
19/04/2024 08:24

Reconciling QoS and Concurrency in NVIDIA GPUs via Warp-Level Scheduling / Singh, J.; Olmedo, I. S.;
Capodieci, N.; Marongiu, A.; Caccamo, M.. - (2022), pp. 1275-1280. (Intervento presentato al convegno
2022 Design, Automation and Test in Europe Conference and Exhibition, DATE 2022 tenutosi a bel nel
2022) [10.23919/DATE54114.2022.9774761].

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing
policy. For all terms of use and more information see the publisher's website.

(Article begins on next page)

Institute of Electrical and Electronics Engineers Inc.

This is the peer reviewd version of the followng article:

1

Reconciling QoS and Concurrency in

NVIDIA GPUs via Warp-Level Scheduling
Jayati Singh1 Ignacio Sañudo Olmedo2 Nicola Capodieci2 Andrea Marongiu2 Marco

Caccamo3

1University of Illinois Urbana-Champaign, United States
2University of Modena and Reggio Emilia, Italy

3Technical University of Munich, Germany
1jayati@illinois.edu 2name.surname@unimore.it 3mcaccamo@tum.de

Abstract—The widespread deployment of NVIDIA

GPUs in latency-sensitive systems today requires pre-

dictable GPU multi-tasking, which cannot be trivially

achieved. The NVIDIA CUDA API allows programmers

to easily exploit the processing power provided by these

massively parallel accelerators and is one of the major

reasons behind their ubiquity. However, NVIDIA GPUs

and the CUDA programming model favor throughput

instead of latency and timing predictability. Hence, pro-

viding real-time and quality-of-service (QoS) properties

to GPU applications presents an interesting research

challenge. Such a challenge is paramount when consider-

ing simultaneous multikernel (SMK) scenarios, wherein

kernels are executed concurrently within each streaming

multiprocessor (SM). In this work, we explore QoS-based

fine-grained multitasking in SMK via job arbitration at

the lowest level of the GPU scheduling hierarchy, i.e.,

between warps. We present QoS-aware warp scheduling

(QAWS) and evaluate it against state-of-the-art, kernel-

agnostic policies seen in NVIDIA hardware today. Since

the NVIDIA ecosystem lacks a mechanism to specify

and enforce kernel priority at the warp granularity, we

implement and evaluate our proposed warp scheduling

policy on GPGPU-Sim. QAWS not only improves the

response time of the higher priority tasks but also has

comparable or better throughput than the state-of-the-

art policies.

I. INTRODUCTION

Modern automotive applications feature compute-

intensive workloads in which tasks must be processed

within defined timing requirements. Applications such

as object tracking, lane-following, and obstacle avoid-

ance are safety-critical and must therefore meet hard

deadlines [1]. In contrast, augmented/virtual-reality ap-

plications like rendering, SLAM and eye-tracking fea-

ture soft deadlines or softer quality-of-service (QoS)

requirements. These applications are characterized by

high processing power demands that cannot be met

by traditional multi-core platforms. In this context,

traditional multi-core CPUs are often coupled to mas-

sively parallel accelerators. General-purpose graphics

processing units (GPGPUs, henceforth GPUs), offer a

cost-effective architectural solution on account of their

high performance per watt ratio.

GPU vendors’ road-maps typically foresee the re-

lease of “bigger” GPUs at each new generation, where

the computing resources (CUDA cores and stream-

ing multiprocessors in NVIDIA terminology) increase

with each chip release. This increase in the streaming

multiprocessor (SM) count and the compute capabil-

ity of individual SMs is not always matched by an

January 31, 2023 DRAFT

2

increase in the parallelism that application kernels can

expose [2] [3], which brings developers to explore the

integration of multiple kernels onto the same GPU to

keep computing resources busy.

Multi-kernel execution in GPUs has been widely

studied in the last years [4] [5], considering both

spatial partitioning (SP) – where multiple kernels are

distributed across SMs – and simultaneous multikernel

execution (SMK) – where multiple kernels concur-

rently share the same SMs. SMK leads to resource

arbitration at the level of individual groups of threads,

called warps in NVIDIA terminology.

SMK is an effective approach to increase GPU

utilization compared to SP [6], but it poses addi-

tional challenges when QoS requirements and real-

time constraints (i.e., kernel priorities) are concerned.

CUDA streams offer a priority mechanism that allows,

to control QoS requirements in SMK. However, this

mechanism operates at the granularity of a whole

thread-block, which is too coarse to safely bound

kernel latencies.

