
G-GPU: A Fully-Automated Generator of GPU-like
ASIC Accelerators

Tiago D. Perez∗, Márcio M. Gonçalves†, Leonardo Gobatto†, Marcelo Brandalero‡, José Rodrigo Azambuja†,
Samuel Pagliarini∗

∗ Department of Computer Systems, Tallinn University of Technology (TalTech), Estonia
† Institute of Informatics, Federal University of Rio Grande do Sul (UFRGS), Brazil

‡ Brandenburg University of Technology (B-TU), Germany
Emails:{tiago.perez,samuel.pagliarini}@taltech.ee,{marcio.goncalves,leonardo.gobato,jose.azambuja}@inf.ufrgs.br,marcelo.brandalero@b-tu.de

Abstract—Modern Systems on Chip (SoC), almost as a rule,
require accelerators for achieving energy efficiency and high
performance for specific tasks that are not necessarily well suited
for execution in standard processing units. Considering the broad
range of applications and necessity for specialization, the design
of SoCs has thus become expressively more challenging. In this
paper, we put forward the concept of G-GPU, a general-purpose
GPU-like accelerator that is not application-specific but still gives
benefits in energy efficiency and throughput. Furthermore, we
have identified an existing gap for these accelerators in ASIC,
for which no known automated generation platform/tool exists.
Our solution, called GPUPlanner, is an open-source generator of
accelerators, from RTL to GDSII, that addresses this gap. Our
analysis results show that our automatically generated G-GPU
designs are remarkably efficient when compared against the
popular CPU architecture RISC-V, presenting speed-ups of up to
223 times in raw performance and up to 11 times when the metric
is performance derated by area. These results are achieved by
executing a design space exploration of the GPU-like accelerators,
where the memory hierarchy is broken in a smart fashion and
the logic is pipelined on demand. Finally, tapeout-ready layouts
of the G-GPU in 65nm CMOS are presented.

Index Terms—ASIC generator, domain-specific accelerators,
general-purpose gpu architectures, integrated circuits

I. INTRODUCTION

New computer applications, especially in the field of
Artificial Intelligence (AI), keep pushing the need for more
energy-efficient hardware architectures [1]. For many years,
application- and domain-specific accelerators, designed by
specializing to the task at hand, have been the standard choice
for achieving high energy efficiency. Canonical examples
are crypto cores for efficient encryption/decryption [2] and
Graphics Processing Unit (GPUs) for which even specialized
programming languages and paradigms have been proposed [3].

GPU architectures focus on specialized massively parallel
many-core processors that take advantage of Thread-Level
Parallelism (TLP) to handle highly parallelizable applications
in a Single-Instruction Multiple Threads (SIMT) paradigm.
GPUs, as the name implies, have been traditionally designed
for graphics applications but have recently evolved into efficient
general-purpose accelerators for High-Performance Computing
(HPC). HPC applications have a wide range, including oil
exploration, bioinformatics, and the thriving AI and Machine
Learning (ML) domains [4]. NVIDIA GPUs, for instance, are
used as accelerators in several top500 supercomputers.

However, despite its widespread use as accelerators, research
in GPU architectures is limited due to the lack of open-source

models at a sufficiently low level of abstraction and that
are representative of modern architectures. To the best of
our knowledge, the only configurable open-source GPU
architectures available in the literature are FlexGripPlus [5] and
FGPU [6]. The first is based on the NVIDIA G80 decade-old
architecture and has never been deployed to an FPGA board.
The second was designed specifically for FGPA platforms.
Therefore, the literature has not yet tackled the challenges
in designing, configuring, and implementing modern GPU
architectures for ASICs – a platform that presents challenges
that are far from those in FPGA design. Still, all commercial
GPUs are designed as ASICs.

This work proposes to bridge this gap with GPUPlanner,
an automated and open-source framework for generating
ASIC-specific GPU-like accelerators as IP. We term
these general-purpose accelerators G-GPUs. GPUPlanner
helps designers in generating GPU-like accelerators
through user-driven customization and automated physical
implementation. Customization is performed according to a
given GPU architecture through a series of parameters that
define computation characteristics (e.g., number of processing
units) and memory access (e.g., cache sizes), thus providing
designers a high degree of scalability to better fit the generated
IP into their systems. Implementation strategies explore the
use of smart memories and on-demand pipeline insertion.

