Using High-Level Synthesis to model SystemVerilog
procedural timing controls

Luca Ezio Pozzoni
Politecnico di Milano
Milan, Italy
lucaezio.pozzoni @polimi.it

Alfio Antonino Palazzo
STMicroelectronics
Catania, Italy
alfio.palazzo@st.com

Abstract—In modern SoC designs, digital components’ develop-
ment and verification processes often depend on the component’s
interactions with other digital and analog modules on the same
die. While designers can rely on a wide range of tools and practices
for validating fully-digital models, porting the same workflow to
mixed models’ development requires significant efforts from the
designers. A common practice is to use Real Number Modeling
techniques to generate HDL-based behavioral models of analog
components to efficiently simulate mixed models using only event-
based simulations rather than Analog Mixed Signals (AMS)
simulations. However, some of these models’ language features
are not synthesizable with existing synthesis tools, requiring
additional efforts from the designers to generate post-tapeout
prototypes. This paper presents a methodology for transforming
some non-synthesizable System Verilog language features related to
timing controls into functionally-equivalent synthesizable Verilog
constructs. The resulting synthesizable models replicate their re-
spective RNMs’ behavior while explicitly managing delay controls
and event expressions. The RNMs are first transformed using the
MLIR framework and then synthesized with open-source HLS
tools to obtain FPGA-synthesizable Verilog models.

I. INTRODUCTION

Mixed-signal circuits integrate both analog and digital cir-
cuitry on the same semiconductor die. Although increasingly
common in modern electronics, their design and verification
flow still pose challenges. The typical design and verification
flow starts from the definition of specifications and high-level
requirements for the application. Then, while the analog com-
ponents of the chip are developed, digital designers implement
the digital portions of the circuit using hardware description
languages (HDLs) like Verilog or VHDL.

While being developed, digital models are continuously
tested using standard methodologies like the universal verifica-
tion methodology (UVM) [1] to validate the correctness of their
behavior. To test the correctness of digital components while
analog devices are still in development, it is common practice
to create Real Number Models (RNMs) of analog devices using
the SystemVerilog language. These models’ compatibility with
event-based simulators provides access to the well-formalized
verification metrics and approaches used in digital models’
design. Furthermore, they significantly accelerate simulation

Fabrizio Ferrandi
Politecnico di Milano
Milan, Italy
fabrizio.ferrandi @polimi.it

Loris Mendola
STMicroelectronics
Catania, Italy
loris.mendola@st.com

Francesco Pappalardo
STMicroelectronics
Catania, Italy
francesco.pappalardo@st.com

times when compared to SPICE-based mixed-signal simula-
tions.

After the design has been fully verified and its netlist
generated, the time before the availability of the first production
chips is used to prepare boards, instruments, and tests for testing
the chips upon their arrival. Additionally, it may be necessary
to analyze the design’s performance beyond what is possible
in simulation.

It is common practice to generate hardware prototypes of the
design to fulfill these tasks. Mapping the digital portion into a
hardware emulation board [2] or an FPGA is straightforward.
Problems arise when mapping analog parts of the design into
hardware. Sometimes it is possible to reuse analog devices
produced for other products, but in general, developers need to
hand-build a synthesizable model replicating RNMs behavior.

Doing so can become a burden since developers have to
create and re-validate synthesizable models that replicate non-
synthesizable SystemVerilog language features commonly used
in RNMs.

This paper presents a methodology for implementing pro-
cedural timing controls using only synthesizable language
features. The presented patterns can be applied to RNMs
without forcing designers to use specific coding structures in
their models. They can serve as a guideline for manual RNM
rewriting or be generated automatically by translation tools.
Furthermore, they can operate in emulation environments using
fixed or variable time steps.

The presented modeling techniques’ implementation uses
MLIR [3], a compiler infrastructure for defining, manipulating,
and mixing different intermediate representations, to generate
the patterns modeling timing controls. Models are then trans-
lated into LLVM-IR, becoming compatible with the front end
of High-Level Synthesis (HLS) tools like Bambu [4], an open-
source HLS framework.

The main contributions of this paper are the definition of
synthesizable models for representing SystemVerilog timing
controls and their applications in an HLS-based toolchain for
supporting fast prototyping of mixed-signal models.

The paper proceeds as follows: Section II introduces the
related work; Section III discusses the details of the proposed
time controls’ implementations. We present results over a case
study in Section IV, and Section V draws conclusions and
outlines future research directions.