Acting at the warp level has significant advantages

over stream prioritization (see Section II-B). However,

the NVIDIA warp scheduler inside each SM lacks

a notion of user-defined priority; this makes the en-

forcement of QoS requirements among kernels next to

impossible when using SMK. Therefore, in this paper

we propose a QoS-Aware Warp Scheduling (QAWS)

policy to effectively prioritize concurrent kernels ac-

cording to their QoS requirements. More specifically:

• We demonstrate the need for a QoS-aware warp

scheduler when concurrent kernels execute in

NVIDIA GPUs.

• We propose a budget-based QAWS policy that

uses information about the QoS requirements of

each kernel.

• We implement the proposed QAWS policy on

GPGPU-Sim and evaluate it against state-of-

the-art warp scheduling algorithms deployed

on NVIDIA GPUs, namely greedy-then-oldest

(GTO) and loose round-robin (LRR).

The experimental results show that our QAWS pol-

icy reduces the response time of homogeneous high

priority kernels by 22% on average and by 10% on

average for heterogeneous kernels without affecting

the total system throughput.

II. SCHEDULING HIERARCHY IN NVIDIA GPUS

NVIDIA GPUs are built as a composition of several

streaming multiprocessors (SM). A SM is a computing

cluster which hosts different ALUs (or CUDA cores).

SMs might internally be further organized as a set of

sub-cores or processing blocks that consist of 32 ALUs

sharing register and memory resources and hosting the

execution of as many threads. This group of 32 threads

goes by the name of a warp. All the threads within a

warp execute the same instruction in lockstep (SIMT).

The arbitration of GPU applications involves

scheduling decisions in a hierarchical manner [7], [8]:

1) The application scheduler manages applications

launched in different memory spaces in a TDMA

fashion.

2) Applications may be composed of multiple

streams. A stream is an abstraction of a queue

of compute or copy commands that are offloaded

to the GPU. Commands within the same stream

are executed in FIFO order.

3) Compute commands (i.e., kernels) are organized

in thread blocks, which are distributed to available

SMs following a resource usage-aware variant

of round robin [8]. Kernels issued in different

streams can execute concurrently if enough GPU

resources are available. Preemption can be ap-

plied at block boundaries.

4) Blocks are composed of warps, which are the

atomic scheduling unit. Each sub-core in an SM

contains a warp scheduler that is in charge of

dispatching ready warp instructions to various

January 31, 2023 DRAFT

3

Kernel Scheduler

Thread Block Scheduler

....

Crossbar

L2

MC

DRAM

....

SM

SM

SM

SM

SM

SM

L2

MC

DRAM

L2

MC

DRAM

....

Stream0 Stream1 Stream2 StreamN

GPC

Memory Partition

Execution Engine

(a)

L1/ Shared Memory

Instruction Buffer

Instructions fetched by Fetch Unit

Warp Queue

Warp Scheduler

INT FP32 FP64 TC

Decoded instructions with operands

SFU

LD/ST

LD/ST

SFU

Register File

Sub-Core0

(b)

Fig. 1: (a) Chip-level architecture of an NVIDIA GPU;

(b) 4 sub-cores forming a Streaming Processor (SM)

SIMD lanes like INT, FP64, etc. (see Fig. 1).

Warps are distributed through the sub-cores in a

round-robin manner [9], [10].

A. Warp scheduling

The warp scheduler organizes ready-to-execute in-

structions from a set of available warps. Anytime

a warp stalls at an instruction, the warp scheduler

chooses another warp to be executed. Each warp

scheduler maintains a pool of warps it can choose from

at every GPU clock cycle. The warp scheduling policy

determines which instruction from a ready warp is

issued every cycle. This policy is typically modeled as

loose round-robin (LRR) or greedy-then-oldest (GTO)

[11]. Related work has not been able to reach a

consensus on the scheduling policy implemented in

NVIDIA GPUs. Some work [8], [12] suggests that it

follows the LRR policy, while others [9], [11] claim

that it follows GTO. According to the LRR policy,

the same warp is issued by the warp scheduler every

cycle until an instruction stalls, at which point the warp

scheduler chooses the next warp in round robin order

(See Fig. 3b).

In the GTO policy, the same warp is issued by the

warp scheduler every cycle until an instruction stalls,

at which point the warp scheduler chooses the next

instruction from the oldest ready warp (See Fig. 3a).