We evaluate our proposed framework by implementing
four flavors of G-GPU architectures in terms of performance,
power, and area (PPA). Additionally, we provide a reasonable
comparison with the popular CPU architecture RISC-V [7],
[8] in terms of raw performance speed-up and performance
speed-up derated by area. The findings from our experiments
can help designers in better understanding how G-GPU can be
used as an accelerator in their system, as well as the expected
performance gains. In summary, our main contributions are:

• GPUPlanner, an open-source framework for automated
generation of GPU-like accelerators, from RTL to GDSII.

• G-GPU, a domain-specific ASIC accelerator based on
general-purpose GPU-like architectures.

• Design space exploration for performance, power, and area
evaluations of G-GPUs generated by GPUPlanner.

• Rich results and trade-offs encountered during logical
and physical synthesis in a commercial 65nm CMOS
technology.

ar
X

iv
:2

11
1.

06
16

6v
2 

 [
cs

.A
R

] 
 6

 D
ec

 2
02

1



II. HARDWARE ACCELERATORS AND OUR BASELINE GPU

This section discusses hardware accelerators and the baseline
GPU architecture chosen for generating multiple versions of
G-GPU. We tackle three classes of hardware accelerators and
discuss in detail FGPU and its customization capabilities.

A. Hardware Accelerators

Domain-specific hardware accelerators can provide
orders of magnitude speed-up and energy efficiency over
general-purpose processing architectures. However, they must
be manually tailored to most efficiently tackle domain-specific
characteristics and extract the most efficiency from a given
application domain.

Recent developments in High-Level Synthesis (HLS) are
encouraging and have helped in bridging this gap for many
– but not all – application domains. The fact is that HLS [9]
is a fantastic early prototyping approach that trades off some
performance for flexibility. Yet, for ASIC designs, this trade-off
is not interesting, or the performance is insufficient [10].
It remains that accelerators that target ASIC platforms are
optimized to a tee, a process that is costly and time-consuming.

In a nutshell, domain- or application-specific accelerators
cost too much; the design and implementation of their
hardware and software-stack cannot be easily justified. This
scenario presents itself as an opportunity where general-purpose
accelerators have gained ground. These accelerators benefit
from modern programming languages that have effective
supporting tools for programming, debugging, and deployment.

Our proposed GPUPlanner framework combines the
efficiency from domain-specific accelerators and the ease of
use (i.e., programmability) from general-purpose architectures
into G-GPU. The result is an automatically generated
domain-specific ASIC accelerator based on GPU architectures
that can be easily programmed with modern programming
languages. This is the main contribution of our work.

B. FGPU: our Baseline GPU Architecture

FGPU is a configurable open-source GPU-like soft processor
designed to accelerate workloads that fit in the SIMT
paradigm [6]. It was originally conceptualized and designed
for FGPA platforms. However, its RTL design description can
be ported to ASIC platforms with precise adaptations to its
memory hierarchy. This GPU-like architecture has a supporting
LLVM-based compiler, which can compile existing OpenCL
kernels and provides designers with the ability for fast software
development, debugging, and deployment. Most importantly,
FGPU can be artlessly scaled up to 64 processing units (and
beyond with additional support) and is deeply configurable in
terms of operations, instructions, and memory access.

Fig. 1 presents an overview of FGPU’s architecture. Its main
component is the Compute Unit (CU), a SIMD machine of 8
identical Processing Elements (PE0 - PE7) that can be spatially
replicated up to eight times. A single CU can run up to 512
work-items (a computational kernel in OpenCL) and supports
full thread-divergence, i.e., each work-item is allowed to take a
different path in the control flow graph. Work-items are grouped

Memory Controller

Runtime Memory

A
X

I D
at

a
In

te
rf

ac
e

A
X

I C
on

tro
l

In
te

rf
ac

e

CRAM

Ctrl Regs

LRAM

G
lo

ba
l M

em
or

y
C

on
tro

lle
r

C
ac

he

W
F 

Sc
he

du
le

r

CU

W
G

D
is

pa
tc

he
r

...
...

Reg.
File

...

PE0 PE7

Reg.
File

...

Fig. 1: FGPU architecture with memories colored according to
the layouts displayed in Figs. 3 and 4.

into Wavefronts (WFs) that execute concurrently in a CU, and
WFs are combined into Workgroups (WGs), which share a
program counter and are assigned to a CU. FGPU is also deeply
pipelined. The size of these parameters is entirely configurable
when implementing the design.