II. STATE OF THE ART

RNMs have proven to be a good tool for accelerating analog-
mixed signals models’ co-simulations thanks to their compat-
ibility with event-based simulators. However, their definition
is often a complex task. To minimize designers’ efforts and
potential for human mistakes, multiple works [5]-[7] defined
methodologies and parametric models’ templates to generate
RNMs. Others [8] built a template library of HDL-defined
analog components covering different circuits’ classes to model
complex designs’ behavior. These approaches help designers
to model analog circuits’ continuous-time behaviors using the
discrete-time model provided by HDLs. Furthermore, they often
rely heavily on non-synthesizable language features to model
analog circuits’ time-dependent effects when present.

As for fully-digital designs’ verification, emulation platforms
can offer substantial speedups to the verification flow of mixed-
signal models. The work presented in [9] takes advantage of
this speedup by implementing a pragma-based conversion tool
that generates synthesizable models. Following designers’ an-
notations, it converts analog real-typed signals to a fixed-point
representation. Like the results obtained from our toolchain, the
resulting models are generated starting from validated RNMs
and rely on oversampling input signals to replicate the analog
models’ behavior. However, this approach can only model
linear circuits because of the timing requirements needed to
preserve compatibility with digital components in emulation.

Other works [10] implement support for non-linear models
following a different approach: synthesizable models’ genera-
tion starts from a library-based block representation of analog
circuits. Each block has a synthesizable implementation with
linear or quadratic piecewise descriptions. This property guar-
antees that chains of blocks will compute a result within a given
time step that determines the maximum sampling rate of the
model. Further improvements in emulation performance have
been explored by [11] using variable time steps to overcome the
tradeoff between the emulator’s throughput and the represented
time resolution. The toolchain used for that approach uses
designer-provided mathematical models of analog circuits to
synthesize them with piecewise linear approximations. It relies
on a dedicated controller to manage time steps and minimize
analog models’ evaluations. Like the previously presented one,
this approach uses newly defined representations of analog
circuits rather than reusing validated RNMs. Therefore, their
integration into existing development flows requires additional
efforts from the designers and potentially introduces another
entry point for human-generated errors.

Instead, our approach replicates RNMs’ behaviors according
to the SystemVerilog Language Reference Manual (LRM) [12]
specification and relies on HLS tools to generate synthesizable
models that are backward-compatible with existing simulation

testbenches, enabling the verification of functional equivalence
between the toolchain results and their RNM counterparts.

III. METHODOLOGY

While low-level models describe analog components’ behav-
ior in continuous time, RNMs target event-based discrete-time
simulations. Event-based simulators allow the designer to set a
time granularity for the simulation through the t imeunit and
timeprecision parameters. These determine the frequency
at which digital components are driven and the minimum time
step modeled in the simulation.

RNMs describe analog behaviors using many non-
synthesizable HDLs’ features like real-valued data types (LRM
6.12), system tasks and functions (LRM 20), and procedu-
ral timing controls (LRM 9.4) among others. Commercial
simulators implement these features according to the LRM
specification, while synthesis tools do not since there is no
direct mapping of their functionality in digital devices.

We developed an automatic toolchain for modeling com-
binatorial RNMs’ behavior with an LLVM-IR representation.
This representation was chosen because it can be used as a
specification from HLS tools like [4] and [13] to generate
synthesizable Verilog models reproducing it.

The translation process from SystemVerilog-based RNMs to
their LLVM-IR-based representation implementation is based
on MLIR. This tool’s language consists of operations grouped
under “dialects” that describe computations using different
levels of abstraction. MLIR also provides a pass infrastructure
for translating operations belonging to high-level dialects into
equivalent operations or patterns of operations using lower-level
dialects. Furthermore, MLIR-based models described using
low-level dialects can be used to produce LLVM-IR models
using a provided translation tool.

Section III-A briefly describes the MLIR operations and
transformations we developed for modeling combinatorial
RNMs using MLIR and extracting an equivalent LLVM-IR
representation from them. Sections III-B and III-C present
the MLIR operations and transformations developed to model
procedural timing controls within the same toolchain, achieving
compatibility with a significantly broader array of existing
RNMs.

A. Automated Synthesis of Combinatorial RNMs

Many SystemVerilog language features describe operations
and data types common to most imperative programming
languages and can be directly mapped to low-level MLIR
operations and data types. In the case of combinatorial RNMs,
this holds true for most statements contained in processes’
bodies.

