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Abstract—Despite the parallelism and sparsity in neural net-
work models, their transfer into hardware unavoidably makes
them susceptible to hardware-level faults. Hardware-level faults
can occur either during manufacturing, such as physical defects
and process-induced variations, or in the field due to environ-
mental factors and aging. The performance under fault scenarios
needs to be assessed so as to develop cost-effective fault-tolerance
schemes. In this work, we assess the resilience characteristics
of a hardware accelerator for Spiking Neural Networks (SNNs)
designed in VHDL and implemented on an FPGA. The fault
injection experiments pinpoint the parts of the design that need to
be protected against faults, as well as the parts that are inherently
fault-tolerant.

I. INTRODUCTION

Spiking Neural Networks (SNNs) offer a promising comput-
ing paradigm inspired by the inner workings and efficiency of
the biological brain [1], [2]. Compared to classical Artificial
Neural Networks (ANNs), SNNs exhibit properties such as
faster recognition speed, higher time resolution, lower latency,
and lower energy consumption, making them an interesting
candidate for machine learning tasks related to sensory in-
formation processing. The design of efficient SNN hardware
accelerators is an intense on-going research field [3]-[5]. It
is frequently cited that SNN hardware accelerators inherit the
remarkable fault-tolerance capabilities of the biological brain,
offering resilience to hardware-level faults induced by manufac-
turing defects, reduced-voltage memory operations, radiation,
and aging. However, this assumption has been proven false
according to recent fault injection experiments [6]-[9].

Resilience characteristics of SNN hardware accelerators to
hardware-level faults are expected to be dependent on the
network topology, circuital implementation (e.g., digital, mixed
analog-digital, memristor-based synapses) and size, as well as
on the training algorithm, the cognitive task being executed, and
the foreseen fault rates. For example, memristor-based synapses
show low manufacturing yield and endurance [10]. Resilience
characteristics also show a large variance according to fault type
and location. Assessing the reliability and locating the critical
faults and the more vulnerable parts of the design is important
for developing better targeted and lower-cost self-testing and
fault-tolerance capabilities, where the cost is expressed by the
area and power overheads and performance penalty. Standard
fault-tolerance techniques used in traditional computing, such
as Triple Modular Redundancy (TMR) and Error Correction
Codes (ECCs) for memories, are not effective for Artificial
Intelligence (AI) hardware accelerators in general since they
incur prohibitive overheads.

The prior art on dependability analysis of SNNGs is still at a
very early stage. In [11], a functional Built-In Self-Test (BIST)
is proposed for biologically-inspired spiking neurons. The idea
is to test in one-shot with a specially crafted stimulus that the
neuron is capable of producing all the expected firing patterns.
If one or more firing patterns are missing, then the neuron is
declared faulty.

Transistor-level defect and process variation simulations for
a single spiking neuron have been performed in [12]. Main
observed faulty behaviors include saturated neuron behavior,
i.e., nonstop spiking at the absence of excitatory input, dead
neuron behavior, i.e., halt in spiking despite the presence of
excitatory input, and timing variations, i.e., variations in time-
to-first-spike and firing rate.

In [6], such faulty behaviours are mapped in a Python-based
SNN model. Fault simulations showed that saturated neuron
faults occurring anywhere in the network can be lethal, while
all other fault types can impact the classification accuracy if
they occur in neurons in the last layers. A two-step neuron fault
tolerance approach is proposed. First, training the network with
dropout [13] helps to passively tolerate all except the saturation
faults and the faults occurring in the last layer. Then, an active
fault tolerance scheme is used based on detecting saturation on
a per neuron basis and cancelling it out by the “fault hoping”
concept where a saturated neuron is transformed to a dead
neuron. TMR is used for the last and most critical layer.

The work in [7] presents a fault taxonomy and discusses
behavioral-level fault injection experiments for a SNN architec-
ture with memristor-based synapse implementation. The fault
model includes worst case faulty behaviours, such as dead
neuron and dead synapse faults, where a dead synapse is
modeled with a zero weight. Results show that a high fault
density is required for noticeable decrease in recognition rate.