FGPU features a Runtime Memory (RTM) and a Data
cache. The cache is a central, direct-mapped, multi-port, and
write-back system that can serve multiple read/write requests
simultaneously. Besides, it integrates numerous data movers
that can parallelize the data traffic on up to four AXI Data
interfaces. The whole architecture is controlled on the hardware
side through a single AXI Control interface. On the software
side, only standard OpenCL-API procedures are needed. These
parameters can also be configured in size and number.

Several past works have modified the FGPU to adapt it to
different application domains. In [11], the authors have included
new instructions along with micro-architecture and compiler
enhancements to specialize FPGU for persistent deep learning,
achieving 56–693x speed-up in PDL applications. However, the
modifications are not made publicly available.

MIAOW [12] is GPU-like implementation based on the
AMD Southern Islands architecture and supporting its ISA.
However, it is not fully synthesizable since the register
files, on-chip networks, and memory controllers are described
using behavioral C/C++. Scratch [13] extended MIAOW with
automatic identification of the specific requirements of each
application kernel and a tool that allows for the generation of
application-specific and FPGA-implementable trimmed-down
GPU-inspired architectures. However, it targets FPGAs rather
than ASICs, and its source code is not publicly available,
limiting its use to the community.

To the best of our knowledge, this is the first work in
the literature to propose a tool that automatically generates
tapeout-ready domain-specific accelerators based on GPU-like
architectures and makes it publicly available. Moreover, our
framework enables a novel and comprehensive design-space
exploration of the proposed design w.r.t. logic and memory
components, which must be finely adjusted for the best
efficiency. Compared to related works on the FGPU, we
target ASIC flows and conduct a DSE of different parameters



Fig. 2: GPUPlanner’s G-GPU generation flow.

for the memory hierarchy, significantly increasing the design
complexity over FPGA design. Compared to MIAOW and
SCRATCH, our design and framework are fully synthesizable
and tapeout-ready (RTL-to-GDSII) and available to the
community for further investigations.

III. GPUPLANNER FRAMEWORK

Our experimental investigation started from migrating the
FGPU, originally designed for FGPA, to ASIC. To this
end, a few changes in the architecture were necessary. As
compilers for FGPA have a feature to infer memory from
RTL automatically, all the memory blocks in the FGPU code
were described as regular FFs. In ASIC, memory IPs are
hand-instantiated instead of inferred. Thus, the first task was to
clearly define intended behavior from the code and instantiate
memory modules. In our experiments, we utilized a 65nm
commercial technology. Its memory compiler offers single and
dual-port low-power SRAM, with parameters ranging from
16-65536 for addresses and 2-144 bits for word size.

One of our main goals is to achieve the best performance,
power, and area (PPA) ratio possible from the G-GPU,
exercising the maximum possible design space. The result of
this was a selection of versions for different scenarios. The
first aspect analyzed was the performance. This is done by
finding the maximum operating frequency, which does not
violate timing. For the logical synthesis, the value found for
the standard version (without any of the optimizations done in
this work) is 500MHz. The G-GPU has a similar performance
across versions with different numbers of CUs because the CU
itself is the bottleneck for performance in this architecture,
not the logic for controlling the communication between the
modules. As expected, the critical path for the version without

any optimization has its starting point at a memory block. Also,
the critical path was found inside the CU partition.

Larger memories, either in number of words or in word
size, display a higher delay for accessing the stored data when
compared with smaller memories. This observation guides our
design space exploration: dividing the memory blocks in the
critical path is a valid strategy for increasing the performance
of a design [14]. Memory division can be applied by diving
the number of words, the size of the word, or both, the latter
depending on the performance of the memories available in
the given technology. This strategy requires a few alterations
in the RTL code. First, the new modules have to be instantiated
properly, substituting the target memories for the optimization.
Second, the address or the input/output data have to be
concatenated accordingly. To attain faster results, this task was
fully automated in our framework. Thus, we only need to point
which memories we want to divide and the number of divisions
for applying this strategy.

Following our plan to achieve the best PPA ratio possible,
we continually applied the memory division strategy when the
critical path contained a memory block. However, the area of
the memory blocks is not linear w.r.t. their size. In fact, two
blocks of size M ×N are larger and more power-hungry than
a single block of size 2M × N or M × 2N . Therefore, from
the division alone, we are increasing the area and power. Also,
a small extra logic is necessary to accommodate the addressing
control of the new blocks (i.e., MUXes to switch between block
memories if the number of words is split according to the
MSBs of the address). When exercising the memory division
to enhance the design performance, we found cases where the
critical path was not in memory blocks. For solving such timing
issues, pipelines were introduced in those paths. In total, we
created twelve different G-GPU solutions, varying the operating
frequency and the number of CUs.