Other language features’ (continuous assignments, always
blocks, entities, etc.) semantics model HDL-specific behaviors,
and the MLIR built-in dialects do not provide operation mod-
eling them. We therefore defined dedicated operations grouped
under a new dialect to model their semantics in MLIR. Opera-
tions modeling entities replicate the original entities’ interface,
and their body contains an unordered collection of operations
modeling continuous assignments and always blocks. These

1 module testmodule (input logic sel, input real x, output real y);

2 real z;

4 assign y = x * z;

5

] always @(*) begin

7 z = (sel == 1'bl) ? 3.14 : 0.6;

8 end

9 endmodule

(a)

1 module {
2 memref.global "public" @ ef<f64> = uninitialized {alignment = 64 :
3 memref.global "public” ef<f64> = uninitialized {alignment = 64
4 memref.global "public” mref<il> = uninitialized {alignment = 64 :
5 memref.global "public” : memref<f64> = uninitialized {alignment = 64 : i64}
6 func @testmodule(%arg®: il, %argl: f64) -» fe4 {
7 // Flag %12 is raised if there are changes in value of sel, triggering
8 // the alwaysBlock computation
9 cond br %12, “bbl, “bb2

10 “bbl:
11 call

// pred: “bb@
lwaysBlock() :

0 > ()

12 br ~bb2

13 “bb2: // 2 preds: “bb@, “bbl

14 // Similarly flag %17 is raised whenever x or z signals change value
15 cond br %17, “bb3, “bb4

16 “~bb3: // pred: “bb2

17 call @continuousAssignment() : () -= ()

18 br ~bbé

19 “bb4: // 2 preds: “bb2, “bb3

20 1

21 %27 = memref.get global @y : memref<fod>

22 %28 = memref.load %27[] : memref<fGd>

23 return %28 : f64

24 }

25 func private @continuousAssignment() {

26 // Same as before, but input values are loaded from global variables
27 }

28 func private @alwaysBlock() { // Same as before }

29 i

(b)

Fig. 1.

module {
memref.global
memref.global

memref<f64> = uninitialized {alignment
memref<f64> = uninitialized {alignment
panda.entity @testmodule (il, f64) -» f64 attributes {

1

2 64 : i64}
4

5 panda.inputInterface = #panda.interface<element<sel, il, 0>, element<x, f64, 1>,
6

7

8

9

64 : i64}

panda.outputInterface = #panda.interface<element<y, f64, I>>}{

panda.Proc @continuousAssignment(fé4, fed, fed) -» f64 attributes {

panda.inputInterface = #panda.interface<element<x, f64, 1=, element<z, f64, 1=,
10 panda.outputInterface = #panda.interface<element<y, 64, 1==,
11 panda.sensList = #panda.sensList<event<any x>, event<any z==}{
12 “bb@(%arg2: f64, %arg3: 64, %argd: f64):
13 %0 = arith.mulf %arg2, %arg3 : f64
14 %1 = memref.get_global @y : memref<féd>
15 memref.store %8, %1[1 : memref<f6d>
16 panda.endproc %0 : f64
17 }
18
19 panda.Proc @alwaysBlock(il, f64) -> f64 attributes {
20 panda.inputInterface = #panda.interface<element<sel, il, @==,

panda.outputInterface = #panda.interface<element<z, 64, 1»=,
panda.sensList = #panda.sensList<event<any sels>>}{
“bb@(%arg2: il, %arg3: f64):
%true = arith.constant true
%0 = arith.cmpi eq, %arg2, %true : il
cond br %@, “bbl, “bb2
“bbl: // pred: “bbe
%cst = arith.constant 3.140000e+00 : f64
%1 = memref.get_global @z : memref<féd>
memref.store %cst, %101 : memref<féd=
br "bb3(%cst : f64)
“bb2: // pred: “bbe
%cst_@ = arith.constant ©.00 0 : fe4
%2 = memref.get _global @z : nrefefed>
memref.store %cst_6, %2[1 : memref<fed>
br "bb3(%cst @ : f64)
“bb3(%3: fe4): // 2 preds: “bbl, “bb2
panda.endproc %3 : fé4

}

H

[R v S I R R S g S i e

B LW LW L W L LU WL R R R R R R R R R

(©)

A very simple combinatorial RNM (a) is parsed and represented within MLIR (c) using a mix of built-in operations for the processes bodies and

newly-defined operations. The resulting model can be further transformed to obtain an MLIR representation (b) that can be translated into LLVM-IR.

