying speeds and reliability
of mobile networks. Dynamic distributing of sensor data to
edge stations is a quite new research topic. It requires quick
monitoring of available mobile networks, their speed and
latency, available computing resources of the edge devices and
a management system that can quickly react to the current
situation. The overall goal is to optimize the energy efficiency
in total and minimize the on-car energy consumption. Sending
raw sensor data via a mobile network to an edge station
always implies a high-security risk. Therefore, an integration
of VEDLIoT’s remote attestation approach is of importance.

B. Industrial IoT

VEDLIoT supports two Industrial IoT use cases: Motor
Condition Classification and Arc Detection in DC power
distribution cabinets. The Motor Condition Classification use
case aims to design and build a prototype of a battery-
powered ultra-low energy deep learning-driven small box that
can be attached to large electric asynchronous motors and
continuously monitors the motor. The states to monitor are the
operational, thermal and mechanical conditions of the motor,
and upon specified events, e.g. a ball bearing failure, a message
is sent to an operator.

The Arc Detection use case aims to design and build
a prototype system that can detect unwanted arcs in DC
power distribution cabinets using deep learning technology.



A challenge is to guarantee a very low latency from the first
spark till inference, including sensing and pre-processing, and
an ultra-low false-negative error rate for a smooth operation.
In general, arc localization helps for faster fault detection and
repair of broken units.

C. Smart Home

This use case targets the development and acceleration of
AI-based methods for a demand-oriented interaction between
the user and a smart home. To achieve this goal, an intuitive
and natural operating interface is crucial, which is realized
by a smart-mirror device. As seen in Figure 5, a camera
and a microphone are providing input data, and four different
neural networks are used to detect gestures, faces, objects and
speech to interact with people. The distribution of data to
the cloud is not desirable because of privacy concerns of the
residents. Therefore, all sensing and interaction is performed
on-site in real-time, making low power and energy efficiency
computations a prime concern for this use-case.
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Fig. 5: Architecture of the Smart Mirror Demonstrator

VI. SUMMARY

VEDLIoT addresses the challenge of bringing Deep Learn-
ing to IoT devices with limited computing performance and
low-power budgets. The VEDLIoT AIoT hardware platform
provides optimized hardware components and additional ac-
celerators for IoT applications covering the full spectrum from
embedded via edge to the cloud. A powerful middleware
to ease the programming, test and deployment of neural
networks to this heterogeneous hardware. New methodologies
for requirement engineering, coupled with safety and security
concepts, incorporate the new challenges arising from the
use of Deep Learning techniques are designed and applied
throughout the complete framework. The concepts are tested

driven by challenging use cases in key industry sectors like
automotive, automation, and smart home.

In addition, an open call for cascaded funding is foreseen
to explore new opportunities by extending the application
of the VEDLIoT platform to a more extensive set of new
and relevant use cases. Typical open call projects leverage
VEDLIoT technologies for their own AI-related IoT use case,
thereby broadening the VEDLIoT use-case basis and making
the overall concept more robust. The envisaged run-time of
the satellite projects is in the range of 9 – 12 months, with an
average funding of up to 120,000 C (including 25 % indirect
costs), at a funding/reimbursement rate of 70 %. More detailed
information, including available VEDLIoT technology and the
application procedure, is scheduled to be published in early
2022.
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