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Abstract—Internet-of-Things (IoT) devices are natural targets
for side-channel attacks. Still, side-channel leakage can be com-
plex: its modeling can be assisted by statistical tools. Projection
of the leakage into an orthonormal basis allows to understand
its structure, typically linear (1st-order leakage) or non-linear
(sometimes referred to as glitches). In order to ensure cryptosys-
tems protection, several masking methods have been published.
Unfortunately, they follow different strategies; thus it is hard to
compare them. Namely, ISW is constructive, GLUT is systematic,
RSM is a low-entropy version of GLUT, RSM-ROM is a further
optimization aiming at balancing the leakage further, and TI aims
at avoiding, by design, the leakage arising from the glitches. In
practice, no study has compared these styles on an equal basis.
Accordingly, in this paper, we present a consistent methodology
relying on a Walsh-Hadamard transform in this respect. We
consider different masked implementations of substitution boxes
of PRESENT algorithm, as this function is the most leaking in
symmetric cryptography. We show that ISW is the most secure
among the considered masking implementations. For sure, it takes
strong advantage of the knowledge of the PRESENT substitution
box equation. Tabulated masking schemes appear as providing a
lesser amount of security compared to unprotected counterparts.
The leakage is assessed over time, i.e., considering device aging
which contributes to mitigate the leakage differently according to
the masking style.

I. INTRODUCTION

Symmetric key cryptography is widely deployed to encrypt
and decrypt large amounts of data. AES [1] and PRESENT [2]
are two examples of such algorithms. They must be protected
against the stealthy extraction of their secret key.

In practice, side-channel attacks are prominent threats against
the implementation of such algorithms. As a response, random
masking schemes have been put forward. They consist in
making sure that each and every net in the netlist is adequately
randomized by an unpredictability mask. Therefore, adversaries
with the capability to exploit only one measurement point
are doomed to failure in their attack attempt. However, it
has been shown that even such stringent protection strategy
is not devoid of pitfalls. Indeed, races in the combinational
logic are responsible for “out-of-order” gates evaluation. This
can result in “glitches”, i.e., spurious transitions that occur
on masked data and which can be responsible for transient
unmasking. Specialized attacks have even been set up in this
respect, for instance [3, 4]. For this reason, specific gate-level
masking schemes that are aware of the presence of glitches have
been promoted [5]. The so-called “threshold implementation”
paradigm (TI [6, 7, 8]) for masking scheme aims at addressing
the problem at large.

This topic is currently being addressed at the normative
level, as attested for instance by the NIST “Masked Circuits
for Block-ciphers” initiative [9].

The abovementioned spurious glitches do occur naturally in
hardware implementations. As a non-functional activity, they
are responsible for avoidable power loss. However, from a se-
curity standpoint, they can also be responsible for surreptitious
information leakage.

Two strategies have been explored in literature:
• Conservative, by assuming that all glitches are potentially

disclosing sensitive information. The approach is therefore
to eliminate glitches, as for instance in [10].

• Resilient, by tolerating glitches, but making sure that they
are harmless from an information leakage standpoint.

Facing such a challenge and diversity of approaches (glitch-
aware vs. non-glitch-aware), it is paramount to get some guid-
ance regarding which implementation is truly resistant. We seek
a quantitative answer based on a leakage spectral analysis.

II. PRELIMINARIES

A. Power Analysis Attack

Cryptographic primitives have been shown to be highly
vulnerable to power Side-Channel Analysis (SCA) attacks [11],
among which Correlation Power Analysis (CPA) [12] has re-
ceived the lion’s share of attention where the adversary retrieves
the secret keys via evaluating the Pearson’s correlation between
the extracted power traces and the result of a hypothetical power
function depending on the guessed key. Thereby, deploying
an appropriate leakage model is of utmost importance to
successfully retrieve the correct key.

The countermeasure to tackle the power SCA attacks can be
categorized into the two main groups of hiding and masking.
The former aims at reducing the dependency between the
power consumption and processed data, while the latter tries
to randomize the intermediate values. Hiding countermeasures
seem less secure than the masking counterparts. For example,
dual-rail logic suffers from process variations that result in
mismatches between rails. Also, WDDL (a known hiding
scheme) has the “early propagations” issue. On the other hand,
masking schemes, and in particular Boolean masking, are more
popular. However, most of the masking schemes ignore glitches
occurring due to race conditions in combinational logics; thus
may not always provide the desired level of security when
implemented in hardware.