LRR assigns equal priority to all warps, ensuring that

all warps make equal progress. LRR is beneficial if the

warps in the SM have spatial locality and share cache

lines and DRAM row buffers, thus increasing cache

and row buffer hits. However, if there is no inter-warp

locality, all the warps reach long latency operations at

the same time and there are no warps left to hide this

latency, resulting in idle cycles and performance loss.

Let us consider LRR in an SMK scenario, where

multiple kernels share the GPU concurrently under

the LRR warp scheduling policy. Warps belonging to

different kernels will be given the same priority, which

could lead to a higher-QoS/priority kernel missing its

deadline, in order to achieve the “fairness” as promised

by LRR.

GTO attempts to overcome the long latency problem

by allowing unequal progress across warps. With GTO,

the long-latency periods of the warps do not overlap,

ensuring that there are always enough warps to hide

a long latency stall. From a real-time perspective,

however, GTO can be more harmful than LRR, since

GTO gives a higher priority to older warps. Thus, if a

lower-QoS/priority kernel is launched before a higher

QoS/priority kernel and the two can execute concur-

rently, GTO will prioritize the warps of the lower-

priority kernel, significantly increasing the response

time of the higher priority kernel, ultimately leading

to a deadline miss.

In this work, we propose QoS-aware warp schedul-

ing (QAWS). QAWS builds upon the benefits of GTO

but also considers the kernels’ timing constraints, striv-

ing to achieve the best of both worlds: performance

and predictability.

B. Example

Fig. 2 clarifies the role of QoS-based arbitration

at the stream- and warp- level. We consider two

kernels, K1 and K2, with almost overlapping arrival

January 31, 2023 DRAFT

4

Serial execution
Stream preemption

SMK with existing warp scheduler
SMK with QAWS

K1O
cc

up
an

cy

K2

Time

Max occupancy

1

K1 K2 K1 K2

Preemption
delay

Kernel deadline Kernel launch request
O

cc
up

an
cy

K2

Time

Max occupancy

K1 K2 K1 K2

K1 K1

K1O
cc

up
an

cy

K2

Time

Max occupancy

K1 K2 K1 K2

K1O
cc

up
an

cy

K2

Time

Max occupancy

K1 K2 K1 K2

2

3

4

1
2

3
4

Preemption request

Fig. 2: Scheduling Example II-B

time. Deadlines are assigned as depicted and the work

dispatched individually by each kernel is not enough to

fully occupy the GPU. Case (1) shows execution of the

two kernels within the same stream, entirely sequen-

tial. K2 is not able to meet its deadline. Case (2) shows

how the stream preemption mechanism works. K2 has

a higher stream priority, thus K1 is preempted. Note

that K2 does not immediately preempt K1 because

stream preemption is only allowed at block boundaries.

Preemption related delay ranges typically from 20µ

[13] to 100µ [14]. Also note that preemption can be

only applied with sequential kernels. Both K1 and K2

miss their deadlines. Case (3) shows the effect of SMK

on top of a standard warp scheduler when individual

kernels do not fully utilize the GPU resources. K1

and K2 are launched within two different streams

and enforced to occupy max 50% of the GPU each.

Both kernels equally contend for the resources, but the

stream priority does not affect the scheduling at the

warp level, which causes K1 to miss its deadline. Case

(4) shows the effect of QAWS, with priorities assigned

at warp level. K1 warps are assigned a higher priority,

thus it is privileged when contending for GPU cores.

Both K1 and K2 meet their deadlines. GPGPU-Sim

does not support preemption, hence, our evaluation

compares the performance of QAWS against SOTA

warp scheduling policies when multitasking via SMK.

III. RELATED WORK

Several warp scheduling policies have been pro-

posed in the literature for improving the GPU per-

formance. The two widespread policies adopted in

NVIDIA GPUs are GTO and LRR [9], [11], [8],

[12]. Two-level warp scheduling is proposed in [15],

[16]. The two-level warp scheduler maintains warps

as two subgroups, the fetch group and the ready

queue, to improve performance [15], [16]. A warp

in the ready queue is demoted to the fetch group

when it encounters a long latency instruction. LRR

and GTO policies can be used to order warps between

and within the groups. Since different scheduling

policies can be suitable for different workloads, [17]

