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Abstract—Recently there is an increasing interest in the use
of artificial intelligence for on-board processing as indicated by
the latest space missions, which cannot be satisfied by existing
low-performance space-qualified processors. Although COTS Al
accelerators can provide the required performance, they are not
designed to meet space requirements. In this work, we co-design a
low-cost SIMD micro-architecture integrated in a space qualified
processor, which can significantly increase its performance. Our
solution has no impact on the processor’s 100 MHz frequency and
consumes minimal area thanks to its innovative design compared
to conventional vector micro-architectures. For the minimum
configuration of our baseline space processor, our results indicate
a performance boost of up to 9.3x for commonly used Al-related
and image processing algorithms and 5.5 faster for a complex,
space-relevant inference application with just 30% area increase.

I. INTRODUCTION AND DESIGN MOTIVATION

Space systems experience an increased interest in machine
learning (ML) and artificial intelligence (AI), however, the per-
formance requirements of modern machine learning workloads
cannot be satisfied by the existing space processors. Moreover,
space systems cannot use COTS accelerators because they are
not designed to withstand radiation and comply with numerous
other requirements to be qualified for space use.

Since space qualification is an extremely costly process,
space computing industries rely significantly on design reuse
for the production of new, higher performing hardware, to min-
imize these costs. In particular, the qualification of a modified
version of an already qualified processor costs only a fraction
of the qualification of a new system, since requirements and
validation tests from the original design can be reused.

Space processors have small size to minimise the area
that is susceptible to radiation. They are manufactured with
older, mature and reliable node processes e.g. 60nm or 45nm
which are less dense than modern node processes, resulting in
less available transistors than modern processors in the same
die area, especially when the design is implemented with a
radiation hardened cell library or incorporates fault-tolerance
features such as triple modular redundancy (TMR). This also
implies lower clock speeds compared to consumer products.

In order to increase the Al processing capabilities of modern
space processors, in this paper we present SPARROW, an open
source hardware design and compiler support [13] for the
space qualified space processor LEON3 [14] used in numerous
space missions. SPARROW uses a short vector, also known as
Single Instruction, Multiple Data (SIMD), microarchitecture.
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II. MODULE DESIGN PRINCIPLES AND ARCHITECTURE

SPARROW adds an extension module for the SPARC v8
based LEON3 space processor. It extends the integer pipeline
with additional short vector operations with focus on Al
applications, without any performance cost in the rest of the
operations of the base processor. To guarantee this, we main-
tain the cycle time and the pipeline depth of the unmodified
LEON3 and include the module in parallel to its ALU.

A key design decision of SPARROW is the reuse of the in-
teger register file to reduce the area overhead of the design. We
notice that in conventional architectures the vector register file
consumes a significant portion of the vector design. Therefore,
our decision results in a SIMD design which is at least 20-
30% smaller than any other vector design targeting embedded
processors, as we confirm later with our experimental results.

Another important element of SPARROW’s design is its
hardware-software co-design for Al processing. By analysing
the literature it is apparent that one of the most significant op-
erations in ML is the dot product [4], primarily used in matrix
multiplication, one of the most common operations, since it
is used both for the implementation of fully connected layers,
as well as for convolutions. Thus, the optimization of this
operation was the starting point of the design of SPARROW’s
architecture resulting in our two stage architecture design.

In addition, recent studies have shown that reduced preci-
sion of computations involved in machine learning inference
operations to 8-bit integers provides minimal reduction in the
inference accuracy. As a consequence, almost every archi-
tecture designed for inference workloads nowadays operate
with 8-bit integers or even smaller bit widths [15]. This is
compatible with our choice to reuse the integer register file,
which consists of 32-bit registers and therefore can accom-
modate 4 values which can be processed in a SIMD manner.
Moreover, the decision to work only with 8-bit widths allows
our architecture to take implementation choices that otherwise
would be impossible to be implemented without a significant
impact on the cycle time or the area of the SIMD module.

In summary, in the first stage we add support for 13 SIMD
arithmetic and bitwise operations (add, sub, mul, max, min,
shift, move b, and, or, xor, nand, nor, xnor). In the second stage
the number is limited to 4 reduction operations (sum, max,
min, xor). Arithmetic operations can be signed or unsigned
and can optionally use saturation.
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Fig. 1. Outline of the SPARROW module.

