
2023 Design, Automation & Test in Europe Conference (DATE 2023) - Late Breaking Results

Real-Time Fully Unsupervised Domain Adaptation
for Lane Detection in Autonomous Driving

Kshitij Bhardwaj∗, Zishen Wan†, Arijit Raychowdhury†, Ryan Goldhahn∗
∗Lawrence Livermore National Laboratory †Georgia Institute of Technology

Abstract—While deep neural networks are being utilized
heavily for autonomous driving, they need to be adapted to new
unseen environmental conditions for which they were not trained.
We focus on a safety critical application of lane detection, and
propose a lightweight, fully unsupervised, real-time adaptation
approach that only adapts the batch-normalization parameters
of the model. We demonstrate that our technique can perform
inference, followed by on-device adaptation, under a tight con-
straint of 30 FPS on Nvidia Jetson Orin. It shows similar accuracy
(avg. of 92.19%) as a state-of-the-art semi-supervised adaptation
algorithm but which does not support real-time adaptation.

I. INTRODUCTION

Since deep neural networks (DNNs) are being used for
safety-critical actions in autonomous driving, it is important
that the deployed DNNs are robust to noise and can quickly
adapt to environmental changes for which they have not been
trained. These models are typically trained using simulators
(e.g., CARLA [1]). However, the training data (source domain)
can be significantly different from real-world conditions (target
domain). Deep learning models will need to be adapted from
the labeled source domain to the unlabeled target domain
(known as Unsupervised Domain Adaptation or UDA).

Adaptation of neural networks is typically performed
through cloud, which may not be feasible or preferred. Such
adaptation requires the vehicle to be connected to the cloud
which is not always the case, e.g., remote locations and choppy
connectivity. Additionally, we may not want to share data due
to privacy concerns. Furthermore, while the model adapts, the
conditions might again change before the updated model is
deployed from the cloud, in which case its accuracy will suffer.
Ideally, the deployed model should adapt on device and in real-
time as it sees new data. The challenge is that the new data
will not be labeled and the autonomous vehicle may not have
enough computing resources to rapidly re-train the model on
the new data in real time and still meet all the deadlines. There-
fore, there is a need for a very lightweight unsupervised DNN
adaptation approach for constrained computing platforms.

A recent work introduced CARLANE benchmark and a sim-
to-real domain adaptation technique for 2D lane detection [2].
Lane detection is an extremely important step that must be
highly robust for the safety of the autonomous vehicle. While
this work focused on a critical application, there are several
limitations: (i) adaptation is not memory-efficient as it requires
the use of both labeled source data (that the model is initially
trained with) and unlabeled target data; (ii) the approach
cannot be used in real time on a low-power computing chip
as it runs for 10s of epochs and uses several thousands of

Fig. 1: CARLANE adaptation benchmarks [2].

source and training data samples for training, which causes
significant latency/energy overheads; and (iii) it also generates
pseudo labels for the target data, which incurs extra overheads.

In contrast, we propose a lightweight, fully unsupervised
and real-time DNN adaptation algorithm for lane detection.
Our approach updates only the batch-normalization layers’
hyperparameters based only on unlabeled target data. We
demonstrate this technique on Nvidia Jetson Orin, where we
show that inference, followed by model adaptation, using each
incoming 1280 × 720 image can be achieved in tight real-
time performance constraints of up to 30 FPS. The updated
model is then used for the next image. Our online adaptation
approach achieves almost similar lane detection accuracy for
CARLANE benchmarks as the current state-of-the-art adapta-
tion algorithm [2] but without the use of extra labeled data and
can be performed in real time. Our code will be open-sourced.

II. LANE DETECTION ADAPTATION BASELINE

We use the ultra fast lane detection (UFLD) algorithm [3].
Lanes are represented as a series of horizontal locations at
predefined rows (row anchors). On each row anchor, the loca-
tion is divided into many grid cells. Therefore, the detection of
lanes is formulated as selecting correct cells over row anchors.