determines which warp scheduling policy to apply on

the different phases of the kernel through compile-

time analysis. [18] extends this to be dynamic, based

on the instruction issue pattern at runtime. Other

work [19] proposes modulating the warp scheduling

policy to shape the cache access patterns to avoid

cache thrashing, and subsequent misses. All the above

solutions offer sophisticated solutions to improve the

instructions per cycle and utilization of the GPU by

preventing idle cycles. However, all these policies are

optimized for warps belonging to a single kernel and

perform well when a single kernel is executing in

an SM. With the constant increase in GPU compute

capabilities, multi-tasking is inevitable, yet little to no

investigation is done on how these policies impact the

system throughput and individual kernel performance

in scenarios with multiple concurrently executing ker-

nels. Furthermore, none of the aforementioned solu-

tions is able to prioritize/schedule warps according

to the timing requirements for kernels deployed in

soft/hard real-time systems. In this work, we examine

the performance of GTO and LRR when warps of

multiple kernels are arbitrated by the warp scheduler.

Furthermore, to the best of our knowledge this work

January 31, 2023 DRAFT

5

is the first to propose a warp scheduling policy that is

aware of the QoS requirements of the kernel associated

with the warps, leading to predictable execution when

multitasking via SMK in GPUs.

IV. PROPOSED WARP SCHEDULING ALGORITHM

We propose QAWS (QoS-Aware Warp Scheduling),

which is based on the real-time priorities/QoS re-

quirements of the corresponding kernel associated with

each warp. To achieve QoS-Aware Warp Scheduling,

we define budget, which is a number associated with

each kernel; a higher priority/QoS requirement kernel

should be assigned a larger budget.

Within every sub-core, QAWS groups warps based

on the budget value of the kernel they belong to. Warps

of the same kernel belong to the same group. Similar

to GTO, our policy issues a warp (from a given group)

every cycle until it encounters a stall, after this QAWS

switches context and issues another warp from the

same group. QAWS continues to issue warps from

a single group until the number of context switches

within that group reach the budget or all warps in

that group are stalled. After the budget is reached,

the policy starts issuing warps from another group and

resets the context switch count of the first group. The

higher the budget of a kernel, the more stalls QAWS

can tolerate and the longer the warps of that kernel can

execute before switching context to execute warps of

another kernel. For e.g., if a kernel K1 has a budget of

1 and kernel K2 has budget b > 1, QAWS will tolerate

b stalls of K2 before switching context to execute K1

warps. Whereas, QAWS will only tolerate 1 stall of K1

before switching back to K2. Such a strategy provides

kernels a computing capacity that is proportional to

their QoS requirements while preventing starvation

of kernels with smaller budgets. We implement our

budget-based policy, QAWS, on GPGPU-Sim.

A. QoS-Aware Warp Scheduling Policy Implementa-

tion

At every simulation cycle in GPGPU-Sim, the warp

scheduler in each sub-core invokes the SORTWARPS

function which returns a prioritized queue of warps

(called Qissue) sorted according to a specific warp

scheduling policy. The existing simulation framework

has various implementations (for LRR, GTO, etc.) of

this function depending on the simulator configura-

tion. The scheduler then iterates through the warps in

Qissue until it finds a ready warp and an available

functional unit (special-function unit, load-store unit,

etc.) required by the warp. It then dispatches the warp

to the respective functional unit. The scheduler invokes

SORTWARPS again in the next cycle. We present a

SORTWARPS implementation to sort the warps based

on QAWS, outlined in Algorithm 1.

In this work, we limit the number of kernels in

the GPU to two. However, this model can be easily

scaled to accommodate more than two kernels. QAWS

organizes the warps of the kernels with distinct budgets

into distinct groups, say g0 and g1 (line 7). In Alg.

1, we use the convention that g0 is the group that

was prioritized in the previous cycle. When there is

no history, g0 is the group with the higher budget.

Similar to GTO, QAWS continues to issue the

same warp greedily every cycle (lines 11-12) until it

encounters a stall (line 13). At this point, the scheduler

switches context to another warp from the same group

g0 (line 17) and executes that warp greedily. The

scheduler continues to issue warps in g0 until the

number of context switches within g0 (g0.ncs in Alg.

1) reaches the defined budget (line 18). Then, the

scheduler resets the context switch count for g0 (line

19) and proceeds to issue warps from g1 (line 20)

until the number of context switches in g1 reach the

g1 budget, and so on. In essence, the budget represents

the number of warp context switches within a group

January 31, 2023 DRAFT

6

(gi.ncs) that can be tolerated by the scheduler until it

begins to issue warps from another group.