An outline of SPARROW is shown in Figure 1. In the first
stage, the two input registers execute 4 operations in parallel
in a conventional SIMD fashion, whilst being subject to
traditional vector modifiers, such as swizzling or masking. The
four components of the first stage result are either combined
in reduction operations to produce up to a 32-bit result or
passed to the module output. In both stages the result can be
saturated and whenever one of the two stages is not used, it
can be bypassed without penalty. Furthermore, when the result
is used by the following instruction, the data can be bypassed
directly to the integer pipeline saving a cycle.

A. The SPARROW Control Register

Unlike several SIMD extensions, SPARROW has full sup-
port for vector modifiers like masking and swizzling. These
modifiers are not specified in the instruction, but they are
instead configured by accessing a new special register $scr
(SPARROW Control Register), which is accessed using the
read and write instructions used for accessing the special
registers in the SPARC v8 ISA. The 4 least significant bits
in $scr identify the mask used, each bit corresponds to
respective vector component. A set bit in the mask allows the
component to be operated normally while a reset bit passes
the masked value to the second stage. This masked value is
selected using the 5th bit of $scr, and is, either the value O,
or the original value of the input component.

The next 16 bits of the SPARROW Control Register are
used for swizzling control, eight for each source vector. Each
pair of bits represents the component of the input register (0-
3) which will occupy each position in the operation’s source
operand. The rest of the bits are reserved for future extensions.

B. SPARROW Stage 1: 2-Operand SIMD Operations

The first stage operations are those that require two source
operands, the input registers after applying the reordering or
component replication thanks to swizzling. Alternatively, the
second operand can be an immediate value. Since all the bits
for specifying the immediate in the ISA’s integer instructions

are used to select the opcode of each SPARROW stage, the
immediate must be encoded in the 5 bits used for specifying
the second input register. Thanks to our co-design approach,
we encode the most frequently used values in Al inference
applications, a common practice in embedded GPU ISAs [2].
Based on our analysis, in the AI domain such values are 0, 1,
powers of two as well as their negatives and powers of two
minus one, but the particular values are different depending
on the instruction. The resulting operand vector contains the
immediate value replicated in each of its components.

The operations are then performed in parallel for each pair
of components. The result is stored in an extended length regis-
ter (16 bits) to have higher precision if additional computation
will be performed in the second stage. In most of the cases of
Al algorithms the value is simply saturated in 8-bits. For this
reason we offer a saturated version of each operation. For the
rare cases that the user desires to preserve the upper 8-bits of
each computation e.g. multiplication, this can be achieved by
shifting the result. This allows to use SPARROW to perform
also higher precision general purpose operations as it has been
demonstrated in embedded GPUs [12].

If the selected operation for the first stage is a nop, only the
second stage operations are executed. In this case the passed
value is that of the first input register without swizzling but
with the possibility to mask components.

The intermediate vector is the resulting vector after the
first stage computations, if any, and with the mask applied.
Depending on the mask selector bit, in $scr, the component
is replaced with O or with the input vector component. In the
later case, the sign is extended to match the larger size of the
intermediate vector components.

One of the vital design characteristics of SPARROW is its
multiplication implementation. Multiplication is traditionally a
costly operation which requires multiple cycles to be executed
and has a high area cost. Implementing a full 4-component
SIMD multiplication in a single pipeline stage would impact
the frequency of the original design and it would require to
be split in multiple pipeline stages. However, since we are
working on 8-bits operands, we implemented the logic which
computes multiplication by explicitly performing a shift and
addition for the 8 bits. This allows to fit the 8-bit multiplication
with saturation within a single cycle without frequency impact.

C. SPARROW Stage 2: Reduction Operations

Second stage operations compute a single result by combin-
ing all the components of the intermediate vector. Reduction
operations have a saturated and non-saturated version, too. The
intermediate reductions are performed with an increased data
width to avoid overflow. In the saturated case, the clamping
is performed only to the final result, to avoid different results
depending on the order of the components.

If there is no need for a reduction operation, a nop can be
specified. In that case the result will be the output of the first
stage with no modification whatsoever. Moreover, this result is
bypassed to the integer pipeline and can be immediately used
with no need to wait for an additional cycle.



III. SOFTWARE SUPPORT FOR SPARROW

An important advantage of SPARROW compared to cus-
tom accelerators is the ability to reuse the existing qualified
software stack of LEON3 i.e. the RTEMS real-time operating
system or bare-metal space applications, which reduces both
the cost and the effort of the development of a new compiler
from scratch as well as its qualification cost later.

We added SPARROW support in the two most widely
used compilers nowadays, gcc and llvm. We modified the
binutils of Gaisler’s bcc-2.2.0 gce-derivative compiler
and the base LLVM v13.0. We program SPARROW in C, us-
ing inline assembly instructions wrapped in a C-preprocessor
based library providing an interface similar to vector intrinsics
for conventional SIMD extensions such as SSE or NEON.