Generated model
clock cycle

Scaled digital controller
clock cycle
Digital controller
clock cycle

—
A |

10ns

Delta-cycle RNM
evaluation

(@) (b)

Fig. 2. Fig. (a) shows the time interactions between a combinatorial RNM,
evaluated within a d-cycle when its inputs are updated, and its digital controller
in simulation. Fig. (b) shows the HLS-generated model latency and the time
scaling required to hide it from the digital component. If the HLS-generated
model requires 4 FPGA clock cycles to compute, the digital controller’s clock
frequency must be scaled by a factor 4 to let it sample the generated model’s
results as if they were computed instantly.

in turn describe their counterparts’ interfaces, as well as their
sensitivity lists, and their body contains the MLIR translation
of the statements present in their counterparts.

The inputs of the toolchain are simulation-validated RNMs
(Fig. 1a) parsed with the help of sv-lang [14] to extract their
Abstract Syntax Trees. Then, a second parser developed for
this toolchain analyzes the trees and maps each element into
the most appropriate MLIR operation, building an equivalent
representation (Fig. 1c) that uses a mix of MLIR operations
coming from different dialects, only a portion of which is
compatible with the transformations required to generate an
LLVM-IR model.

The operations grouped under our custom dialect are not
supported by any of the MLIR’s built-in transformations, so it
was necessary to define new transformations to replace them

with operations supported by the translation mechanism to
LLVM-IR. Operations defined to model entities are translated
into MLIR functions which call procedure will be described
later in this section. Within these functions, operations model-
ing processes and assignments are ordered according to their
data dependencies. To remove each one of these operations,
two functions are created: the first one evaluates the block’s
sensitivity list, and the second contains the original block’s
body. The resulting model no longer needs to rely on a
simulator to determine which blocks must be executed but
determines it autonomously at runtime.

The MLIR model resulting from these transformations (Fig.
1b) preserves all blocks’ bodies and schedules their execution
according to a static, serial order. Furthermore, being composed
only of MLIR operations for which an LLVM-IR translation is
provided, the model can be translated into LLVM-IR. It is then
possible to use SW-oriented optimization tools like 11vm—-opt
to remove dead and duplicated code from the model.

Finally, the serial model generated through these MLIR
transformations is used as a basis for generating an equivalent
synthesizable Verilog representation using HLS tools [4], [13]
accepting LLVM-IR models as inputs. The synthesis process
produces fully-digital Verilog models using a Finite State Ma-
chine (FSM) controller to drive their computation. Therefore,
the synthesizable model replicating a combinatorial RNM’s
behavior can perform the same computation, but doing so
requires it several clock cycles rather than a single d-cycle.

Fig. 2 illustrates the time scaling that must be adopted
to allow toolchain-generated models to interact with digital
components after synthesis. The time scaling applied to the
original digital component’s clock must be long enough that the

generated model’s FSM will conclude its computation before
its results are sampled by the digital component. To obtain
a correct result in emulation, components cannot rely on the
simulator’s time management but need to adopt a common time
representation within the emulation environment that hide the
additional latency introduced by the toolchain from the digital
components.

Toolchain-generated models are evaluated at fixed time in-
tervals, which length is driven by the smallest time step that
would be modeled in simulation. In the case of a combinatorial
RNM which inputs are driven by a digital component, the
smallest time step that must be modeled corresponds to the
digital component’s clock frequency. The synthesizable mod-
ules generated by the toolchain maintain the original RNMs’
interfaces with additional signals for controlling the beginning
and completion of the computation to be easily connected
with digital components. Differently from other approaches,
this toolchain does not aim at modeling analog components
through a classification based on their behavior, but rather
models SystemVerilog language features commonly used in
RNMs and transforms them to obtain a synthesizable model
that replicates its original RNM computation, regardless of the
analog component that it models.

B. Modeling Procedural Timing Controls

Analog components’ behaviors are typically related to time,
either because they model an analog signal’s fluctuations or
because they model the presence of transport and inertial delays
on digital signals. Consequently, RNMs of these components
use SystemVerilog’s procedural timing controls extensively to
replicate them.