Since the warps within a group are ordered using the

standard GTO policy, in the case where all the kernels

are assigned the same budget there is only one group

and the scheduling policy is reduced to GTO (line 9).

Example. (See Fig. 3) We consider two kernels K1

and K2, where K2 has a higher QoS demand than K1

but is launched just one cycle after K1. Both kernels

execute the same code with only nine instructions. We

consider an SM sub-core with four warps where warps

{w0, w1} ∈ K1 and warps {w2, w3} ∈ K2.

Fig. 3a and Fig. 3b demonstrate GTO and LRR

respectively. Fig. 3c illustrates the QAWS policy when

K2 has a budget of 4 and K1 has a budget of 1. In

Fig. 3c, since K1 is launched first, w0 ∈ K1 executes

until it stalls at cycle 1. Then, the scheduler switches

context to w1 and increments the context switch count

for K1 (line 16 of Alg. 1). Since the budget of K1 is

1, upon the next stall at cycle 2 (line 18 of Alg. 1), the

scheduler begins to issue warps of K2 and continues

to do so until cycle 12 when it switches back to issue

K1 warps. Whereas, in Fig. 3d the budget of K2 is 6,

hence the scheduler continues (lines 15-17 of Alg. 1)

to issue warps from K2 beyond cycle 12, all the way

until cycle 18.

At cycle 22 in Fig. 3c, w3 encounters a stall however

since it does not switch context to a warp in the same

group (because no more warps in the group are left),

ncsk2
is not incremented. Since the context switch

count is still less than the K2 budget, warps of K2

are still prioritized by the policy (lines 22 and 23 in

Alg. 1) and w3 is issued as soon as it is ready in cycle

26. The budget sets a limit on the number of context

switches and not the number of warp stalls within a

warp group.

Analysis. Consider the response times of K1 and

K2 for the four cases in Fig. 3. In Fig. 3a, GTO

Algorithm 1 Sort Warps with QAWS policy
1: state warps . Warps assigned to this sub-core

2: state Wgreedy . Warp issued in last cycle

3: state issuedhead . If head of Qissue issued last

cycle

4: state g0, g1 . Warps grouped by budget

5: state out Qissue . Prioritized queue of warps

6: function SORTWARPS

7: g0, g1 ← GETGROUPS(warps)

8: if g1 is ∅ then

9: return SORT(g0) . Resort to GTO

10: end if

11: if issuedhead then

12: return SORT(g0) ⊕ SORT(g1) . ⊕:

Concat

13: else . Head of Qissue stalled last cycle

14: if Wgreedy ∈ g0 then

15: if g0.ncs < g0.budget then

16: g0.ncs← g0.ncs+ 1

17: return SORT(g0) ⊕ SORT(g1)

18: else . ncs reaches budget

19: g0.ncs← 0 . Reset

20: return SORT(g1) ⊕ SORT(g0)

21: end if

22: else . All warps ∈ g0 stalled last cycle

23: return SORT(g0) ⊕ SORT(g1)

24: end if

25: end if

26: end function

27: function GETGROUPS(warps)

28: return groups g0, g1 classified by warp bud-

gets

29: end function

30: function SORT(gi)

31: if Wgreedy 6= NullP tr and Wgreedy ∈ gi

then

32: return warps ∈ gi sorted by greedy-then-

oldest

33: else

34: return warps ∈ gi sorted by oldest warp

first

35: end if

36: end function

January 31, 2023 DRAFT

7

ALU instruction Global memory instruction Stall Intra-kernel warp context switch

5 10 15K1K2

K1

K2

K1 K225 30 35

ALU instruction Stall
K1 = 20
K2 = 38

Global memory instruction

40

Intra-kernel warp context switch

(a) GTO policy

5 10 15 K1 K225 30 35 40

K1 = 32
K2 = 36

20K1K2

K1

K2

ALU instruction StallGlobal memory instruction Intra-kernel warp context switch

(b) LRR policy

K1K2

K1 = 38
K2 = 28

K1K2 5 10 15 25 30 35 4020

K1

K2
2 3

1

1 4

1

1

(c) QAWS policy, K1 budget = 1, K2 budget = 4

K1K2

K1 = 38
K2 = 24

2 3

1

5 6

1

K1K2

K1

K2

5 10 15 20 30 35 4025

1 4

(d) QAWS policy, K1 budget = 1, K2 budget = 6

Fig. 3: An illustration of the warp execution order in LRR, GTO and QAWS. K1 requires a lower QoS than

K2.

achieves the best response time for K1, but the worst

response time for K2. This is highly undesirable since

K2 has a higher QoS demand than K1. Priority

inversion is observed in GTO because it executes the

warps of the lower priority kernel K1 before K2 warps.