In practice, in a dth-order Boolean masking scheme, any
secret-dependent intermediate variable x is presented by ran-
domly selected d+1 shares x0, x1, ..., xd , where x0⊕x1⊕...⊕
xd = x. On the other hand, an attack in which the adversary can
get information about d points in her measurements is called
a dth-order attack. Note that the implementations which are
protected against dth-order attacks can be still vulnerable to



higher-order attacks (d + 1-order). So, even implementations
that are protected might be vulnerable if the attacker launches
a stronger attack. Accordingly, considering the variability of
masking schemes in the literature, this paper opts to compare
a number of known masking schemes regarding their leakage
to the first or higher-order attacks.
B. Device Aging

Device Aging can cause serious performance degradation
and even device failures in extreme cases. Bias Temperature
Instability (BTI) and Hot Carrier Injection (HCI) [13] are the
two most prominent aging mechanisms. NBTI (one class of
BTI) [14] affects PMOS transistors, while PBTI (another class
of BTI) and HCI affects NMOS devices.
BTI Aging: A PMOS (NMOS) transistor goes under two
phases of NBTI (PBTI) depending on its operating condition
[15]. The first phase, i.e., stress, occurs when the related
transistor is “ON”. Here, charges are trapped at the Si-SiO2

interface and lead to an increase of the threshold voltage.
The second phase, recovery, occurs when the transistor is
off. In this phase, the charges trapped in the stress phase are
partially removed, and thus the threshold voltage (Vth) drift
that occurred during the stress phase partially recovers. The
impact of BTI depends on the supply voltage, temperature,
physical parameters of the transistor under stress, and stress
time. Fig. 1 depicts the Vth drift of a PMOS transistor when it
is continuously under stress for 6 months versus the case that
it experiences stress and recovery phases every other month.

Fig. 1: NBTI-induced Vth drift of a PMOS transistor. Values on the Y-axis
are not shown to make the figure generic and technology independent.

HCI Aging: HCI happens in an NMOS when hot carriers are
injected into the gate dielectric during transistor switching and
remain there. HCI is a function of switching activity; degrading
the circuit by shifting the threshold voltage and drain current of
stressed transistors. The threshold voltage drift induced by HCI
depends on the activity factor of the transistor under stress, its
temperature, clock frequency, and usage duration [13].
C. Masked S-Box Leakage

In theory, masking styles do not leak. However, in practice,
security hypotheses can fail, and therefore some leakage may
appear as a resurgence [16]. In the scope of this paper, we
study logical effects of leakage, in that our SPICE simulations
are at netlist level but do not involve any parasitics extraction
whatsoever. As a matter of fact, we will show that all known
masked implementations do leak. The question we tackle is
“how much do they leak”?

III. WALSH-HADAMARD BASED LEAKAGE ANALYSIS
A. Measurement of Dataset

In order to analyse the leakage methodically, we extract
traces collected from this simple experimental setup:

• Initial value is random encoding of a fixed constant value;
here (0000)2 ∈ F4

2 where we consider the nibble-oriented
substitution box (S-Box) of PRESENT cipher;

• Final value is a random encoding of a text t (t ∈ F4
2).

This way of collecting traces ensures that both leakages in val-
ues (e.g., Hamming weight) and in transitions (e.g., Hamming
distance) are captured. Indeed, the tranistion to a value x from
initial value (0000)2 is x⊕ (0000), i.e., x itself.