Procedural timing controls, similarly to always blocks and
continuous assignments, are language features peculiar to
HDLs and lack corresponding operations to which they could
be mapped in MLIR. Therefore, we defined new MLIR op-
erations under the same dialect used for always blocks. As
before, the use of these new operations prevents the MLIR
representation to be translated to LLVM-IR, so additional
transformations for modeling the same behavior using only
LLVM-IR compatible operations have to be defined as well.

Most delay and event controls (LRM 9.4.1 to 9.4.4) model
similar behaviors: upon encountering them, the execution of
the process is interrupted until a given time delay has passed
or an event occurs. As mentioned in the previous subsection,
the time model required to achieve compatibility between
digital components and toolchain-generated components relies
on slowing down the digital model’s time notion by a factor
big enough to hide the introduced latency from the digital
components. Scaling the digital clock frequency to make it
slower than the worst-case computation of a single J-cycle
was enough for combinatorial models, where the smallest time
step to model is the clock signal driving the digital component.
Timing controls require the modeling of fine-grain time steps,
resulting in larger scaling factors for the digital components.

Fig. 3 shows the pattern applied by transformations to model
delays without using custom-defined operations. The function
(a previously-transformed process operation) is replaced by two

new functions 3b: one with the operations preceding the timing
control operation and one with those following the timing
control. To determine which one should execute in a time step,
an additional auxiliary function modeling the required delay or
event detection is generated and scheduled.

The results of operations performed before the timing control
should be visible to other processes even if they are executed
in the same time step in which the timing control interrupts
its process execution. To replicate this behavior, the function
containing operations preceding the timing control also stores
all the computed values in global variables, where they can
be read and used by other processes within the same time
step. In the same way, when a timing event has passed and an
interrupted function can resume its execution, it must be made
aware of changes in values caused by other functions while
it was interrupted. Therefore, rather than fetching the signals’
values sampled before the execution was interrupted, it loads
signals’ values from global variables containing updated values
before executing the remaining operations.

When applied to blocking assignments, intra-assignment
timing controls (LRM 9.4.5) present a similar behavior to other
procedural timing controls. The only significant difference is
the following: the evaluation of the assignment’s expression
happens before the function’s execution is interrupted, while the
assignment is performed after the function’s execution resumes
using the previously computed value. Modeling this behavior
is simply a matter of defining another global variable to pass
the assignment’s value between the two functions.

C. Intra-Assignment Events Controls

Differently from the timing controls described in the previ-
ous section, intra-assignment timing controls applied to non-
blocking assignments do not interrupt the process execution.
Therefore, their implementation must rely on a dedicated pat-
tern (Fig. 4) different from the already presented one.

According to the LRM specification, non-blocking assign-
ments’ values are updated at the end of a time step eval-
vation. Instead, in the implemented pattern, every time the
execution flow encounters a delayed non-blocking assignment
the expression’s value is pushed into a globally visible buffer
together with its delay. This buffer contains the list of updates
scheduled for execution at runtime and needs to be managed
by a dedicated routine to update its content.

Each buffer (Fig. 4b) has an update routine responsible for
updating all delay counters as time progresses and applying
the previously-evaluated values at the correct time step. Buffer-
updating routines execute at the beginning of each time step to
provide each process with updated values.

Minimizing the buffer size without introducing synthesis-
related errors in the emulation is crucial for optimizing the
area occupation of the prototype. The SystemVerilog LRM
poses no bound on the number of schedulable update events
for a given non-blocking assignment. While performing static
analysis of the RNM could provide upper bounds for the
buffer dimensions, we chose to rely on designers’ annotations
to determine the buffer size. Annotating RNMs for buffer
dimensioning can be considered a minimal manual intervention

1 module blkTransport({input logic A, input logic C, output reg B);
2

3 always @(*) begin

4 // pre-delay statements

5 B=# A+ C;

6 // post-delay statements

7 end

8

9 endmodule

(@)

memref.global "public" memref<il= = dense<false> {alignment = 64 :
memref.global "public"
memref.global "public" @delay val : memref<i32> = uninitialized {alignment = 64
memref.global "public" @computed val :

1 @run_delay :
2
4
5 func private @lwaysBlock prologue() {
6
7
8
9

@run_epilogue :

i64}
memref<il> = dense<false> {alignment = 64 : 164}
: 164}
memref<il> = uninitialized {alignment = 64 :