The work in [8] studies the resilience of feed-forward SNNs
to dead synapse faults when trained with different algorithms.
Synapses are selected to be faulty at random with different fault
rates. Results show that resilience characteristics depend largely
on the training algorithm and in all cases the accuracy drops
rapidly with increasing fault rates. It is shown how to modify
an evolutionary optimization-based training algorithm so as to
improve fault tolerance. In particular, the fitness function is re-
designed to become a weighted sum of the baseline accuracy
and the average accuracy obtained on versions of the SNN with
dead synapse faults. The resilience is improved but the baseline
accuracy is not recovered.



In [9], fault injection is performed in a Python-based SNN
model. The fault model is bit-flips in the memories storing
the weights of the network. A uniform random distribution
with different rates is considered. Fault-tolerance schemes to
mitigate memory failures are also proposed, namely Fault-
Aware Mapping (FAM) and Fault-Aware Training and Mapping
(FATM). First, the memory fault map, i.e., the location of the
faulty memory cells, is derived using testing. FAM consists
in identifying the memory segment with the highest number
of subsequent non-faulty cells and prioritize placing the Most
Significant Bits (MSBs) of the weight in this segment, which is
done using a circular shift. FATM follows FAM and consists in
performing re-training while considering bit-flips for different
rates during training epochs. In this way, the network adapts
its accuracy to different bit-flip probabilities.

In all the aforementioned works, resilience characteristics
of SNNs have been studied by performing fault injection
at transistor-level for single neurons or in a behavioral-level
model for entire networks. Although experimenting on higher
abstraction models allows flexibility, the particularities of a
hardware implementation are not taken into consideration.

Similarly, in the case of ANN hardware accelerators re-
liability analysis has been mainly performed by simulation
using a higher abstraction model [14], [15]. Few works exist
demonstrating fault injection in actual hardware, in particular
fault injection in FPGA implementations [16] and radiation
experiments on ANNs running in GPUs [17], [18] and FPGAs
[19].

In this work, we present results of fault injection on actual
neuromorphic hardware. For this purpose, we designed in
VHDL a convolutional SNN for the poker card symbol recogni-
tion task and implemented it on an FPGA. For our implementa-
tion, we use the Zynq UltraScale+ MPSoC ZCU104 board from
Xilinx. The network parameters are configured automatically
with a MATLAB script to allow easy experimentation. The fault
injection framework runs on the processor of the board allowing
us to perform an accelerated large-scale reliability analysis.
Our fault model includes bit-flips in the memories storing the
different network parameters. We analyse the resilience of the
entire network and layer-by-layer at different fault rates and
bit positions. The experiments pinpoint the critical parts of the
design for which a fault-tolerance scheme is demanded, as well
as the parts that are inherently fault-tolerant.

The rest of the paper is structured as follows. In Section
II, we describe the SNN hardware architecture. In Section III,
we introduce the fault model. In Section IV, we provide the
findings of the fault injection experiments. Section V concludes
the paper.

II. SNN HARDWARE ARCHITECTURE

The building block of the SNN is an event-driven con-
figurable convolutional node proposed in [20] as a generic
block that can be used to build multi-layer feature maps for
convolutional SNNs communicating through the Address Event
Representation (AER) protocol. In this section, we present
the node along with a brief description of its most important
features. Then, we present the SNN built using this node to
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classify poker card symbols recorded using a Dynamic Vision
Sensor (DVS).

A. The Convolutional Node

The node consists of three main blocks, namely a convo-
lutional unit, an internal configuration block, and a router,
as shown in Fig. 1. The ports of the node are optimized
for a 2-D layout, an efficiently adopted structure in hardware
Convolutional Neural Networks (CNNs) since it optimizes the
use of on-chip space. Each node has four bidirectional ports
connecting it to its immediate neighbors to the north, south,
east, and west.

1) The Convolutional Unit: Shown in Fig. 2, it consists
of an array of Integrate & Fire (I&F) neurons representing
pixels, three main memory blocks (i.e., kernel memory, neu-
ron memory, and rate-saturation memory), First In, First Out
(FIFO) input and output registers, a controller block, and a
Serial Peripheral Interface (SPI) block.