As a result, we created an open-source tool to automatically
generate G-GPU IPs, from RTL to GDSII. The flow of
GPUPlanner is highlighted in Fig. 2. For starters, the designer
has to define the specifications required from the G-GPU. Our
architecture can be configured for different numbers of CUs,
ranging from 1 to 8. Increasing the number of CUs enhances
the computation capacity of the G-GPU. Also, the designer has
to specify the operating frequency of the G-GPU.

After surveying the possible versions of the G-GPU for
desired application scenarios, the designer can generate a
specification for each scenario. Then, these specifications are
contrasted with the characteristics of the technology intended to
be used to create a first-order estimation of the G-GPU PPA. In
this phase, there is a possibility to find several versions suitable
for the given specification. Still, it also might happen that a
configuration that suits the designer’s requirements does not
exist. However, our framework is not a static input generator.
Instead, we provide a map on how to achieve a realistic PPA
that might be close enough to the designer’s requirements. This
map is a dynamic spreadsheet, where the user input the delay
of the memories blocks required for the non-optimized version
of the G-GPU. Our map gives the maximum performance



and which memory has to be divided or where to introduce
pipelines to enhance the performance. This is an iterative
process and can be repeated until the designer finds the desired
performance. Thus, using our map, the designer can rapidly
adapt his specification or create new versions of G-GPU by
splitting more memory blocks to increase performance or by
introducing on-demand pipelines. Even though applying this
strategy is complicated, our framework can handle any memory
and technology with little effort. The designer only has to give
the basic information of the memory blocks (i.e., name, number
of ports, port names, and minimum delay for data access). The
only hard constraint is that many of the G-GPU memories have
to be dual-port. Further development for single-port memories
is scheduled as future work.

After settling the specifications, one or more designs can
be feasible, generating a list of G-GPU versions. From a single
push of a button, our framework can perform logic and physical
synthesis of the list of designs. After the logic and physical
synthesis, the resulting PPA is checked to guarantee it is under
the initial specification. If the resulting G-GPU is out of the
specifications, the designer should modify it and restart the
process. In any case, the resulting layouts are ready to be
integrated in a system as a tapeout-ready IP.

IV. RESULTS AND DISCUSSION

During the exercise of the GPUPlanner in finding the best
trade-offs for a range of operating frequencies, we were able
to draw a map of parameters to be adapted to create the
versions demonstrated in this work. This map is agnostic of
the technology used because our main strategy of optimization
deals with the intrinsic delay of the memories blocks and
the characteristics of the G-GPU architecture. Employing our
strategy for other technologies would result in different PPA
ratios, depend on the given technology performance. The results
depend mainly on the performance of the memories and of the
standard cells. However, the points of optimization would be
somewhat the same. If user follow our map, they will rapidly
find the best versions for the given technology.

From the exercise of the GPUPlanner, we found 12 versions
worth the PPA trade-off in a general manner. These versions
have 1, 2, 4, and 8 CUs. Their variants run at 500MHz,
590MHz, and 667MHz. The characteristics of each version are
shown in Table I. In terms of area, the G-GPU size grows
linearly with the number of CUs. The optimizations done for
augmenting the performance increased the area by an average
of 10%, from 500MHz to 590MHz, and 2%, from 590MHz to
667MHz. Thus, if the power consumption is not a priority, the
667MHz is a good fit for having a negligible increase in area
in trade-off a better performance. These results demonstrate the
potential scalability of the G-GPU architecture.

After the logical synthesis, we chose four versions to
perform the physical synthesis. Those are the 1CU@500MHz,
1CU@667MHz, 8CU@500MHz, and 8CU@677MHz. A
reader can appreciate that these are the extreme cases identified
by GPUPlanner. During this phase, the G-GPU is broken into
three partitions during implementation: the CU, the general
memory controller, and the top. The density of the CU and

the general memory controller was set to 70%. Because of our
floorplan strategy of breaking the design into partitions, the top
has a low density of 30%. Nevertheless, breaking the design in
partitions allows the designer to scale G-GPU without any extra
effort. Once a CU partition is fully placed and routed, it can
be implemented in versions with more than 1 CU by cloning
the partition in the final floorplan of the design. Moreover, the
user can create a collection of different CU layout blocks and
scale the floorplan regarding the number of CUs for different
application scenarios easily.