// Pre-delay statements

%6 = arith.addi %1, %3 : il // Value of the expression A + C

%c4 i32 = arith.constant 4 : 132
%7 = memref.get global @delay val : memref<i32>
18 memref.store %c4_i32, %701 : memref<i32>
11 %8 = memref.get _global @computed val : memrefeils
12 memref.store %6, %8[1 : memref<il>
13 %true = arith.constant true
14 %10 = memref.get global @run_delay : memref<il=
15 memref.store %true, %1601 : memref<ils>
16 return
17
18 func private @lwaysBlock epilogue() {
19 %6 = memref.get global @computed val : memrefe<ils
20 %7 = memref.load %6[] : memref<ils
21 %8 = memref.get_global @ : memref<ils
22 memref.store %7, %801 : memref<il>
23 // Post-delay statements
24 %false = arith.constant false
25 %10 = memref.get global @run_epilogue : memref<il>
26 memref.store %false, %10[] : memref<il>
27 return
28
29 func private @delay() {
3e // subtracts the time step length from delay val and,
31 // if the result is @, enables run epilogue
32 }

(b)

i64}

1 module {

2 memref.global "public” @ : memrefe<il> = uninitialized {alignment = 64 : i64}
3 panda.entity @lkTransport (il, i1) -»> il attributes { // Entity attributes
1 H

5 panda.Proc @lwaysBlock(il, i1, il) -» il attributes { // Process attributes
6 H

7 “bbB(%arg2: i1, %arg3: il, %arg4: il):

8 // Pre-delay statements

9 %0 = arith.addi %arg2, %arg3 : il

10 %cd4_i32 = arith.constant 4 : i32

11 %1 = panda.blockingTransportDelay %c4_i32, %0 : i32, il

12 // Post-delay statements

13 %2 = memref.get_global @ : memref<il>

14 memref.store %1, %2[] : memref<il>

15 panda.endproc %1 : il

16 }

17 I3

18}

()

module {
memref.global "public” @B : memref<il> = uninitialized {alignment = 64 : i64}
memref.global "public" @A : memref<ils> = uninitialized {alignment = 64 : i64}
memref.global "public® @C : memref<ils> = uninitialized {alignment = 64 : i64}
)

1
2
4
5 func @blkTransport(%arg®: il, %argl: il
6
5
8
9

-> 11 {
%2 = memref.get global @run_epilogue : memref<il=
%3 = memref.load %2[] : memref<ils
cond br %3, “bbl, “bb2
“~bbl: // pred: ~bbe
10 call @alwaysBlock epilogue() : () -> ()
11 br ~bb6
12 “~bb2: // pred: ~bbe
13 %4 = memref.get global @run_delay : memref<ils>
14 %5 = memref.load %4[] : memref<ils
15 cond br %5, “bb3, “bb4
16 “~bb3: // pred: “bb2
17 call @delay() : () -= ()
18 br ~bb6
19 “bb4: // pred: “bb2
20 // Sensitibity list evaluation for alwaysBlock()
21 cond br %18, “bb5, “bb6
22 “~bb5: // pred: “bb4
23 call @alwaysBlock prologue() : () -> ()
24 br ~bb6
25 “~bb6: // 4 preds: “bbl, "bb3, “bb4, “bb5
26 %25 = memref.get global @B : memref<il=
27 %26 = memref.load %25[] : memref<ils
28 return %26 : il
29 }

(d)

Fig. 3. A simple RNM involving a delay (a) is translated into MLIR (c) modeling the delay using a newly-defined operation (line 14). After the conversion
from processes to functions, the delay operation is removed splitting the function into two (b) and adding an auxiliary function for counting the delay passing.
Only one of the generated functions must execute in a time step, so the function controlling processes execution is updated accordingly (d)

memref.global "public" @read ptr :

1

2 memref<index> = dense<8> {alignment = 64 : i64}

3 memref.global "public" @write ptr :

4 memref<index> = dense<8> {alignment = 64 : i64}

5 memref.global "public" @values_buffer : .
6 memref<10xil> = dense<false> {alignment = 64 : i64} - - | write_ptr
7 memref.global "public" @delays buffer :

8 memref<18xi32> = dense<d> {alignment = 64 : i64} c 9

9 memref.global "public" @sig_val :

10 memrefeil> = uninitialized {alignment = 64 : i64}

11 func private @alwaysBlock() { B 2 p— read_ptr
12 // Pre-delay statements, the assignment expression's