B. Theoretical Tool for Spectral Analysis

Glitches are usually modeled informally. In practice, it is in-
deed hard, from an analytical standpoint, to state exactly when a
glitch occurs and what sensitive information it leaks. However,
some signal processing tools can assist such analysis, by de-
composing the power signals in the unmasked input dependent
basis. Spectral techniques are required in this respect, as for
instance put forward in [17]. In this paper, the Fourier basis is
leveraged. This technique allows to separate contributions from
(first-order unmasked text t) leakages. The basis is denoted as
ψu, for all vector u of n-bits (for PRESENT, n = 4). The role
of u is reciprocal compared to t in the Fourier transform. By
definition, ψu function is t ∈ Fn

2 7→ ψu(t) = 1
2n/2 (−1)u·t,

where the operation u · t denotes the canonical scalar product,
that is u · t =

⊕n
i=1 ui ∧ ti. This basis is orthonormal, in that

⟨ψi | ψj⟩ = 0 if i ̸= j and 1 otherwise. There is a simple
interpretation of the Fourier basis: vector ψu represents the
interactions between bits of the input corresponding to the 1
inputs in u (the so-called support of u).

Obviously, we ignore the zero-th component, which is
the waveform average shape. But we exploit all the nonzero
components.

Let us denote by f(t) the leakage corresponding to (un-
masked) S-Box input t ∈ Fn

2 . We present the glitch analysis on
scalar leakage, but clearly the presentation naturally extends to
multi-variate context (analyses are conducted in parallel).

The decomposition of the Fourier basis is as follows:

Lemma 1. The leakage function f : t ∈ Fn
2 7→ f(t) ∈

R can be decomposed in the Fourier basis as: f(t) =∑
u⟨f | ψu⟩ψu(t) = 1

2n/2

∑
u au(−1)t·u, where au =

1
2n/2

∑
t f(t)(−1)t·u is the Walsh-Hadamard transform of f .

We recall the Parseval’s identity:
∑

t f
2(t) =

∑
u a

2
u. There-

fore, we get the following result:∑
u̸=0 a

2
u =

∑
t f

2(t)−
(∑

t f(t)
)2

, i.e., the variance of f .

C. Analysis of the Dataset

The projection in the Fourier basis requires an estimation of
the au spectral components. Figure 2 depicts the power traces
related to different classes, i.e. the unmasked input values, in
the ISW circuit. Figure 3 shows that the convergence rate to
accurate values of the coefficients is rapid: after only 1024
power measurements, the coefficients are already estimated
with a high confidence. In the sequel, we will therefore present
basis decomposition based on estimation from 1024 traces.
The spectral coefficients are extracted using the average power
values shown in Figure 2, by multiplying them by the 16× 16
Walsh-Hadamard matrix.

The (au)u∈(Fn
2 )

∗ parameters allow to characterize the leak-
age. Typically, it is interesting to study the waveform of the
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Fig. 2: Average power of ISW classified according to the 16 values of the
unmasked plaintext, for 100 samples (2 ns trace, sampled at 50 Gsample/s).

Fig. 3: Leakage coefficients of the ISW extracted using average power with
respect to the number of traces.

coefficients. Recall that in absence of first-order leakage, the
leakage should be null. Conversely, a high positive or negative
value indicates a deviation from the baseline value (zero). The
curve which features such deviation(s) reveals the nature of
the leakage. Typically, it can be due to a single bit, when
wH(u) = 1, or otherwise to multiple bits leaking together.
The former case is reasonably attributed to an unfortunate
“demasking”, while the latter case arises upon complex con-
ditions on the unmasked inputs (connected to “glitch events).
The reason is that the typical condition of appearance of a
glitch is “when some configuration c is met, then the value
of this net a changes values”. The leakage value is therefore
the logical value c ∧ a, where a and c are unmasked values.
An interesting such leakage is illustrated in Fig. 4, where a
strong leakage occurs as the conjunction between bits 1 and
2 (i.e., the projection of the leakage on vector: (−1)t1+t2 is
large). Interestingly, TI implementation features glitches, which
nonetheless do not leak information, since those glitches mix
only at most d = 3 shares of each variable randomly split
in d + 1 = 4 shares. Still, another leakage can be exploited,
namely Hamming weight/distance parity. Indeed, power is an
additive quantity, hence the leakage of each individual gate (or
net) sums up. Thus an overlooked first-order leakage:

Theorem 1. A random Boolean splitting of any order is leaking
the least significant bit (LSB) in the Hamming weight model.

