
SteppingNet: A Stepping Neural Network with
Incremental Accuracy Enhancement

Wenhao Sun1, Grace Li Zhang2, Xunzhao Yin3, Cheng Zhuo3, Huaxi Gu4, Bing Li1, Ulf Schlichtmann1
1Technical University of Munich (TUM), 2TU Darmstadt, 3Zhejiang University, 4Xidian University

Email: {wenhao.sun, b.li, ulf.schlichtmann}@tum.de, grace.zhang@tu-darmstadt.de,
{xzyin1, czhuo}@zju.edu.cn, hxgu@xidian.edu.cn

Abstract—Deep neural networks (DNNs) have successfully
been applied in many fields in the past decades. However, the in-
creasing number of multiply-and-accumulate (MAC) operations
in DNNs prevents their application in resource-constrained and
resource-varying platforms, e.g., mobile phones and autonomous
vehicles. In such platforms, neural networks need to provide ac-
ceptable results quickly and the accuracy of the results should be
able to be enhanced dynamically according to the computational
resources available in the computing system. To address these
challenges, we propose a design framework called SteppingNet.
SteppingNet constructs a series of subnets whose accuracy is
incrementally enhanced as more MAC operations become avail-
able. Therefore, this design allows a trade-off between accuracy
and latency. In addition, the larger subnets in SteppingNet are
built upon smaller subnets, so that the results of the latter
can directly be reused in the former without recomputation.
This property allows SteppingNet to decide on-the-fly whether
to enhance the inference accuracy by executing further MAC
operations. Experimental results demonstrate that SteppingNet
provides an effective incremental accuracy improvement and its
inference accuracy consistently outperforms the state-of-the-art
work under the same limit of computational resources.

I. Introduction
In recent years, deep neural networks (DNNs) have achieved

remarkable breakthroughs in many fields, e.g., image and
speech recognition. This advance, however, is achieved at the
cost of increasing number of multiply-and-accumulate (MAC)
operations. For example, ResNet with 152 layers [1] requires
11.3G MAC operations to achieve its high inference accu-
racy. This tremendous computational cost poses challenges
when DNNs are applied in resource-constrained and resource-
varying platforms, e.g., mobile phones and autonomous vehi-
cles.

The challenges are two-fold. First, these platforms require
a fast response time with a limited amount of computational
resources. For example, in autonomous vehicles, it is crucial
that potential emergencies are recognized quickly to allow
the vehicles to respond proactively. However, the inference of
neural networks in such vehicles may take longer than accept-
able. E.g., according to [2], AlexNet takes 26ms on NVIDIA
GTX 1070Ti. Proportionally, VGG-16 can take 780ms in
inference, too large for autonomous driving [3]. Second, in
such platforms, computational resources vary dynamically due
to the tasks executed in parallel. This requires that neural
networks should be flexible in refining the inference results
with newly available resources instead of reexecuting all the
MAC operations from scratch. For instance, the switch be-
tween normal mode and power-saving mode of mobile phones
leads to a change of available computational resources [4], so

that neural networks executed on such platforms should be
able to adapt themselves with respect to available resources
dynamically.

To address the challenges described above, [5], [6], [7]
propose efficient models that provide a global hyperparameter,
called width multiplier, to scale neural networks for mobile
applications, so that a trade-off between accuracy and latency
can be made. However, these models require a large offline
table to store several models simultaneously. In contrast, recent
work [8], [9], [10], [11], [12], [13] trains a shared neural
network consisting of a series of subnets that have different
numbers of weights and thus different numbers of MAC
operations. Since the weights are shared among subnets, only
one copy of the neural network needs to be stored. During
inference, these subnets can be selected according to the
current computational resources.

To implement a shared neural network, in [8] a once-for-
all network is trained as a whole and specialized subnets are
generated by selecting only a part of the once-for-all network
according to resource constraints of a hardware platform. In
[9], the NestedNet has an n-in-1-type nested structure, which
consists of n subnets with different sparsity ratios. In addition,
the slimmable network in [10], [11] introduces a single neural
network that can be trained to operate at N modes. The subnets
of different modes provide a trade-off between latency and
accuracy. In [12], a multi-scale neural network, each layer of
which has a classifier, is designed to allow early-exits, so that
subnets with different number of layers can be constructed.
Furthermore, the any-width network in [13] proposes a neural
network with a single training and subnets are constructed by
selecting different widths of neuron connections, so that a fine-
grained control over accuracy and latency during inference can
be achieved.