13 // value is stored in %8

14 %cd_i32 = arith.constant 4 : i32 A 0

15 %9 - memref.get_global @write ptr : memref<index>

16 %10 = memref.load %9[] : memref<index>

17 %11 = memref.get_global @values_buffer : memrefeloxils

18 memref.store %8, %11[%10] : memref<lOxil>

19 %12 = memref.get_global @delays_buffer : memref<loxi3z>

20 memref.store %c4_i32, %12[%10] : memref<lOxi3z> R

21 // Post-delay statements sig_val

22 return

5 (b)

(@)

Fig. 4. Non-blocking intra-assignment delays are modeled using a dedicated
buffer (b) storing delayed values paired with the specified delay amount. At the
beginning of each time step, the content of the sig_val register is updated by a
dedicated routine if the delay pointed by the read_ptr reaches 0. The operation
modeling the delay is translated into operations pushing new pairs of values
in the buffer (a)

by the designers, who possess the best knowledge about the
models’ runtime behaviors.

The presented patterns can autonomously emulate some
common SystemVerilog language features used in RNMs.
Overall, they compose a minimal set of hardware controllers
for modeling procedural timing controls without synthesizing
a full-fledged emulation engine.

logic [6:0] FIXED_LAT —
logic CLK_I —
logic [6:0] PHROT —

— logic CLK_O

rotator

Fig. 5. The rotator’s interface is composed only of digital signals. Regardless,
the model’s non-synthesizability comes from the use of procedural timing
controls to model its programmable propagation delay.

IV. CASE STUDY

We measure the performance obtainable by these method-
ologies by generating a synthesizable model starting from the
RNM of a programmable phase rotator. This small, simple
component is often used within larger models, for example
to model analog components used to synchronize signals over
the different lines of an ethernet port. Although simple, its
description relies on all the language features modeled in
the previous section like event controls and intra-assignment
delays.

The model’s interface (Fig. 5) allows the digital controller to
define fixed and variable latencies to the input clock to control
the output clock’s phase rotation with a resolution of 1/128th
of the input clock’s period. Internally, the model autonomously
measures the input clock’s period to replicate it on the output
clock.

Using [4] we generate a synthesizable representation of the
MLIR-based model and re-validate it using updated testbenches

TABLE I
THE MODULE’S LATENCY DEPENDS MOSTLY ON CONTROL-FLOW RELATED
COMPUTATIONS. THIS IS REFLECTED BY THE MINIMAL RESOURCES
UTILIZATION REQUIRED FOR ITS SYNTHESIS.

Resource | Module Utilization | Timing-related Utilization
LUT 2354 305
FF 2259 456
DSP 10 0
BRAM 1 1

to ensure that the toolchain-generated model behavior repro-
duced the original RNM’s one. In this example, the computation
performed by the synthesizable model will complete within 30
clock cycles, 12 of which are dedicated to the computation
of sensitivity lists and delay detections. The original analog
circuit must manage the phase of a 1GHz clock and the smallest
modeled latency is 1/128th of the clock period, so the minimum
time step that must be modeled has a duration of 7.812ps.
Accordingly, the RNM specifies a timeunit of Ips and a
timeprecision of 1fs. These time steps are too small to be
modeled with any FPGA-based prototype, where the maximum
available frequencies are in the order of hundreds of MHz.
To represent smaller time steps, the time representation of the
digital part of the prototype us be scaled down by a constant
factor to hide the computation latency of the generated model
from it.

A conservative approach would follow the designer’s specifi-
cation and evaluate the model in 1fs time steps, scaling the dig-
ital components’ clock by a factor of 107-maz_cycles = 3-10%
to let the generated model execute within a time step. This
would nullify the performance benefits of the emulation and
result in the useless emulation of thousands of time steps with
no change in signals. Choosing a time step length in line with
the model behavior results in a more efficient time scaling:
sampling inputs and updating outputs with a frequency double
the highest one present in the system is enough. Scaling the
digital clock by a factor 128 - 2 - 10 - max_cycles = 76800 is
enough to model the smallest time step represented in the RNM
with an FPGA running at 100MHz. Generating testbenches
compatible with the new time scaling is a matter of applying
the same scaling to all delays defined in the testbenches rather
than rewriting them from scratch for the new models.

The model was synthesized on a Virtex 7 board using Vivado
[13]. Despite the use of a buffer for modeling the transport
delay, the area occupation data (Table I) show that there is still
room for synthesizing the phase rotator and its digital controller
on a single board.