The convolutional unit is where the convolution of an input
flow of events ev;,(t,x,y,p, k) and a kernel wy(x,y) takes
place to produce an output flow of events euv,y:(t,x,y,Dp),
where ¢ is time, z and y are the pixel address coordinates,
p is the polarity of the event, and k is the kernel ID in the
kernel memory. In addition, the unit has two more important
features: global leakage and rate saturation. Leakage is the
decay of the neuron membrane potential in between incoming
spikes and it is implemented by forcing the neuron state to
converge towards the reset value after a certain time interval,
which is determined by a global counter. The rate saturation
feature, on the other hand, is the imposition of the minimum
refractory period property found in biological neural networks,
i.e., the neuron is not allowed to produce an output spike for a



certain period after the last output spike, hence controlling the
maximum spiking frequency of a neuron.

With every incoming event read from the input FIFO register,
a convolution operation is executed and the values of the
corresponding pixels are updated and compared to the positive
and negative thresholds. If the value of a threshold is reached
by a pixel and the condition imposed by the rate saturation
mechanism is fulfilled, the pixel produces an output event with
address (Zout, Yout) and polarity p,,+ and writes it in the output
FIFO register.

To control the traffic, a signal is activated when the registers
get full, and the incoming events are discarded until there is
room for more events in the register. While this implies that the
output events would get down-sampled and some information
will eventually be lost, the spatio-temporal correlation of the
passing events is preserved, keeping the integrity of the carried
information.

2) The Router: In hardware implementations of neural net-
works, the highly dense connectivity required between neurons
poses a challenge in terms of on-chip area. Routers handle the
transmission of events from their origin to their destination,
hence providing a practical solution to this problem. In this
design, the destination-driven addressing scheme is adopted,
which means that for every event, there is a routing header that
carries the x and y coordinates of the destination node in the
mesh distribution of the network.

3) The Configuration Block: The convolutional node has a
set of adjustable parameters that need to be configured prior
to the inference operation of the network. Some parameters
belong to the convolutional unit, such as the neuron threshold
and the kernel weights. Others belong to the router, such as
the local address of the node and the routing table information
necessary for redirecting events through the ports of the node.
Each parameter value is sent to the node through a SPI, with an
index indicating its identity. The configuration block interprets
the parameter identities and handles their allocation in their
corresponding locations in the different memory blocks.

B. The Poker Card Symbols Dataset

The SNN used in this work is built to classify a dataset
representing the 4 poker card symbols [21]. A deck of 40
poker cards was presented in front of a DVS for a period of
around 1 s. The events were recorded and processed in order to
generate 40 samples of 32 x 32 pixel windows showing only the
centered symbols. The resulting stimulus has a total of 174644
events, a duration of 950 ms, and an average speed of 184K
events per second. In our experiments, we use a version of the
dataset slowed down to 1% of the original speed in order to
ensure a scenario where no input events are discarded.

C. The Convolutional SNN

The convolutional SNN is designed and trained in software
in a frame-based format using backpropagation, and then trans-
formed into the equivalent spiking form [21]. Afterwards, the
weights and parameters are scaled, rounded, and then tuned to
make up for the discrepancies between hardware and software
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Fig. 3: Convolutional SNN for poker card symbol recognition.

Fig. 4: 2-D mesh SNN implementation on the FPGA.

implementations using simulated annealing as an optimization
algorithm [20].

As shown in Fig. 3, the SNN consists of 4 convolutional
layers (C1, C2, C3, and C4) made up of 22 convolutional nodes.
The first 2 layers are followed by 2 sub-sampling layers (S1
and S2). The network has 94 kernels in total, where layer C1
has 1 kernel per node, layer C2 has 6 kernels per node, layer
C3 has 4 kernels per node, and layer C4 has 8 kernels per node.

The 2-D hardware layout of the FPGA implementation is
shown in Fig. 4, where the nodes are arranged in a 6 x 4
mesh with bidirectional connections between the routers of
each block and its immediate neighbors. Every node carries
an identification corresponding to its x and y address in
the mesh, and its color indicates the respective layer in the
network. Nodes (5,4) and (6,4) are extra nodes added for
routing purposes but do not perform any processing.