Proof: Let a Boolean sensitive variable x ∈ F2, that is ran-
domly split for a given masking scheme into x0, x1, . . . , xd. As-
sume the leakage function is the Hamming weight (wH ). Then
we get that: LSB(wH(x0, x1, . . . , xd)) = LSB(

∑d
i=0 xi) =⊕d

i=0 xi = x. Therefore, we pinpoint an intrinsic leakage

of masked logic: the parity of the leakage function discloses
the value of the unmasked sensitive variable x. Interpreting
the origin of leakage is out of the scope of this paper. We
rather focus on comparing the amount of leakage of various
implementations.

Fig. 4: Leakage coefficients of the ISW extracted with respect to the number
of samples per unit of measurement.

IV. PRESENT S-BOX IMPLEMENTATIONS
In this paper, we target the hardware implementations of

PRESENT cipher, one of the lightweight cryptographic mod-
ules that fit the resource constrained IoT devices. In particular,
we investigate the leakage and vulnerability of 2 unprotected
implementations of PRESENT and 5 masking-protected coun-
terparts, the details of which can be found below.
PRESENT Cipher: PRESENT is a lightweight symmetric 64-
bit block cipher based on the common substitution-permutation
network. A bitwise XOR operation, a nonlinear substitution
layer (S-Box), and a linear permutation layer are included in
every encryption cycle.

Being non-linear and possessing a contrasted confusion co-
efficient [18], the S-Box module is a highly appealing target
for adversaries to leak the secret key by compromising it.
Accordingly, in this study, we focus on PRESENT S-Box im-
plementations (unprotected and masked-protected circuitries).
A. Unprotected Implementations
Lookup Table (LUT): LUT-based implementation is the most
straightforward approach. It can simply be implemented using a
4-bit lookup table with 16 different addressable locations. We
implemented this architecture using combinational logic and
use it as the baseline for other protected variants.

Optimized Implementation (OPT): This implementation
minimizes the number of non-linear (AND/OR) gates. The final
netlist is generated by trying different implementations using
Boolean Satisfiability (SAT) solvers [19]. This circuit has a
longer critical path compared to the baseline implementation.
Note that although based on Table I in both circuits 8 gates are
included in the critical path, OPT critical path includes more
XOR gates, while LUT has more AND/OR gates; thus OPT
has a longer propagation delay.

B. Protected Implementations
Global Lookup Table (GLUT): GLUT masking is a function
F4
2 × F4

2 × F4
2 = F12

2 → F4
2 satisfying

Y = GLUT (A,MI,MO)

such that:
Y ⊕MO = S-Box(A⊕MI)
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where A and Y are the masked input and output, respectively
and MI and MO refer to the input and output masks.
Rotating S-Box Masking (RSM): Under the assumption that
the underlying logic does not leak, the RSM is proved to
be first-order secure (and even second- and third-order [20]).
The RSM implementation aims at minimizing the required
randomness in two ways, so, it has the following properties:

1) the masks set is a subset of the full mask set (the masking
scheme is referred to as “low-entropy” [21], and

2) the masks used at the output of the S-Box are deduced
deterministically from that at the input, namely by using
the next one (in a circular manner) within the mask set.

In our implementation, since there are only 16 masks in the
4-bit PRESENT S-Box, we refrain from using a strict subset
of the masks. However, we generated output masks based on
the available input randomness [22], thus the output mask MO
is generated as below:

MO = (MI + 1) mod 16

where MI and MO are integers in {0, 1, . . . , 15}, computed
via M ∈ F4

2 7→
∑3

i=0Mi2
i ∈ {0, 1, . . . , 15} mapping. So, the

relationship between RSM and GLUT can be written as:

RSM(A,MI) = GLUT (A,MI, (MI + 1) mod 16).

From an area perspective, RSM has a more compact archi-
tecture compared to the GLUT. Note that the genuine version
of RSM does not have S-Box input on 8-bit, but solely on
4-bit [23] (wherein randomness comes from S-Box shuffling).

ROM-based RSM (RSM-ROM): A stronger implementation
of RSM can be realized using a Read-Only Memory (ROM).
In our implementation (so-called RSM-ROM), we target logic
designs built only from the instantiation of gates in a Boolean
library [24]. Here, initially, the datapath is synchronized for
any input configuration which makes input-related deviations
of leakage small. Then, the structure is designed with a one-
hot strategy, i.e., only the required logic is activated, which
further contributes to reducing the side-channel footprints.