The layouts for the versions with 1 CU and 8 CUs
are contrasted in Fig. 3 and Fig. 4, respectively. The
block memories divided for augmenting the performance are
highlighted in green for the CU partition, yellow and pink
for the general memory controller, and blue for the top.
Note how different the floorplan is between the version with
optimizations running at 667MHz (600MHz in the 8 CUs
version) and without optimizations running at 500MHz. Block
memories have to be strategically placed in order to extract the
maximum performance, hence, the differences in the floorplan.
The layout of the versions 1CU@500MHz, 1CU@667MHz,
8CU@500MHz have the same performance expected from the
logical synthesis (i.e., they can run at the specified clock
frequency without any timing violation). However, the layout
of version 8CU@667MHz can only run at 600MHz. This is
explained by analyzing the floorplan of its layout (see Fig. 4).

The connecting routing wires introduce a significant
capacitance because of the long distance between the peripheral
CUs and the general memory controller. In turn, this
capacitance increases path delay up to a point where it violates
the 1.5ns target period. To better explain the difference in wire
length routing between 1 and 8 CUs, Table II shows the total
amount of wire length per metal layer1. In an attempt to solve
this issue, pipelines were introduced between the connections
with high delay, but this strategy was ineffective to solve the
timing violations. For maintaining the PPA ratio balanced, the
best performance we found for 8 CUs was 600MHz.

To fully evaluate the usage of G-GPU as an ASIC accelerator,
we compared its performance with an implementation of the
popular RISC-V architecture. We synthesized both architectures
using the same technology utilized during the G-GPU
implementation with an operating frequency of 667MHz, the
RISC-V having 32kb memory and the G-GPU with its largest
configuration for 1/2/4/8 CUs. As case-study applications,
we chose seven micro-benchmarks from the AMD OpenCL
SDK and increased their inputs up until crashing RISC-V
and its compiler. We further increased the input size of
the G-GPU applications to make its computing units fully
utilized. To compare the performance of the different-input size
applications, we took a pessimistic approach for G-GPU and
considered that one could increase RISC-V application input
sizes by multiplying its cycle count by the G-GPU/RISC-V
input size ratio (which in practice is unfeasible but favors

1For the technology utilized, the metal stack contains nine layers. The metal
layers M1, M8, and M9 are reserved for power routing only and have not been
drawn in Table II. This is a representative metal stack.



TABLE I: Characteristics of 12 different GGPU solutions generated by our tool after logic synthesis in Cadence Genus.

#CU & Freq. Total Area (mm2) Memory Area (mm2) #FF #Comb. #Memory Leakage (mW) Dynamic (W) Total (W)
1@500MHz 4.19 2.68 119778 127826 51 4.62 1.97 2.055
2@500MHz 7.45 4.64 229171 214243 93 8.54 3.63 3.77
4@500MHz 13.84 8.56 437318 387246 177 16.07 6.88 7.14
8@500MHz 26.51 16.39 852094 714256 345 30.79 13.33 13.86
1@590MHz 4.66 3.15 120035 128894 68 4.73 2.57 2.66
2@590MHz 8.16 5.34 229172 221946 120 8.73 4.63 4.81
4@590MHz 15.03 9.72 436807 397995 224 16.41 8.70 9.02
8@590MHz 28.65 18.49 850559 737232 432 31.25 16.81 17.40
1@667MHz 4.77 3.26 120035 130802 71 4.65 2.62 2.72
2@667MHz 8.27 5.45 229172 222028 123 8.72 4.69 4.87
4@667MHz 15.15 9.83 436807 398124 227 16.43 8.75 9.07
8@667MHz 28.69 18.60 848511 730506 435 30.21 19.10 19.76

2700 um

25
00

 u
m

3200 um

28
00

 u
m

Untouched
Mem.
CU Optimized
Mem.
Mem. Ctrl. Optimized
Mem.
TOP Optimized
Mem.

1C
U

@
50

0M
H

z

1C
U

@
67

7M
H

z

Fig. 3: Layout comparison between 1CU@500MHz and
1CU@667MHz variants.

TABLE II: Routing length per metal layer for different G-GPU
versions and variants.