IV. EVALUATION

A. Hardware utilization

SPARROW has been synthesized and implemented for
the Zynq UltraScale+ ZCU102 FPGA. Since there is no
design from Gaisler’s GRLIB GPL 2021.2 library for Zynq
Ultrascale+, we have created a top-level design using the
minimum components for a functional processor. This is
the smallest, microcontroller-like configuration of the LEON3
with 8KB direct-mapped instruction and data caches, clocked
at I00MHz. We also implemented the same design without
caches for a fair comparison with another vector processor
implementation for embedded systems in the literature [9].

According to the resource utilization results in Table I,
SPARROW has a very small relative increase over LEON3
when it is implemented on an FPGA. There is an increment of
only 26% over the baseline LEON3 design when implemented
with caches and 30% without caches. In absolute terms,
SPARROW uses only 2500 LUTs and 200 FF. In comparison,
Johns and Kazmierski [9] present a vector unit implementa-
tion for a RISC-V embedded processor, which doubles the
resource utilisation over its baseline. Unlike SPARROW, they
implement vector operations up to 32-bit, not only 8-bit ones,
but since they adhere to the RISC-V vector specification, a
separate vector register file is need. As another indication of
SPARROW s cost, the entire floating point unit (GRFPU) for
LEON3 from Gaisler’s GRLIB [6] costs 4600 LUTs and 2
BRAM blocks, and its area-optimised one (GRFPUlite) has
comparable cost with ours (2000 LUTs and 2 BRAM blocks).

Notice that the relative area overhead of SPARROW does
not change between the cache-featuring and the cache-less
implementations on an FPGA, because by default BRAM
blocks are used for the cache and the register files. That is, the
key advantage of SPARROW, which is the integer register file
reuse, is less evident in default FPGA implementations and
more significant in ASIC implementations.

However, radiation-hardened-by-design space FPGAs such
as the Xilinx Virtex 5 V5QV only offer radiation hardening for
LUT-RAMs, while BRAM blocks only have ECC protection.
Therefore, implementing the cache and the register files using
LUT-RAMs can increase LEON3’s reliability [14]. In order to

evaluate SPARROW?’s resource overhead in that scenario and
to give a rough indication of its relative area overhead in the
case of an ASIC implementation, we have implemented our
designs using LUT-RAMs, too. In this case the relative cost of
SPARROW over the baseline LEON3 is 16% when the cache
is present, and 25% otherwise. Note that our baseline processor
is the smallest LEON3 configuration, so with a larger one, our
relative hardware overhead is expected to be even smaller.

Moreover, in order to show the exact hardware savings of
SPARROW thanks to the reuse of the integer register file, we
implemented a version of both LEON3 and SPARROW using
an extra register file. The cost of the extra vector register file
would be around 310 LUTs, 240 LUT-RAMs and 43 FFs. This
cost corresponds to 12% of the SPARROW cost in LUTs and
21% in FFs. Therefore, our hardware savings thanks to this
decision are consistent with the overhead of the vector register
file in ASIC implemented vector processors [1] [10].

B. Performance

We compare with [9] which is the vector processor design
in the literature closest to ours, which implements the vector
extension of RISC-V in a microcontroller. Although their
design supports vector operations up to 32-bit per element
(one 32-bit, 2 16-bit or 4 8-bit operations in a single cycle),
they only evaluated their proposal with 8-bit programs: matrix
multiplication, grayscale conversion of an RGB image and an
edge detection filter. Matrix multiplication and the convolution
filter are Al-related, while the grayscale conversion can be part
of inference processing. The authors were kind enough to pro-
vide us with information and their software implementations in
RISC-V assembly using vector extensions in order to perform
a fair comparison. Their design runs at SOMHz which is half
of SPARROW’s and does not feature a cache.

Our results are shown in Table II. Due to space constraints
we provide results only with the bce toolchain, since llvm
results are similar. For each experiment we report the number
of processor cycles and the obtained speed-up compared to the
LEON3 baseline. Our speed-up is higher than [9] for matrix
multiplication (5.8 x) thanks to our co-design, while the others
are similar (grayscale 2.7x and filter 3.2x). Note that the
results in [9] are obtained in simulation whereas ours on an
FPGA. SPARROW obtains its performance boost over these 8-
bit workloads using only a fraction of the hardware cost of [9]
while operating at double frequency. When the cache is used,
the execution time is reduced considerably in both SPARROW
and baseline configuration, but their relative speedups are in
the same ranges, so they are omitted for space reasons.