Figure 1 shows the three types of CARLANE benchmarks
used: MoLane (2 lanes), TuLane (4 lanes), and MuLane
(4 lanes). The source data for these benchmarks are taken
from CARLA simulations on which the DNNs are initially
trained using the UFLD algorithm. The unlabeled target or
testing data, on which the domain adaptation of the pre-trained
DNNs is performed, are: (i) real-world model vehicle data for
MoLane; (ii) TuSimple real-world images of U.S. highways
dataset [4] for TuLane; and (iii) both model vehicle data and
TuSimple data for MuLane (i.e., a multi-target benchmark).
The images are 1280×720, collected using a 30 FPS camera.

We use a state-of-the-art domain adaptation technique for
lane detection as the baseline [2]. It adapts the UFLD-trained

ar
X

iv
:2

30
6.

16
66

0v
1 

 [
cs

.C
V

] 
 2

9 
Ju

n 
20

23



models by: (i) encoding the semantic structure of data in both
the source target domains into an embedding space. K-means
is used for this encoding; (ii) transferring knowledge from
source to target using the embeddings; and (iii) updating all
of the DNN parameters using backpropagation.

While the baseline achieves excellent accuracy, it is not suit-
able for real-time adaptation due to several high overhead steps
(learning embeddings, knowledge transfer, K-means, and re-
training the pre-trained model for 10 epochs). It also requires
a significant amount of labeled source data on device, which
adds extra memory/data transfer overheads. Each epoch on
Orin took greater than 1 hour (depending on the benchmark)
hence, making it unsuitable for real-time adaptation.

III. REAL-TIME LIGHTWEIGHT ADAPTATION TECHNIQUE

Our approach, called LD-BN-ADAPT, updates only the
batch-normalization (BN) parameters of the deployed UFLD
model (pre-trained using the source data). BN parameters
typically only comprise of 1% of the total model parameters,
hence updating these parameters is lightweight. In real time,
adaptation is performed, using a batch of collected unlabeled
target data, right after performing inference. In particular,
each BN layer performs two steps: (i) normalization that
standardizes the input x into x′ = (x − µ)/σ using its
mean and standard deviation, and (ii) transformation that
turns x′ into x′′ = γx′ + β using scale (γ) and shift (β)
parameters. During adaptation, while (i) are recomputed from
the unlabeled data, scale and shift parameters in (ii) are
optimized by a loss function while running a single backprop-
agation pass. Since the optimization is performed using only
unlabeled data, entropy of model predictions is used as the
loss function. Shannon entropy for a prediction y is defined
as: H(y) = −

∑
c p(yc)logp(yc) for probability of y for class

c (dimensions of y are gridcells × rowanchors × numlanes,
where gridcells is 100, rowanchors is 56 and numlanes can
be 2 or 4 depending on the benchmark). While a previous
work has looked at BN-based UDA [5], they have focused
on image classification and did not target on-device real-
time adaptation, while we focus on much more complex lane
detection task with strict real-time deadlines. In addition to
BN-based adaptation, we also tested convolutional and fully-
connected adaptation but found the BN-based approach to be
the most effective. Pytorch-1.11 is used for implementation.

IV. MEASUREMENT RESULTS AND ANALYSIS

Figure 2 shows the lane detection accuracy for: (i) UFLD
no adaptation; (ii) CARLANE SOTA adaptation technique
which is not a real-time (or test-time) approach; (iii) real-
time LD-BN-ADAPT with varying batch sizes (bs) of 1, 2,
4 (i.e., adaptation after every image or 2/4 images); and (iv)
two types of ResNet models (ResNet-18/R-18, ResNet-34/R-
34). For both the models, LD-BN-ADAPT with batch size 1
shows the best accuracy compared to other batch sizes, and
is very close to the CARLANE SOTA. CARLANE SOTA’s
best accuracies for MoLane, TuLane, and MuLane are: 93.94%
(R-18), 93.29% (R-34), 91.57% (R-18), respectively (avg. of

Fig. 2: Lane detection accuracy results.