Gate-Level Masking via Random Sharing (ISW): Proposed
by Ishai, Sahai, and Wagner (ISW [25]), this secure implemen-
tation starts from the OPT netlist, and gradually replaces the
gates with their gadgets, in order to deal with the non-linear
gates. In this architecture, the gadget for the AND gate requires
1-bit of randomness, i.e., R). Given a random sharing (A0, A1)
of bit A (where A = A0 ⊕ A1), and a similar sharing for bit
B, the AND of A and B denoted as Y is computed as below:{

Y0 = ((A1 ∧B1)⊕R)⊕ (A0 ∧B0)
Y1 = ((A0 ∧B1)⊕R)⊕ (A1 ∧B0)

In the above equations, the order of operations should be
followed, thus the implementation must preserve the order of
gates in the final netlist. In our implementation, we imple-
mented OR via benefiting from De Morgan’s law OR(a, b) =
¬AND(¬a,¬b). Since combinational gates evaluate their out-
puts whenever their inputs change, preserving the order can be
challenging in ISW due to the race condition. This can lead to
a first-order leakage [26].

Threshold Implementation (TI): TI is an algorithmic coun-
termeasure against power SCA, which benefits from multi-
party computation and secret sharing [27]. TI, alike ISW,
divides input bits into d + 1 shares. Meanwhile, in TI the
underlying logic can be aggressively optimized as it does not
need to preserve gate ordering. Moreover, regarding its non-
completeness property, in TI any output share only depends
on d shares of each input. Thus, glitches cannot lead to secret
information disclosure in TI. In our netlist, terms of order 3
(3-input AND gates) are required, hence 4 shares are needed;
we managed to synthesize a TI-compliant fully combinational
netlist of PRESENT S-Box. Notice that we are not aware of
a similar netlist being published in the literature (the only
paper tackling this problem resorts to an implementation with
registers in the middle of the netlist [28]).

Synthesis: Table I compares the investigated S-Box implemen-
tations regarding the number of gates (with 2−4 inputs), equiv-
alent gates (#gates normalized by the number of equivalent 2-
input NAND gates), random bits, and propagation delay (in
terms of #gates in each path).

TABLE I: Gate-level specification of the targeted S-Box implementations
LUT LUT-OPT GLUT RSM RSM-ROM ISW TI

# AND 18 2 580 134 0 16 800
# OR 7 2 180 74 0 0 0
# XOR 0 9 0 0 0 34 647
# INV 7 1 12 20 510 7 0
# BUF 0 0 0 0 0 0 1
# NAND 0 0 0 0 16 0 0
# NOR 0 0 0 0 716 0 0
# XNOR 0 0 0 0 0 0 2
Total Gates 32 14 772 228 1242 57 1450
Total Equ. Gates 41 29 1183 373.5 1121 112.5 2423.5
Delay 8 8 15 11 120 17 9
# Random Bits 0 0 8 4 4 4 12

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Experimental Setup

We implemented the add-round-key and S-Box operations
in the first round of the PRESENT cipher with 80-bit keys
in the transistor level for the 7 types of S-Box using a 45-
nm technology extracted from the open-source NANGATE
library [29]. We used Synopsys HSpice for the transistor-level
simulations, and the HSpice built-in MOSRA Level 3 model
[30] to extract NBTI, PBTI, and HCI aging [14] effects. The
effect of aging was evaluated for 4 years of device operation
in time steps of 2 months. The simulations were conducted for
temperature of 85◦C, Vdd = 1.2 V , and the operating frequency
of 500 MHz. This clock period is selected based on the longest
critical path among all the implementations.

Fig. 5: Protocol for sampling power traces (recall that “initial value” is a
random sharing of (0000)2).

The simulated traces contain two parts: the results of key
addition and S-Box outputs for each initial n-bit value as well
as its following n-bit value. For the attack, we considered only
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the power samples of the second part, when the cryptographic
circuit transitions from initial to final value. Fig. 5 shows the
power sampling where 100 samples are captured for each trace
after feeding the related final value over the course of 2 ns.