The previous work [8], [9], [10], [11] can achieve a trade-
off between accuracy and latency, but they are designed to
select a subnet according to the current available computa-
tional resources statically. If more resources become available
after the execution of the selected subnet has been started,
these resources cannot be taken advantage of to enhance the
inference accuracy by switching to a larger subnet without
discarding the current intermediate results. Although the multi-
scale network in [12] and the any-width network in [13]
allow a dynamic adjustment of the subnet by executing more
predetermined MAC operations on newly available resources,
the structures of the subnets are severely restricted to allow the

ar
X

iv
:2

21
1.

14
92

6v
1

 [
cs

.L
G

]
 2

7
N

ov
 2

02
2

subnet1 subnet2 subnet3

(a)

subnet1 subnet2 subnet3

(b)

1

8

1 2

8 9

1 2 3 4

5 6

8 9 10

1 2

3

5 6

8 9

1 2 3

5 6 7

8 9 10

1

5

8

2

5 65 7

Not
used

Fig. 1: Structures of the slimmable network [10] and the any-width
network [13]. (a) Three subnets in the slimmable network. (b) Three
subnets in the any-width network.

free expansion of subnets. Accordingly, the inference accuracy
of the subnets is negatively affected.

To provide both flexibility and capability of computa-
tional reuse in inference, we propose a design framework,
called SteppingNet, for neural networks executed on resource-
constrained and resource-varying platforms. The contributions
of this work are summarized as follows.

• SteppingNet constructs a series of subnets, whose struc-
tures are adapted according to the allowed numbers of
MAC operations. The accuracy of these subnets is incre-
mentally enhanced, so that they can provide a good trade-
off between accuracy and latency in resource-constrained
and resource-varying platforms.

• SteppingNet maximally exploits computational reuse
among subnets. The intermediate results of a subnet can
directly be reused in subsequent larger subnets to im-
prove inference accuracy in case computational resources
become available dynamically.

• With the MAC-constrained structures and the incremental
nature of the subnets, SteppingNet is very suitable for im-
portant scenarios where a preliminary decision should be
made early and refined further with more computational
resources or execution time.

• Experimental results demonstrate that SteppingNet pro-
vides an effective incremental accuracy improvement
with respect to invested computational resources. Com-
pared with state-of-the-art work, SteppingNet can achieve
a consistently better accuracy under the same limit of
computational resources.

The rest of this paper is organized as follows. In Section II,
the background and motivation of this work are explained.
The proposed framework to determine a series of subnets with
incremental accuracy enhancement is explained in Section III.
Experimental results are reported in Section IV and conclu-
sions are drawn in Section V.

II. Background and Motivation
When neural networks are applied for inference in resource-

constrained and resource-varying platforms, they should be
flexible and adaptive to the varying computational resources.

subnet1 subnet2 subnet3

1

8

1 2

8 9

1 2 3 4

5 6

8 9 10

32

5 65 7

Fig. 2: Structures of the proposed SteppingNet with three subnets.

To achieve this goal, the slimmable network in [10] proposes
to train several subnets, which share the same set of weights.
When deployed into a computing system, one of the subnets is
selected according to the available computational resources to
provide a trade-off between accuracy and computational cost.
Figure 1(a) illustrates the concept of the slimmable network,
where three subnets with different numbers of weights are
designed in advance. A node in this example represents either
a neuron or a filter, depending whether it is a fully-connected
layer or a convolutional layer. For convenience, we will refer
to such a node as a neuron henceforth. In the slimmable
network, the inputs to a neuron in different subnets can be
different, e.g., neuron 5 in Figure 1(a). Accordingly, different
batch normalization layers need to be stored for the subnets
during the inference phase.

In the slimmable network, larger subnets may invalidate the
computational results at neurons in a smaller subnet. Conse-
quently, intermediate results of the smaller subnet cannot di-
rectly be reused in larger subnets. For example, in Figure 1(a),
the synapse from neuron 3 to neuron 5 in subnet2 requires
the recomputation of neuron 5 in subnet2 during inference.
This problem is overcome in the any-width network [13], in
which no synapse connects a neuron that is only in a larger
subnet to another neuron in a smaller subnet, as illustrated
in Figure 1(b). Accordingly, the any-width network does not
require extra batch normalization layers for subnets. More
importantly, the any-width network allows dynamic expansion
of subnets. Once extra computational resources are available,
the any-width network can always switch to the next larger
subnet to enhance the inference accuracy by executing more
MAC operations in the expanded network. Similarly, when
the computational resources reduce dynamically, the smaller
subnet can also reuse the intermediate results of the previous
larger subnet.