For an approximate comparison with the performance bene-
fit provided by SIMD architectures such as ARM’s NEON over
their scalar baselines, we computed the 2nd degree polynomial
equation presented in [8]. Jie and Kapre [8] mention that this
operation executed with NEON with high loop trip counts
over uncached 8-bit data provides a speed-up of 3.7 over the
scalar code on an ARM A9 hardcore on an FPGA. SPARROW
provides a speed-up of 4.5x with respect to LEON3 and
17.25x when saturation arithmetic is used for both designs.



TABLE I
RESOURCE UTILIZATION COMPARISON WITH RESPECT TO THE BASELINE FOR DEFAULT FPGA IMPLEMENTATION

Zynq Ultrascale+ LEON3 SPARROW
Available Cache enabled | Cache disabled | Cache enabled | Cache disabled
LUT 274080 9333 (3.41%) 8709 (3.18%) 11792 (4.3%) 11251 (4.11%)
LUTRAM 144000 292 (0.2%) 292 (0.2%) 292 (0.2%) 292 (0.2%)
FF 548160 6346 (1.16%) 6145 (1.12%) 6553 (1.2%) 6353 (1.16%)
BRAM 912 9.5 (1.04%) 4 (0.44%) 9.5 (1.04%) 4 (0.44%)
TABLE II of their hardware overhead compared to their baseline scalar
PERFORMANCE RESULTS WITHOUT CACHE designs. When saturation is needed, the speed-up can be over
Program Data size LEON3 SPARROW | Speed-up 17 x. Finally, we obtained similar high performance in a space
Matrix Mult. | 120x120 | 117,310,797 | 12,632,882 9.3% relevant inference benchmark, with more than 5x speed-up.
Grayscale 256 %256 3,221,620 876,633 3.67%
Filter 236x256 | 39019342 | 11855218 | 33x ACKNOWLEDGMENTS
Cifar-10 32x32 3,784,906 649,618 5.83x We thank Johns and Kazmierski for providing us the RISC-
Polynomial 2048 88,145 19,537 45 V assembly version of their software for a fair compari-

Although the previously presented benchmarks are good
examples of ML applications, they don’t exhibit any data
reuse — which can further show the benefit of SPARROW —
nor are relevant for space. For this reason we have ported a
complex space relevant inference application based on CIFAR-
10 from the open source GPU4S Bench benchmark suite [7]
which has been recently released [11] [5]. Its layers include
convolution, relu, max pooling and matrix multiplication over
32x32 images. The obtained speed-up is 5.5x for the entire
inference chain with the cache and 5.8 x without the cache.

It is worth noting that some SPARROW speedups are higher
than 4x which is its short vector width. The reason is the
additional reduction operations and saturation options, which
implement multiple operations with a single instruction.

V. RELATED WORK

To our knowledge, the reuse of the integer file for short
vector operations is a unique feature and a key contributor
to SPARROW’s low resource cost. Other low-cost vector
architectures for embedded systems — but not Al-specific — are
the series of works of J. Rose’s [16] [17] and G. Lemieux’s [3]
[18] students. However, they only focus on designs of FPGAs-
based vector processors, exploiting FPGA features to achieve
low cost. On the other hand, SPARROW targets both FPGA
and ASIC implementations, as the original LEON3.

However, the most important feature of SPARROW is that
it is created on top of an already qualified processor, which
allows its incremental qualification at a low cost. On the other
hand, none of the aforementioned technologies have any prior
qualification credit and therefore their qualification for space
can have a very high cost, if it is at all possible.

VI. CONCLUSIONS

SPARROW is a short SIMD microarchitecture which accel-
erates Al applications for the LEON3 space processor at low
hardware cost, for both ASIC and FPGA implementations.
This is achieved by reusing the integer register file which pro-
vides 30% smaller hardware overhead than conventional vector
processors. Our design shows great results up to 9.3 x, higher
than similar vector designs for embedded microcontrollers [9]
and embedded processors such as ARM’s NEON, at a fraction

son with [9]. This work was supported by ESA through
the GPU4S (GPU for Space) project, the Spanish Ministry
of Economy and Competitiveness under grants PID2019-
107255GB and FJCI-2017-34095 (Spanish State Research
Agency / http://dx.doi.org/10.13039/501100011033), the Eu-
ropean Commission’s Horizon 2020 programme under the
UP2DATE project (grant agreement 871465), the HiPEAC
Network of Excellence and a first prize in Xilinx’s University
Open Hardware Competition 2021 in the student category.
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