To have a non-biased evaluation, we generated the final
values randomly, yet such that we have equal number of traces
from each class, i.e., equal number of unmasked inputs (recall
Fig. 2). The initial values for masks themselves as well as
masked inputs are generated such that the initial values belong
to class ‘0’ (e.g., A initial ⊕ MI initial = 0 in GLUT). This
results in a fair comparison among the implementations.

We generated 1024 input traces such that we have 64 traces in
each class. We categorize the power traces into 16 classes based
on the value of the unmasked inputs in their final stage. We then
use the mean trace of each class in our leakage assessments.

B. Experimental Results and Discussion

1) Leakage power and total leakage power in different
architectures: The first set of results compares the targeted
implementations regarding their resiliency against power SCA
by assessing the leakage power in each circuitry in each of
the 100 sampling points. In particular, we calculate the leakage
power at each point of time as below:

Leakage Power(T ) =
15∑
u=1

a2u(T )

where au relates to the Walsh-Hadamard coefficients discussed
in Proposition 1. Here, T is the Point in T ime in which
the power traces are sampled, and u denotes a leakage source.
As mentioned in Section III (and shown in Fig. 4), for the
4-bit PRESENT S-Box, we have 15 distinct leakage sources
including 4 single-bit (related to one of bit0, bit1, bit2, and
bit3) and 11 multiple-bit leakages (related to the pair, tuple,
and quadrable combinations of those 4 bits).

Figure 6 shows the leakage power for all S-Box variants for
the first 20 sampled points. These curves can be exploited to
identify the “Points of Interest”, i.e. when the leakage shows
up. Using such information can increase the probability of
the attack success by targeting the traces on those specific
points of time. As Fig. 6 depicts, the average leakage power
(computed using the above equation) is more prominent in the
unprotected circuits followed by TI. Interestingly TI leaks more
than other masked architectures although supposed to be more
secure. This is due to its implementation complexity regarding
its larger size compared to the other implementations. As shown
in Table I, TI includes 21× equivalent gates compared to
ISW and 2.1× more gates then RSM-ROM. The other masked
implementations behave similarly in terms of average leakage
power shown in Fig. 6.

Fig. 6: Leakage power in different unprotected and masked-protected imple-
mentations of PRESENT S-Box in different points in time.

To analyze the resiliency of the implemented masked archi-
tectures in more detail, we assessed the total leakage power
related to the 100 sampling points altogether:

Total Leakage Power =
100∑
T=1

15∑
u=1

a2u(T )

The extracted Total Leakage Power values are shown in
Fig. 7 for both, the fresh (not aged) and aged devices. In
this figure, the total leakage (in each age of device) is the
summation of the related sub-bars depicted as unfilled and
solidly filled altogether. As expected, the two unprotected
implementations are the most vulnerable ones among all, owing
to their high leakage power. TI is shown to be the least
secure masked implementation in this figure with the leakage
power at around 45% of the unprotected optimized circuit (i.e.,
optimized LUT).

Based on the results presented in Fig. 7, RSM-ROM is
less secure than ISW, RSM, and GLUT implementations.
This is due to its long propagation time compared to other
implementations. Such a long delay provides the attacker with
more target points, thus facilitates the attack. ISW is the most
resilient structure among the investigated implementations.

Multi-bit Glitch Energy 1-bit Glitch Energy 1-bit to total ratio Average (1-bit to total ratio) Average protected vs Average on unprotected Average 1-bit to total (Year 1) Average 1-bit to total (Year 2) Average 1-bit to total (Year 3) Average 1-bit to total (Year 4)

1.56959501333444000000E-07 2.24271524383151000000E-08 6.40680573176761000000E-02 1.13235246820710000000E-01 1.34351692583441000000E+01 1.40517111732299000000E+01 1.40351265668737000000E+01 1.40170109581695000000E+01 1.39989174177914000000E+01

1.49296204862318000000E-07 2.13691544480732000000E-08 1.25210848495674000000E-01

1.45770063396874000000E-07 2.09301150490213000000E-08 1.25555444776050000000E-01

Unprotected 1.43315921810134000000E-07 2.06026533721158000000E-08 1.25688338549851000000E-01