Despite its advantages in dynamic subnet expansion, the
any-width network still suffers from limitations. First, the
structures of the subnets are manually determined. These
structures must follow the regular pattern shown in Figure 1(b).
This strict structural pattern, however, may impair the infer-
ence accuracy of subnets, because further potential network
structures of subnets are not explored. For example, a subnet
can have an irregular structure, such as subnet1 in Figure 2.
When this subnet is expanded into subnet2, it only needs to be
guaranteed that newly expanded neurons do not have synapses
starting from them and entering the neurons in subnet1 to
maintain the capability of dynamic subnet expansion and
reduction. Second, the regular structures in the any-width net-
work may not use up all the neurons in the neural network as
shown in Figure 1(b), where neuron 4 cannot be included into
a subnet if the regular structural pattern is strictly followed.

A given neural network

Train N subnets m batches

Compute importance
of neurons/filters in subneti

#MAC of subneti>Pi?
No

Move a given number of

neurons/filters to subnet(i+1)

For subnet1 to subnetN

Loop for Nt iterations

Retrain subnet1 to subnetN
sequentially using

knowledge distillation

Yes
Yes

#MAC of subneti Pi

for all subnets?

No

Unstructured pruning of subneti

Subnet structures
and weights

Teacher netw
ork

Fig. 3: Work flow of SteppingNet. Except training multiple subnets
with knowledge distillation in the last step, the other steps belong to
subnet construction.

Third, since the any-width network constructs the subnets
according to structural rules, the computational cost in each
expansion of the subnets, i.e., the extra MAC operations, is
not directly controlled. Consequently, when used in computing
systems with dynamically varying resources, the expansion
of subnets in the any-width network may not work due
to mismatch of the required and the dynamically available
computational resources.

III. Construction and Training of SteppingNet
To implement a series of efficient subnets whose weights are

shared and whose inference accuracy is enhanced incremen-
tally when more computational resources become available,
we use the work flow shown in Figure 3. The construction
process determines the structures of the subnets by moving
neurons gradually between subnets. In the last step, the subnets
are retrained with knowledge distillation to enhance their
inference accuracy. The construction and retraining of subnets
are described in detail in Section III-A and Section III-B,
respectively.
A. Constructing subnets of SteppingNet by neuron assign-

ment
The task of subnet construction is to determine the structures

of the subnets. A smaller subnet should be contained in a larger
subnet so that its results can contribute to the computation
results of the latter. In addition, the extra neurons in the larger
subnet should not have synapses to the neurons in the smaller
subnet; otherwise, the neurons in the smaller subnet need to be
reevaluated, thus losing the incremental property of subnets.

A straightforward idea of subnet construction is selecting
weights according to their importance for each subnet. How-
ever, this method does not consider the incremental property
of subnets, so that it can unfortunately block some neurons
and lead to a suboptimal result. For example, in Figure 4,
weights that are important for subnet1 are selected from
the original network. Subnet2 is constructed by selecting its
important weights while guaranteeing that subnet2 does not
have synapses to the neurons in subnet1. After the construction
of subnet1 and subnet2, all the three neurons in the second
layer are already occupied by the two subnets. Therefore, it is

not possible to include the remaining two neurons in the first
layer into subnet3 without invalidating the computation results
of subnet1 and subnet2. This limitation wastes the potential
of neurons in subnets and thus compromises the inference
accuracy of subnet3.

To avoid the problem above, we will evaluate the impor-
tance of the neurons with respect to all subnets and move
them across subnets to gradually build up the structures of
subnets while guaranteeing the incremental property. In the
following, the process of moving neurons to construct subnets
is described Section III-A1 and the importance evaluation of
neurons is explained in Section III-A2.
1) Structural construction of subnets

In SteppingNet, subnets are constructed from a given orig-
inal neural network. Each subnet contains a part of the
neurons and synapses of the original neural network, and a
smaller subnet is completely contained in a larger subnet. The
inference accuracy of the original neural network is an upper
bound of the inference accuracy of the subnets.

In the construction process, the smallest subnet is first
initialized with the original neural network. The neurons
are gradually moved away from this subnet to fill larger
subnets using the work flow in Figure 3. In this flow, the
subnets are first trained for m batches and their numbers
of MAC operations are evaluated sequentially afterwards. If
the number of MAC operations of subneti is larger than a
predefined threshold Pi, some neurons in subneti are moved
into subnet(i+1) according to their importance to the subnets.
The flow ends when the number of MAC operations of each
subnet satisfies the requirement. During this process, the extra
neurons in a larger subnet are not allowed to have synapses
to the neurons in a smaller subnet, so that the capability of
dynamic subnet expansion and reduction is maintained.