Metal Wirelength (µm)
layer 1CU@500MHz 1CU@667MHz 8CU@500MHz 8CU@600MHz
M2 3185110 15340072 20314957 25637608
M3 5132356 21219705 27928578 34890963
M4 2987163 9866798 19209669 22387405
M5 2713788 11293663 21953276 26355211
M6 1430594 8801517 14074944 11111664
M7 616666 2915533 6316321 5315697

RISC-V). Table III shows input sizes and measured cycle
counts for all case-study applications.

Our first evaluation compares raw performance between
G-GPU and RISC-V for the same input sizes. Fig. 5 shows
in a bar chart that G-GPU with 8 CUs is up to 223 times
faster than RISC-V. However, only applications that enjoy high
parallelism are orders of magnitude faster when running using
G-GPU. For applications with low to no parallelism, G-GPU
can be as low as only 1.2 times faster than RISC-V. As

7150 um

62
50

 u
m

8350 um
74

50
 u

m

Untouched
Mem.
CU Optimized
Mem.
Mem. Ctrl. Optimized
Mem.
TOP Optimized
Mem.

8C
U

@
50

0M
H

z

8C
U

@
60

0M
H

z

Fig. 4: Layout comparison between minimum and maximum
performance of a G-GPU with 8 CUs.

G-GPU is a domain-specific ASIC accelerator, such results are
expected, once it will not be the best option for general-purpose
applications. Therefore, a user interested in implementing a
G-GPU as an accelerator can utilize these provided data to
ponder if this type of architecture is a good fit for his system
when considering only the raw speed-up.

Our second evaluation factors previously measured area
into performance speed-up. As designers might be interested
in extracting the most out of a given available area, we
derated the previously measured speed-up by dividing it by the
G-GPU/RISC-V area ratio for each G-GPU CU configuration.
This metric is useful to evaluate trade-offs in computation
speed-up and area when replacing a RISV-C with a G-GPU.
These results are shown in Fig. 6 as a bar chart. G-GPU with
1 CU has an area that is 6.5 times larger than the RISC-V,
and it achieves the best increase in performance per area of
10.2 times the RISC-V’s. On the other hand, G-GPU with
8 CUs has an area that is 41 times bigger than RISC-V’s,
thus achieving the best increase in performance per area of



5.7 times faster than RISC-V’s. Note that, when factoring
area in, the 8-CU G-GPU shows the worst results. This trend
happens mainly because data dependency and global memory
communication limit parallelism. Thus, the provided increased
processing power of a G-GPU configuration with more CUs.

TABLE III: Benchmark’s input size and cycle count

Kernel Input size Cycle Count (k-cycles)
RISC-V G-GPU RISC-V 1CU 2CU 4CU 8CU

mat mul 128 2048 202 48 28 18 14
copy 512 32768 71 73 36 24 22
vec mul 1024 65536 78 100 49 31 26
fir 128 4096 542 694 358 185 169
div int 512 4096 32 209 105 57 62
xcorr 256 4096 542 5343 2802 1467 2079
paralle sel 128 2048 765 5979 3157 1656 1660

 0

 50

 100

 150

 200

 250

mat_mul copy vec_mult fir div_int xcorr parallel_sel

S
pe

ed
-u

p

1CU
2CU
4CU
8CU

Fig. 5: Speed-up over RISC-V.

 0

 2

 4

 6

 8

 10

 12

mat_mul copy vec_mult fir div_int xcorr parallel_sel

S
pe

ed
-u

p 
de

ra
te

d 
by

 a
re

a

1CU - Area Ratio=06.5
2CU - Area Ratio=11.6
4CU - Area Ratio=21.4
8CU - Area Ratio=41.0

Fig. 6: Speed-up over RISC-V derated by area.

For future work, we plan to update the GPUPlanner to
be able to implement the 8-CU G-GPU with performance
compared with the versions with fewer CUs. The performance
problem of the layouts with 8 CUs has the possibility to be
solved by replicating the general memory controller, shortening
the distance between the peripheral CUs, and reducing the delay
introduced by the routing wires. Also, we intend to scale FGPU
beyond 8 CUs, including a supporting memory hierarchy, and
incorporate single-port memories into GPUPlanner.