This is because K1 warps are older than K2 warps:

GTO only sees the age of each warp and is kernel-

agnostic. The LRR policy in Fig. 3b achieves fairness

at the expense of the response times of both kernels.

We see that QAWS with K2 budget of 4 in Fig. 3c

has a much better K2 response time than GTO/LRR.

Increasing the K2 budget to 6 in Fig. 3d, further

reduces the K2 response time and in fact has the best

K2 response time. This highlights that we can control

the kernel response times to meet QoS requirements

through the relative budgets of the kernels.

Additionally, QAWS in Fig. 3d achieves an average

execution time of 31 cycles compared to an average of

29 cycles achieved by GTO in Fig. 3a. This is a small

price to pay for the significantly improved response

time of a higher QoS kernel. While this is a hand-

constructed example, we observe similar trends in real

workloads (Section V). The budget-based mechanism

of QAWS enables us to control the response times

or throughput of tasks running on the GPU based on

the system requirements. Due to space constraints, we

leave the analysis of the hardware cost of QAWS as a

part of future work.

V. EVALUATION

A. Methodology

The GPGPU-Sim configuration used is described

in Table Ia. Note that we used a configuration that

models the NVIDIA TITAN V as it is the most recent

tested configuration released at the time of writing.

We evaluate the proposed policy using benchmarks

presented in Table Ib. The benchmarks are extracted

from the CUDA API Samples, Rodinia [20] and Poly-

bench [21]. pc is a purely compute benchmark wherein

each thread executes only one load and one store

instruction, and loops over compute instructions.

In all our experiments, we launch two kernels,

K1 and K2 and run them concurrently on the GPU.

We assume that K2 requires a higher QoS than K1.

However, we launch K2 right after K1 in the CUDA

code, since that is the most pessimistic case from a

QoS perspective. We enforce SMK in the GPU by

(i) launching both kernels in separate streams, and

(ii) implementing the kernels using persistent threads

to ensure that every SM has an equal number of

warps from K1 and K2. With this setup, we evaluate

the response times of K1 and K2 when scheduled

with LRR, GTO and QAWS. Furthermore, we also

analyze the average execution time of K1 and K2

to demonstrate the effect of QAWS on the system

throughput.

We consider two sets of experiments. One with

January 31, 2023 DRAFT

8

Description Configuration

Device TITAN V

GPU Clusters 40

SMs per Cluster 2

Total SMs 80

Schedulers per SM 4

Warp Scheduler GTO|LRR|QAWS

L1 + SHM Size 128KB

L2 Size 4.5MB

CUDA Version 10.1

(a)

Benchmark Description Type

pc Purely Compute CI

pf Pathfinder CI

2dc 2D Convolution CI

dxtc DXTC CI

bin Binomial Options CI

vec Vector Add MI

mm Matrix Multiply MI

his Histogram MI

atax ATAX MI

(b)

TABLE I: a) GPGPU-Sim setup b) Benchmarks used

in the experiments. CI: compute intensive, MI: mem-

ory intensive.

homogeneous kernels where K1 and K2 are different

instances of the same kernel. Doing so ensures that the

baseline execution times of K1 and K2 (in isolation)

are identical, making it easier to highlight the effect of

the warp scheduling policy. Second, we combine the

benchmarks using heterogeneous kernels. We limit

the number of experiments to five because the various

kernels have different baseline execution times and

hence we choose kernels with baseline execution times

in the same order of magnitude to simplify analysis.

B. Results

We first consider the response times of the homoge-

neous kernels case as shown in Fig. 4a (left-most). All

response times are normalized w.r.t. the K1 response

time in LRR. We can see that with GTO scheduler,

K2, despite requiring higher QoS and being launched

only a few cycles (8 cycles in GPGPU-Sim) after K1,

finishes long after K1. This is because K1 is launched

first, and the K1 warps are older than K2 warps.

Hence, the kernel with a lower QoS is implicitly given

a higher priority by the scheduling policy. QAWS

resolves this priority inversion by letting the developer

assign the warp budget according to the needs of each

kernel in the system. In our experiments, we pick the

budget of K1 warps as 1 and the budget of K2 warps as

b where b ∈ {2, 4, 8}. While all these values of b give

similar performance, we choose the b that gives the

lowest response time for K2. The exact relationship

between the warp budget and kernel execution time

is not straightforward, and will studied thoroughly in

future work. We see that QAWS outperforms LRR for

both K1 and K2 for all kernels except atax and his.