V. CONCLUSIONS

We have presented a methodology for generating synthesiz-
able representations of RNMs with procedural timing controls.
When implemented inside an automatic toolchain, it uses
existing and validated RNMs rather than requiring designers
to replicate the analog circuit behavior through other hand-
built models. The generated synthesizable results are suitable
for testing mixed-signal models with very long sequences of
instructions through emulation. This approach minimizes the

differences between validated RNMs and their synthesizable
counterparts and does not make any autonomous decisions
about numerical or time-based approximations. The through-
put performance reduction required for high-resolution time
modeling comes from the use of a fixed time step model.
This approach results in synthesizable models that fit into
existing development and validation flows with minimal manual
intervention by the designers, thus minimizing the chance of
introducing differences between the simulation-validated mod-
els and their prototypes. Furthermore, the generated models’ ar-
chitecture is compatible with existing SW-oriented optimization
tools and offers a high level of flexibility for implementing fur-
ther domain-oriented optimizations. For example, testbenches
supporting a variable time step could significantly improve
emulated models’ throughput. Also, adopting lower-precision
floating-point numbers representations could reduce generated
models’ requirements for area occupation and latency.

REFERENCES
(1

—

IEEE, “IEEE standard for universal verification methodology language

reference manual,” JEEE Std 1800.2-2017, pp. 1-472, 2017.

[2] Siemens, “Siemens Veloce,” https://eda.sw.siemens.com/en-

US/ic/veloce/strato-hardware/, accessed: 2022-05-23.

[3] C. Lattner, M. Amini, U. Bondhugula, A. Cohen, A. Davis, J. Pien-

aar, R. Riddle, T. Shpeisman, N. Vasilache, and O. Zinenko, “MLIR:

Scaling compiler infrastructure for domain specific computation,” in

2021 IEEE/ACM International Symposium on Code Generation and

Optimization (CGO), 2021, pp. 2-14.

F. Ferrandi, V. G. Castellana, S. Curzel, P. Fezzardi, M. Fiorito, M. Lat-

tuada, M. Minutoli, C. Pilato, and A. Tumeo, “Invited: Bambu: an

open-source research framework for the high-level synthesis of complex
applications,” in 2021 58th ACM/IEEE Design Automation Conference

(DAC), 2021, pp. 1327-1330.

N. Georgoulopoulos and A. Hatzopoulos, “Parameterizable real number

models for mixed-signal designs using systemverilog,” Journal of Elec-

tronic Testing, vol. 37, 12 2021.

S. Balasubramanian and P. Hardee, “Solutions for mixed-signal soc

verification using real number models,” Cadence Design Systems, pp.

1-4, 2013.

X. Yang, X. Niu, J. Fan, and C. Choi, “Mixed-signal system-on-a-chip

(SoC) verification based on systemverilog model,” in 45th Southeastern

Symposium on System Theory, 2013, pp. 17-21.

[8] B. C. Lim and M. Horowitz, “An analog model template library: Simpli-
fying chip-level, mixed-signal design verification,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 27, no. 1, pp. 193-204,
2019.

[9] F. A. Nothaft, L. Fernandez, S. Cefali, N. Shah, J. Rael, and L. Darnell,
“Pragma-based floating-to-fixed point conversion for the emulation of
analog behavioral models,” in 2014 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), 2014, pp. 633-640.

[10] P. Tertel and L. Hedrich, “Real-time emulation of block-based analog cir-

cuits on an FPGA,” in 2017 14th International Conference on Synthesis,

Modeling, Analysis and Simulation Methods and Applications to Circuit

Design (SMACD), 2017, pp. 1-4.

S. Herbst, G. Rutsch, W. Ecker, and M. Horowitz, “An open-source

framework for fpga emulation of analog/mixed-signal integrated circuit

designs,” IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, vol. 41, no. 7, pp. 2223-2236, 2022.

[12] IEEE, “IEEE standard for systemverilog—unified hardware design, spec-
ification, and verification language,” IEEE Std 1800-2017 (Revision of
IEEE Std 1800-2012), pp. 1-1315, 2018.

[13] Xilinx, “Vitis HLS LLVM 2021.2,” accessed: 2022-05-23. [Online].
Available: https://github.com/Xilinx/HLS

[14] M. Popoloski, “sv-lang,” https://sv-lang.com/, accessed: 2022-05-23.

[4

=

[5

—_

x
&

[7

—

(11]