V. CONCLUSION

In this work, we proposed a new solution for domain-specific
ASIC accelerators based on GPU-like accelerators, called
G-GPU. On top of that, we presented a framework –
GPUPlanner – to fully automate the generation of G-GPUs
from the RTL to a tape-out ready layout. Our results showed
that G-GPUs are feasible domain-specific ASIC accelerator.
Furthermore, when the G-GPU performance is contrasted
with that of a RISC-V, it shows that our architecture has
tremendous benefits for applications with high parallelism.
Moreover, as GPUPlanner is an open-source framework, it
gives the community the opportunity to explore the design
space of GPU-like accelerators. Our work goes beyond the
analysis of what constitutes a reasonable G-GPU accelerator
in 65nm, as our tool can be easily extended to support other
baseline GPU architectures and technologies.

REFERENCES

[1] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of
deep neural networks: A tutorial and survey,” Proceedings of the IEEE,
vol. 105, no. 12, pp. 2295–2329, 2017.

[2] C. Mucci, L. Vanzolini, A. Lodi, A. Deledda, R. Guerrieri, F. Campi,
and M. Toma, “Implementation of aes/rijndael on a dynamically
reconfigurable architecture,” in 2007 Design, Automation Test in Europe
Conference Exhibition, pp. 1–6, 2007.

[3] T. D. Han and T. S. Abdelrahman, “hicuda: High-level gpgpu
programming,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 1, pp. 78–90, 2011.

[4] P. P. Brahma, D. Wu, and Y. She, “Why deep learning works: A manifold
disentanglement perspective,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 27, no. 10, pp. 1997–2008, 2016.

[5] J. E. R. Condia, B. Du, M. Sonza Reorda, and L. Sterpone,
“Flexgripplus: An improved GPGPU model to support reliability
analysis,” Microelectronics Reliability, vol. 109, p. 113660, 2020.

[6] M. Al Kadi, B. Janssen, and M. Huebner, “Fgpu: An simt-architecture for
fpgas,” in Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16, (New York, NY, USA),
p. 254–263, Association for Computing Machinery, 2016.

[7] M. Gautschi, P. D. Schiavone, A. Traber, I. Loi, A. Pullini, D. Rossi,
E. Flamand, F. K. Gürkaynak, and L. Benini, “Near-threshold risc-v
core with dsp extensions for scalable iot endpoint devices,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25,
no. 10, pp. 2700–2713, 2017.

[8] OpenHW Group, “Cv32e40p risc-v ip,” 2016. https://github.com/
openhwgroup/cv32e40p.

[9] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H.
Anderson, S. Brown, and T. Czajkowski, “Legup: High-level synthesis
for fpga-based processor/accelerator systems,” FPGA ’11, (New York,
NY, USA), p. 33–36, Association for Computing Machinery, 2011.

[10] J. Weng, S. Liu, V. Dadu, Z. Wang, P. Shah, and T. Nowatzki, “Dsagen:
Synthesizing programmable spatial accelerators,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture (ISCA),
pp. 268–281, 2020.

[11] R. Ma, J.-C. Hsu, T. Tan, E. Nurvitadhi, D. Sheffield, R. Pelt,
M. Langhammer, J. Sim, A. Dasu, and D. Chiou, “Specializing fgpu
for persistent deep learning,” ACM Trans. Reconfigurable Technol. Syst.,
vol. 14, July 2021.

[12] V. Gangadhar, R. Balasubramanian, M. Drumond, Z. Guo, J. Menon,
C. Joseph, R. Prakash, S. Prasad, P. Vallathol, and K. Sankaralingam,
“Miaow: An open source gpgpu,” in 2015 IEEE Hot Chips 27 Symposium
(HCS), pp. 1–43, 2015.

[13] P. Duarte, P. Tomas, and G. Falcao, “Scratch: An end-to-end
application-aware soft-gpgpu architecture and trimming tool,” in
Proceedings of the 50th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-50 ’17, (New York, NY, USA), p. 165–177,
Association for Computing Machinery, 2017.

[14] H. E. Sumbul, K. Vaidyanathan, Q. Zhu, F. Franchetti, and L. Pileggi, “A
synthesis methodology for application-specific logic-in-memory designs,”
in ACM/EDAC/IEEE Design Automation Conference, pp. 1–6, 2015.

https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cv32e40p

	I Introduction
	II Hardware Accelerators and our Baseline GPU
	II-A Hardware Accelerators
	II-B FGPU: our Baseline GPU Architecture

	III GPUPlanner Framework
	IV Results and Discussion
	V Conclusion
	References