K2 response time is the least with QAWS, which is

clearly demonstrated in the Speedup plot (center) in

Fig. 4a. Note that we see very little improvement in

the atax and his kernels and this is because they are

latency-bound, i.e. most of the warps are always stalled

on long latency instructions. Therefore, more or fewer

warp issue slots make no difference since none of the

warps are ready to issue. On an average among all the

workloads, QAWS improves the K2 response time by

22%.

The response time when executing heterogeneous

kernels are similar and are shown in Fig. 4b. Note that

the kernel response times shown in the left-most plot

of Fig. 4b also show the response times when K1 and

K2 are executed serially and in isolation. We plot this

to highlight the difference in the execution times of

K1 and K2. On an average among all the workloads,

QAWS improves the K2 response time by 10%.

We plot the average execution times of K1 and

K2 to observe the effect of QAWS on the system

throughput as seen in the rightmost plots of Figures

4a and 4b resp. QAWS outperforms LRR and is as

good as GTO for most kernels. This is because QAWS

uses GTO to order warps within a group. Hence, with

QAWS, applications enjoy the benefits of GTO (high

throughput), without the curse of priority inversion.

VI. CONCLUSION

In this work we explore a mechanism to facilitate

predictable SMK in NVIDIA GPUs. We propose a

budget-based QoS-aware warp scheduling policy and

evaluate it on the state-of-the-art GPGPU-Sim simu-

January 31, 2023 DRAFT

9

atax his 2dc dxtc pc mm pf bin vec0.00

0.25

0.50

0.75

1.00

Re
sp

on
se

 ti
m

e
Normalized Response Times of K1 and K2

Lower is better

atax his 2dc dxtc pc mm pf bin vec0.0

0.5

1.0

1.5

Sp
ee

du
p

QAWS Speedup w.r.t min(LRR, GTO)
Higher is better

atax his 2dc dxtc pc mm pf bin vec0.00

0.25

0.50

0.75

1.00

Av
g.

 ex
ec

ut
io

n
tim

e

Avg. Execution Time of K1 and K2
Lower is better

(a) Homogeneous kernels, K1 and K2 are identical workloads

K1: bin
K2: mm

K1: 2dc
K2: vec

K1: pc
K2: mm

K1: mm
K2: vec

K1: pc
K2: 2dc

0.00

0.25

0.50

0.75

1.00

Re
sp

on
se

 ti
m

e

K1, Serial
K2, Serial

K1, SMK + LRR
K2, SMK + LRR

K1, SMK + GTO
K2, SMK + GTO

K1, SMK + QAWS
K2, SMK + QAWS

K1: bin
K2: mm

K1: 2dc
K2: vec

K1: pc
K2: mm

K1: mm
K2: vec

K1: pc
K2: 2dc

0.0

0.5

1.0

Sp
ee

du
p

K1 K2

K1: bin
K2: mm

K1: 2dc
K2: vec

K1: pc
K2: mm

K1: mm
K2: vec

K1: pc
K2: 2dc

0.0

0.5

1.0

Av
g.

 ex
ec

ut
io

n
tim

e

LRR GTO QAWS

(b) Heterogeneous kernels, K1 and K2 are different workloads

Fig. 4: Evaluation of LRR, GTO and QAWS when executing two kernels. K2 demands a higher QoS than K1

lator. Results show that the response times of high-

priority tasks reduce significantly, even when they

are launched after a lower priority task, contrary to

what happens with LRR or GTO. The throughput of

our policy is higher than LRR and (on average) as

good as the throughput achieved by GTO. The results

obtained from our evaluations suggest that this is a

viable solution to achieve higher utilization and better

schedulability for hard and soft real-time systems. As

future work, we plan to extend our study to a higher

number of concurrently executing kernels and more

diverse QoS requirements (e.g., priority levels). The

relationship between the kernels’ budgets and their

performance as well as the effect of the budgets on

the memory subsystem will also be thoroughly studied

and modeled.

ACKNOWLEDGEMENTS

The research presented in this paper has received

funding from the ECSEL-JU project COMP4DRONES

(GA 826610) and from an Alexander von Humboldt

Professorship endowed by the German Federal Min-

istry of Education and Research.