An example of the construction process is illustrated in
Figure 5, where subnet1 is initialized using the original neural
network as shown in Figure 5(a). Assume that the allowed
MAC operations in the three subnets to be constructed in
Figure 5 are 3, 7, 14, respectively. The number of MAC
operations in subnet1 in Figure 5(a) thus needs to be reduced.
Accordingly, neuron 4 is moved to subnet2 in Figure 5(b). This
process is repeated for subnet1 and neurons gradually flow
into subnet2. When the difference in the numbers of MAC
operations of subnet2 and subnet1 is larger than 7− 3=4,
the neurons start to flow from subnet2 to subnet3; Otherwise
subnet2 cannot maintain a sufficient number of neurons, so
that the number of MAC operations in subnet2 might be much
smaller than the allowed number at the end of construction
process. In Figure 5(d), the MAC difference of subnet2 and
subnet1 is more than 4, so that a neuron is moved from
subnet2 to subnet3 in Figure 5(e), while neuron movement
from subnet1 to subnet2 is ongoing simultaneously. After the
iterations in Figure 3 are finished, the structures of the subnets
are determined, as illustrated in Figure 5(g).

In moving a neuron from subneti to subnet(i+1), all the
synapses from this neuron to the neurons in subneti are
removed to avoid the reevaluation of the neurons in subneti.
For example, in Figure 5(b), neuron 4 loses all the connections

subnet1 subnet2 subnet3

Blocked
neurons

1

8

5

1 2

8 9

65 76

1 2

8 9

65 7

10

Fig. 4: Inappropriate subnet construction with blocked neurons.

1 2

5 6 7

8 9 10

3 41 2 3

5 6 7

8 9 10

4 1 2 3 4

65 7

8 9 10

1 2 3 4

5 7 6

98 10

41 2 3

6 75

98 10

1 2 3 4

5 76

8 109

1 2

5

8

3

6

9

4

7

10

(a) (b) (c) (d)

(g)(f)(e)

Fig. 5: Subnet construction in SteppingNet. The leftmost block with
neurons in green belongs to subnet1, the two blocks on the left with
neurons in green and red (from (b) onwards) belong to subnet2, and
the three blocks together with neurons in green, red and purple (from
(e) onwards) form subnet3. At the beginning, subnet1 is initialized
with the original neural network and the other subnets are empty in
(a).

to the neurons in the second layer of the neural network.
However, when further neurons are moved into subnet(i+1),
the synapses between the neurons are reestablished to maintain
the inference accuracy, e.g., the synapse between neuron 4 and
neuron 6 in Figure 5(c).

After neurons in the subnets are updated in an iteration,
we also apply pruning [14] to remove the weights and filters
that are unimportant to the inference accuracy of the corre-
sponding subnet, such as the synapse between neuron 1 and
neuron 6 and the synapse between neuron 3 and neuron 7
in Figure 5(e). Consequently, weights and the corresponding
MAC operations remaining in a subnet essentially contribute
to its inference accuracy. Since weights pruned in subneti may
be important to larger subnets, we do not remove these weights
permanently during pruning but allow them to update in the
following training iterations, so that the importance of neurons
to larger subnets can be evaluated correctly, as explained in
Section III-A2. When a neuron with pruned weights is moved
to another subnet, the corresponding synapses are revived,
because these synapses may be essential to the new subnet,
such as the synapse between neuron 3 and neuron 7 in
Figure 5(f).

In the example in Figure 5, only one neuron from a
subnet is moved to the next subnet in an iteration. Since the
number of neurons/filters in a deep neural network can be
large, in implementing SteppingNet we move multiple neurons
simultaneously from a subnet to another. We first determine the
number of MAC operations required to be moved from a sub-
net to the subsequent subnet according to the allowed number
of MAC operations. Since subnet1 needs to move the largest
number of neurons to other subnets, we use it to calculate an
upper bound of the number of neurons moved between subnets

in an iteration. Assume that the number of MAC operations
allowed in subnet1 is P1, the total number of MAC operations
of the original neural network is Pt, and the total number of
iterations allowed in the work flow in Figure 3 is Nt. The
number of MAC operations that are moved from a subnet to
the subsequent larger subnet in an iteration is then defined as
(Pt−P1)/Nt to guarantee that the final numbers of remaining
MAC operations in the subnets comply with the requirements.
In implementing SteppingNet, the neurons are evaluated and
a set of neurons whose importance values are low and whose
number of MAC operations just exceeds (Pt−P1)/Nt are
selected from subneti and moved to subnet(i+1).
2) Importance evaluation for neuron reallocation