Input events do not have any specified destination address
and they need to be sent to all nodes of the first layer. Therefore,
there is an extra splitter block at the input side, which creates
6 copies of every incoming event, adds the address of a node
in the input layer to each copy, and delivers them to the
corresponding nodes. At the output side, there is a merger block
which simply forwards events from the 4 nodes of the output
layer to the output of the network without altering them.

D. Embedded system design

To automate the reliability analysis, we built a hardware plat-
form and a software framework to support it. More specifically,
we designed a standalone embedded system application where



the convolutional SNN is handled by a C program running on
the ARM Cortex-A53 APU of the MPSoC. The C program it-
erates over the fault injection experiments that have been stored
to an SD card. For each experiment, the C program coordinates
the following actions: (i) configuration of the faulty SNN; (ii)
generation of the input spiking events according to the dataset;
and (iii) monitoring of the output spiking events and storing to
the SD card. The hardware platform communicates with a PC
through a serial connection. The software framework consists
of three MATLAB scripts: (i) the configurator which generates
the configuration data for the nominal SNN; (ii) the injector
which performs the fault injection into the configurator’s output
to generate configuration data for faulty SNN versions which
are then written to the SD card; and (iii) the classifier which
processes the output spiking events written to the SD card and
performs the classification. The winning poker card symbol is
the one whose node produces the largest number of spikes. The
classifier also calculates the SNN recognition accuracy over the
testing set.

III. FAULT MODEL

As discussed in Section II, the generic convolutional node
used as a building block in this hardware implementation is
configurable through a set of modifiable parameters. These pa-
rameters are stored in mutually exclusive memory blocks inside
the node, which are the subject of our reliability experiments.
The parameters have an 8-bit representation in hardware and
can be categorized into:

1) Splitter Parameters: The splitter is parametrized by the
number of input event copies to generate and send to each first-
layer node, as well as the node addresses. Splitter parameters
make up 0.52% of the used memory.

2) Router Parameters: The router needs two important set-
tings, namely the local address of the node and the routing
information necessary for redirecting events through its ports,
i.e., addresses of next-layer nodes and the direction towards
them (down, right). The router also carries the kernel ID
information so that the correct kernels corresponding to each
event can be retrieved from the memory. Router parameters
make up 15.25% of the used memory.

3) Neuron Parameters: Neuron parameters govern the key
features of the I&F neurons within the node. They include the
neuron threshold, the leakage pulse amplitude and period, and
the refractory period. These parameters are set for the whole
node, i.e., they are global to the whole array of neurons inside
a node. Neuron parameters make up 7.8% of the used memory.

4) Kernel Parameters: Every node of the network has a
specific number of kernels and needs two parameters per kernel,
namely the kernel size and the center-shift of the kernel which
determines whether the kernel is applied to the pixels in the
zone around the one given by the event destination address
or it is shifted to another pixel. Kernel parameters make up
10.75% of the used memory.

5) Kernel Weights: The number of kernel weights per kernel
is determined by the kernel size, i.e., a n X k kernel has n * k
weights. The kernel weights considering all kernels in all nodes
of the network make up 68.55% of the used memory.
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The fault model consists of permanent bit-flips in the afore-
mentioned memories. Bit-flips are injected in two different
ways, in particular with a Bit Error Rate (BER) probability,
leading to a multiple-bit fault scenario with uniform random
distribution of bit-flips, or considering a single-bit fault sce-
nario. In the former scenario, assigning different BER proba-
bilities helps assessing the BER that can be tolerated by the
SNN. In the latter scenario, we study the effect of single bit-
flips parameter-by-parameter, layer-by-layer, and for different
bit positions. The goal is to identify critical parts of the design,
as well as critical bit positions.

IV. RESULTS

For each fault injection experiment we evaluate the SNN
recognition rate and compare it with the baseline value for the
nominal design which is 85 & 2.5%.

Each fault injection experiment takes approximately 2 min-
utes. In the multiple-fault scenario, for a given BER value, we
perform 100 repetitions. As the total memory size is 18464
bits, it is very time-consuming to perform all single bit-flip
scenarios even in hardware where run-time is accelerated.
Thus, for the kernel weights in the first three layers Cl1, C2,
and C3 that occupy the largest fraction of the memory, we
perform fault sampling, randomly selecting 20%, 10%, 10%
fault locations, respectively. For the rest of the parameters
we perform exhaustive fault injection. In total, we performed
11925 fault injections which took approximately 16.5 days of
simulation time.