1.41706008896056000000E-07 2.03647676021109000000E-08 1.25653544964297000000E-01

7.58466884406675000000E-08 1.41676807802214000000E-08 1.57393546195440000000E-01 1.55468138346172000000E-01

7.22578357825841000000E-08 1.33378010071980000000E-08 1.55823374968924000000E-01

7.05835929752596000000E-08 1.29618287810344000000E-08 1.55147086561424000000E-01

Unprotected_OPT 6.93400828027124000000E-08 1.26853942907225000000E-08 1.54651880613539000000E-01

6.84830299328468000000E-08 1.24972686587330000000E-08 1.54324803391531000000E-01

2.90610948197519000000E-09 1.63376200987066000000E-12 5.61865980859985000000E-04 6.14185640880537000000E-04 5.06259069778800000000E-01 5.11840706607442000000E-01 5.11751327466191000000E-01 5.12089270566239000000E-01 5.07454421412966000000E-01

2.76596805178937000000E-09 1.68300791645922000000E-12 6.08099749625990000000E-04

2.70794929201373000000E-09 1.68516651576310000000E-12 6.21916550573258000000E-04

GLUT 2.66992498292069000000E-09 1.70056414819036000000E-12 6.36527880958505000000E-04

2.64428430896122000000E-09 1.70009271794801000000E-12 6.42518042384949000000E-04

7.36494498434640000000E-09 1.22865714320868000000E-10 1.64087634243660000000E-02 1.72486313942917000000E-02

6.96027964949213000000E-09 1.20380782789347000000E-10 1.70013495126130000000E-02

6.76452358648357000000E-09 1.19644489867799000000E-10 1.73796584483177000000E-02

RSM 6.62078195599285000000E-09 1.18894860894118000000E-10 1.76410329641051000000E-02

6.52081017809641000000E-09 1.18257413014536000000E-10 1.78123526220566000000E-02

1.53398597714531000000E-08 8.09422805926419000000E-11 5.24890212061985000000E-03 5.21229467156762000000E-03

1.47899323348730000000E-08 8.59054607477479000000E-11 5.77483177270441000000E-03

1.45015695236812000000E-08 7.79055393493420000000E-11 5.34350784322054000000E-03

RSM_ROM 1.43156896875702000000E-08 7.28351675065416000000E-11 5.06203160088666000000E-03

1.42127603570956000000E-08 6.61427351954954000000E-11 4.63220002040665000000E-03

3.45688377022539000000E-10 5.39660281938197000000E-13 1.55868451942733000000E-03 1.60134249476883000000E-03

3.29430399924077000000E-10 5.19031416503546000000E-13 1.57306352793132000000E-03

3.22163112619538000000E-10 5.17507712132639000000E-13 1.60377686023014000000E-03

ISW 3.17106940533992000000E-10 5.16485986777504000000E-13 1.62609538104624000000E-03

3.13700128173864000000E-10 5.16916003836240000000E-13 1.64509218520911000000E-03

4.07206530588264000000E-08 2.56606061688666000000E-11 6.29765096784973000000E-04 6.36499287431338000000E-04

3.87390660491621000000E-08 2.46029428235363000000E-11 6.34690767497343000000E-04

3.78386592284070000000E-08 2.41832500728136000000E-11 6.38706670967947000000E-04

TI 3.72079825654358000000E-08 2.37827469986612000000E-11 6.38775701315413000000E-04

3.67886501824005000000E-08 2.35803761663371000000E-11 6.40558200591014000000E-04

Multi-bit Leakage (Month 0)

Multi-bit Leakage (Month 12)

Multi-bit Leakage (Month 24)

Multi-bit Leakage (Month 36)

Multi-bit Leakage (Month 48)

1-bit Leakage (Month 0)

1-bit Leakage (Month 12)

1-bit Leakage (Month 24)

1-bit Leakage (Month 36)

1-bit Leakage (Month 48)

Unprotected-
OPT

Unprotected GLUT RSM RSM-ROM ISW TI

Fig. 7: Total leakage power in different fresh (age=0) and aged unprotected and
masked-protected implementations of PRESENT S-Box over time. The glitch-
related leakage is shown using unfilled sub-bars while single-bit leakages are
depicted in solid sub-bars.

2) Effect of Aging on the Power Leakage: As discussed in
Section II, when the device is aged the threshold voltage of
the transistors and in turn the current passing through them
is changed, thus the leakage that an adversary can exploit to
launch an SCA attack is impacted. Accordingly, we depict
quantitatively how device aging affects the security of the
investigated masking (and unprotected) structures.