Fig. 3: Lane detection latency on Nvidia Jetson Orin for
various power modes for LD-BN-ADAPT (batch size: 1).

92.93%), and LD-BN-ADAPT’s are: 92.68% (R-18), 92.7%
(R-18), and 91.19% (R-34) (avg. of 92.19%).

Figure 3 shows the latency results on Nvidia Jetson Orin,
for its different power modes, for LD-BN-ADAPT with batch
size 1 (other batch sizes not considered as they show lower
accuracy). Using R-18 with 60W power mode meets the
strict real-time constraint of 30 FPS (i.e., 33.3 ms deadline),
demonstrating that inference followed by model adaptation is
possible in real time even with such tight constraints. For
more relaxed constraints, such as 18 FPS or a deadline of
55.5 ms (similar to Audi A8 sedan with level 3 autonomous
driving system [6]), R-18 at 60W, R-18 at 50W, and R-34 at
60W meet the constraint. In this case, the best model can be
selected based on the power constraints and the type of task.
For example, if there is a strict power constraint of 50W then
R-18 should be used. On the other hand, if a more robust
model is required that shows better accuracy for multi-target
scenarios (e.g., MuLane) then R-34 should be selected.

These results demonstrate that real-time model adaptation
for a complex and safety-critical task, such as lane detection,
is possible but requires a careful study of the multi-objective
design space and the various application constraints.

V. CONCLUSION

We propose a real-time, lightweight, and fully unsupervised
model adaptation approach for lane detection, which only
adapts BN parameters of the pre-trained models. We demon-
strate that inference, followed by our real-time adaptation, can
meet the tight constraints of up to 30 FPS on Jetson Orin.

2



ACKNOWLEDGEMENT

This work was performed under the auspices of the U.S. De-
partment of Energy by Lawrence Livermore National Labora-
tory under Contract DEAC52-07NA27344 (IM: LLNL-CONF-
843048). ZW and AR were supported in part by CoCoSys, one
of the seven centers in JUMP 2.0, a Semiconductor Research
Corporation (SRC) program sponsored by DARPA.

REFERENCES

[1] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and
Vladlen Koltun. Carla: An open urban driving simulator. In Conference
on robot learning (CoRL), pages 1–16. PMLR, 2017.

[2] Bonifaz Stuhr, Johann Haselberger, and Julian Gebele. Carlane: A lane
detection benchmark for unsupervised domain adaptation from simula-
tion to multiple real-world domains. Advances in Neural Information
Processing Systems (NeurIPS), 35:4046–4058, 2022.

[3] Zequn Qin, Huanyu Wang, and Xi Li. Ultra fast structure-aware deep lane
detection. In Computer Vision–ECCV 2020: 16th European Conference,
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16, pages
276–291. Springer, 2020.

[4] TuSimple. TuSimple-benchmark. https://github.com/TuSimple/tusimple-
benchmark/tree/master/doc/lane detection.

[5] Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and
Trevor Darrell. Tent: Fully test-time adaptation by entropy minimization.
International Conference on Learning Representations (ICLR), 2021.

[6] D. McCarthy. Vision Navigates Obstacles on the Road to Autonomous
Vehicles. https://www.automate.org/industry-insights/vision-navigates-
obstacles-on-the-road-to-autonomous-vehicles.

3

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://www.automate.org/industry-insights/vision-navigates-obstacles-on-the-road-to-autonomous-vehicles
https://www.automate.org/industry-insights/vision-navigates-obstacles-on-the-road-to-autonomous-vehicles

	Introduction
	Lane detection adaptation baseline
	Real-time Lightweight Adaptation Technique
	Measurement Results and Analysis
	Conclusion
	References