Fig. 5 shows the accuracy versus BER in the case where
bit-flips are injected uniformly at random across the entire
network. We visualize summary statistics using box plots.
The bottom and top edges of the box indicate the 25th and
75th percentile, respectively, the whiskers extend to the most
extreme data points not considered outliers, and the outliers are
plotted individually using the ‘0’ symbol and are not always
aligned vertically for illustration purpose. We also report the
median shown with a dotted circle and the average accuracy
across repetitions of the same experiment. Experiments with
0% accuracy correspond to an application crash as the result
of fatal errors which made the system unable to respond to
any incoming event activity. As it can be seen from Fig. 5,
the accuracy drops with increasing BER and beyond 10~ the
drop is below the tolerated zone shown with green color. This
shows that the maximum tolerated BER is 10~® or less. We
also observe that for moderate BER values the variance of
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Fig. 6: Single bit-flips layer-by-layer: (a) Router Parameters; (b) Neuron Threshold; (c) Kernel Weights.

the accuracy increases as BER increases, which shows that
accuracy drop is largely dependent on the combinations of
faulty bits and their locations.

The outliers for moderate BER values in Fig. 5 are due to
faults occurring is the smaller yet far more critical memory
blocks storing splitter, router, and kernel parameters. In fact,
the network is susceptible even to single bit-flips affecting
these parameters. Faults in the splitter may lead to generated
addresses that do not correspond to a valid node inside the
mesh, and this leads to input events not reaching any destination
address and, thereby, not being processed. Faults in the kernel
parameters change the kernel’s size and center-shift and faults
in the router parameters change the routing of the spikes. Thus,
such faults essentially result in a structurally different network
architecture. For example, Fig. 6(a) shows single bit-flips in
the router parameters layer-by-layer and across different bit
positions. The network is very sensitive and the bit position
where the flip occurs is irrelevant. Thus, we conclude that
splitter, router, and kernel parameters are critical and protecting
them is of utmost importance.

Figs. 6(b)-(c) show results for single bit-flips layer-by-layer
for the neuron threshold and kernel weights, respectively.
For the single-bit fault scenario, among the different neuron
parameters, accuracy drop was observed only for the neuron
threshold, thus Fig. 6(b) shows results only for the neuron

threshold. Figs. 7(a)-(b) show results for multiple bit-flips with
different BER values layer-by-layer for the neuron parameters
and kernel weights, respectively.

From Fig. 6(b) we observe that the network performance
is sensitive to single bit-flips in the neuron threshold only if
these occur in the 3 Most Significant Bits (MSBs), while the
last layer C4 shows no vulnerability. From Fig. 7(a) we observe
that layers C1 to C3 start showing vulnerability for BER values
larger than 1072,

Regarding kernel weights, from Fig. 6(c) we observe that
the network sensitivity increases with the layer number. Thus,
some faults in the beginning of the network tend not to
propagate. Another observation is that single faults affecting
Least Significant Bits (LSBs) can be tolerated. From Fig. 7(b)
we observe that the network can tolerate up to a BER of 1075.
These results show that leaving unprotected the 4 LSBs of the
kernel weights, which always occupy the largest fraction of
the memory, is feasible, leading to significant cost reduction in
fault tolerance schemes.

V. CONCLUSIONS

We presented a fault injection experiment and fault resilience
analysis for a SNN hardware accelerator. We developed a fault
injection framework that creates and maps SNN faulty instances
into the hardware, allowing to accelerate fault injection and
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Fig. 7: Multiple bit-flips for different BER values layer-by-layer: (a) Neuron Parameters; (b) Kernel Weights.

assess the fault criticality on actual hardware. Our findings
show that certain SNN parameters, i.e., splitter, router, and
kernel parameters, are critical and must be protected, while for
others, i.e., neuron threshold and kernel weights, the network
shows some degree of resilience to faults occurring in LSBs.
Therefore, these parameters can be the subject of selective fault
tolerance reducing the cost of an all-around fault-tolerance.
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