Figure 8 shows the Leakage Power for ISW, as the most
secure candidate among all considered masking architectures
based on the results shown in Fig. 6, when new (depicted as
0 month) and the ISW circuitry that has been used for 1 to
4 years. As expected, the leakage power decreases over time,
and with a faster rate at the beginning (i.e., the degradation of
leakage between new and the 1-year old device is more than the
degradation rate between the 1- and 2-year old devices, etc).

Fig. 7 compares the total leakage power of the implemented
architectures over the course of 4 years. The first observation
is that, as expected, the total leakage power for each imple-
mentation decreases over time. The takeaway point from this
observation is that the masking schemes (in contrast to dual-
rail logic hiding implementations, e.g., Sense Amplifier Based
Logic (SABL) [15]) do not become more vulnerable during the
lifetime, thus if the protection is secure when the device is new,
it will continue to behave similarly during the course of usage.

Another observation that can be made from Fig. 7 is that
although the total leakage of each implementation degrades
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Fig. 8: Leakage power of the ISW implementation over 4 years of usage.

over time, the most secure implementations (ISW and then
GLUT) still remain as so after aging. The same applies to
the most vulnerable ones (unprotected ones and then TI). In
other words, the order of preserving security for the considered
implementations stays unchanged even after aging.

The next interesting observation is regarding the magnitude
of single-bit leakage versus multi-bit leakage in each circuitry.
As shown for all protected devices when aged, similar to when
being new, the leakage is mainly due to the interaction of
bits, i.e., they do not have a considerable single-bit leakage.
Indeed the rate of single-bit leakage in protected circuits on
average is less than 1% (i.e., ≈0.50%) of the whole leakage
while for the unprotected circuits on average this rate is ≈
14.044% when devices are new. This confirms that the masking
implementations were secure (as expected) regarding single-bit
leakage, which is the metric that they are mainly assessed (bit
probing model [25]). However, this urges the community to
take the bit interactions into account in the security sign-off as
such interactions may result in leaking secure data. As Fig. 7
depicts, on average the percentage of single-bit leakage over
the total leakage for the masked implementations is 0.511%,
0.511%, 0.512%, and 0.507% for the 1 to 4 year old devices,
respectively and 14.051%, 14.035%, 14.017%, and 13.998%
for the unprotected devices over the same course of usage. This
shows that the percentage of single-bit leakage over the total
leakage is almost constant over time in all implementations.

3) Discussion: Based on Tab. I, substantial variation of
delay, area, and entropy is observed in the considered circuits.
Also regarding the security metric, we shall consider side-
channel leakage. The proposed spectral analysis allows to
distinguish between two phenomena to account for the 1st-order
leakage (despite the implementations are not supposed to have
1st-order leakage), namely single- and multiple-bit leakage.

It is clear, from Fig. 7, that only unprotected styles leak
single bits (indicated by the “solidly filled” part of the bars in
Figure 7). This justifies the requirement for protected styles. As
a matter of fact, all protected implementations are secure against
mono-bit leakage attacks. Still, we get as an outcome that:

• TI: by design, features no glitch. But the leakage is
amplified by the large netlist.

• GLUT, RSM, RSM-ROM: they all improve security but
less than ISW does.

• ISW: is compact, features no leakage owing from the
glitches (by design – proved in the seminal paper). The
only leakage is resulting from early evaluation [26]. The

ISW is so good from a security standpoint because the
PRESENT S-Box representation can be very optimized in
terms of AND/OR gates low count.

VI. CONCLUSION AND FUTURE DIRECTIONS
Masking schemes have received the utmost attention in

protecting the cryptographic hardware implementations against
side-channel analysis attacks. In this paper, we presented a
Walsh-Hadamard based leakage analysis, and showed that
although masking schemes do not leak in theory, an adversary
may benefit from the interactions among the bits and leak the
secret data, thanks to the existing glitches and/or structural
leakages (as that of Theorem 1). We showed quantitatively that
among the considered masking schemes, ISW remain the most
secure. We will investigate our findings in real silicon as the
continuation of this study.
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