REFERENCES

[1] I. S. Olmedo, N. Capodieci, and R. Cavicchioli, “A perspective

on safety and real-time issues for gpu accelerated adas,” in

IECON 2018 - 44th Annual Conference of the IEEE Industrial

Electronics Society, 2018.

[2] A. K. et al., “Tango: A deep neural network benchmark suite

for various accelerators,” CoRR, vol. abs/1901.04987, 2019.

[3] S. Pai et al., “Improving GPGPU concurrency with elastic

kernels,” SIGPLAN Not., vol. 48, no. 4, p. 407–418, Mar. 2013.

[4] J. T. Adriaens et al., “The case for GPGPU spatial multitask-

ing,” in IEEE International Symposium on High-Performance

Comp Architecture, 2012, pp. 1–12.

[5] H. Eddine Zahaf et al., “Contention-aware gpu partitioning

and task-to-partition allocation for real-time workloads.”

[6] W. Zhenning et al., “Simultaneous multikernel GPU: Multi-

tasking throughput processors via fine-grained sharing,” in

2016 IEEE International Symposium on High Performance

Computer Architecture (HPCA).

[7] T. Amert et al., “Gpu scheduling on the nvidia tx2: Hidden

details revealed,” in 2017 IEEE Real-Time Systems Symposium

(RTSS), 2017.

[8] I. Sañudo Olmedo et al., “Dissecting the CUDA scheduling

hierarchy: A performance and predictability perspective,” in

2020 IEEE Real-Time and Embedded Technology and Appli-

cations Symposium (RTAS), 2020.

[9] M. Khairy et al., “A detailed model for contemporary GPU

memory systems,” in 2019 IEEE International Symposium on

Performance Analysis of Systems and Software (ISPASS).

[10] Z. Jia et al., “Dissecting the Nvidia Turing T4 GPU via

microbenchmarking,” arXiv preprint arXiv:1804.06826, 2019.

[11] M. Khairy et al., “Accel-Sim: An extensible simulation frame-

work for validated GPU modeling,” in 2020 ACM/IEEE 47th

January 31, 2023 DRAFT

10

Annual International Symposium on Computer Architecture

(ISCA). IEEE, 2020.

[12] L. Shin-Ying et al., “CAWA: Coordinated warp scheduling and

cache prioritization for critical warp acceleration of GPGPU

workloads,” ACM SIGARCH Computer Architecture News,

vol. 43, no. 3S, 2015.

[13] R. Spliet and R. Mullins, “The case for limited-preemptive

scheduling in gpus for real-time systems,” 2018.

[14] H. Lee et al., “Idempotence-based preemptive gpu kernel

scheduling for embedded systems,” IEEE Transactions on

Computers, vol. 70, 2021.

[15] V. Narasiman et al., “Improving GPU performance via large

warps and two-level warp scheduling,” in Proceedings of the

44th Annual IEEE/ACM International Symposium on Microar-

chitecture, 2011.

[16] A. Jog et al., “OWL: Cooperative thread array aware schedul-

ing techniques for improving GPGPU performance,” SIGPLAN

Not., 2013.

[17] M. Awatramani et al., “Phase aware warp scheduling: Miti-

gating effects of phase behavior in GPGPU applications,” in

2015 International Conference on Parallel Architecture and

Compilation (PACT), 2015.

[18] M. Lee et al., “iPAWS: Instruction-issue pattern-based adap-

tive warp scheduling for GPGPUs,” in 2016 IEEE Interna-

tional Symposium on High Performance Computer Architec-

ture (HPCA), 2016, pp. 370–381.

[19] T. G. Rogers et al., “Cache-conscious wavefront scheduling,”

in 2012 45th Annual IEEE/ACM International Symposium on

Microarchitecture.

[20] S. Che et al., “Rodinia: A benchmark suite for heterogeneous

computing,” in IEEE IISWC, 2009.

[21] L.-N. Pouchet, “Polybench v2.0,” 2015. [Online]. Available:

http://web.cse.ohio-state.edu/∼pouchet.2/software/polybench/

January 31, 2023 DRAFT

http://web.cse.ohio-state.edu/~pouchet.2/software/polybench/

	Introduction
	Scheduling Hierarchy in NVIDIA GPUs
	Warp scheduling
	Example

	Related Work
	Proposed Warp Scheduling Algorithm
	QoS-Aware Warp Scheduling Policy Implementation

	Evaluation
	Methodology
	Results

	Conclusion
	References