In SteppingNet, if a neuron appears in subneti, it also
appears in all the larger subnets. The importance of this neuron
with respect to different subnets may be different. Accordingly,
we use a parameter rij to indicate the importance of the jth
neuron with respect to subneti. With rij , we then modify the
computation at the jth neuron in the neural network as

dj=ϕ(r
i
j ∗

nj∑
k=0

dj,k ∗wj,k + bj) (1)

where dj is the output of this neuron. dj,k and wj,k are
the input and the weight of the kth synapse to this neuron,
respectively. nj is the total number of incoming synapses to
this neuron. bj is the bias. ϕ is the activation function. For
CNNs, rij is assigned to the jth filter of the ith subnet to
indicate the importance of this filter. The operation of the filter
is the corresponding convolution instead of the MAC operation
in (1).

During forward propagation, rij is set to 1 to guarantee the
correct function of this neuron in inference. Since the subnets
should be trained to enhance inference accuracy, we maintain
a cost function Li for each subnet. At backward propagation,
we calculate the partial derivative of the cost function Li to
rij as
∂Li

∂rij
=
∂Li

∂ϕ

∂ϕ

∂(rij ∗
∑nj

k=0dj,k ∗wj,k + bj)
×

nj∑
k=0

dj,k ∗wj,k.

(2)
In backward propagation, ∂Li

∂rij
is a floating-point number,

which we use to make the binary decision whether a neuron
should be moved to the next larger subnet.

In selecting a neuron to move from subneti to subnet(i+1),
∂Li

∂rij
does not provide a sufficiently good indication, since a

neuron in subneti is also contained in all the subnets larger
than subneti. Accordingly, we tend to keep the neurons that
are also important to all the larger subnets, and define the
selection criterion for the jth neuron in the ith subnet as

M i
j=

N∑
k=i

αk

∣∣∣∣∣∂Lk

∂rkj

∣∣∣∣∣ (3)

where αk is a constant defining the contribution ratio of ∂Lk

∂rkj
of

a neuron with respect to subnetk. N is the number of subnets.
In an iteration, after M i

j are updated, the neurons with the
smallest M i

j are moved to the next subnet.
Because moving neurons between subnets changes the

structures as well as the cost functions of the subsets, we
train the subnets with m batches before evaluating the neurons
using (3), as shown in Figure 3. In this process, the training

TABLE I: Results of SteppingNet
Test cases Orig. Net Subnet1 Subnet2 Subnet3 Subnet4

Network Dataset Acc. A1 M1/Mt A2 M2/Mt A3 M3/Mt A4 M4/Mt

LeNet-3C1L Cifar10 83.36% 68.5% 9.65% 77.38% 29.55% 79.81% 48.62% 80.4% 78.52%
LeNet-5 Cifar10 74.96% 51.8% 13.64% 59.56% 26.54% 68.64% 55.07% 72.03% 82.74%
VGG-16 Cifar100 70.32% 63.26% 15.97% 68.19% 32.54% 68.19% 47.39% 68.14% 67.78%

of a larger subnet also updates the weights in smaller subnets,
whose values have been determined by directly training the
smaller subnets themselves in the same iteration. Conse-
quently, the accuracy of smaller subnets may degrade after
a larger subnet is trained. To reduce the effect of updating
weights in smaller subnets when training a larger subnet, we
decrease the learning rate of weights in a smaller subnet by the
ratio β(j−i), where β is a constant between 0 and 1 and j and
i are the indexes of the larger and the smaller subnets, respec-
tively. (j− i) is used as the exponent of β so that the smaller
the subnets are, the more their learning rates are decreased.
With this reduction of learning rates, smaller subnets obtain
more stability to maintain their inference accuracy when larger
subnets are trained.
B. Retraining subnets with knowledge distillation

After subnets are constructed with the method in Sec-
tion III-A, we retrain them to improve their inference accuracy
with knowledge distillation [15]. In this retraining, the teacher
network is the original neural network from which subnets
are constructed. This neural network has a high accuracy
compared with the subnets, which are the student networks,
so that it is used to guide the subnets during retraining.

When retraining a subnet, we modify its cost function as
follows

L′i=γ×Li +(1− γ)
nc∑
k=1

Yklog(
Y pre
k

Yk
) (4)

where Li is the cross entropy of subneti.
∑nc

k=1Yklog(
Y pre
k

Yk
)

is the Kullback-Leibler divergence [16] of subneti to the
pretrained original neural network, where Y pre

k and Yk are
the kth outputs of the original neural network and subneti,
respectively. nc is the number of output classes. γ is a constant
between 0 and 1 to adjust the priority of Kullback-Leibler
divergence in (4). The smaller the difference between Y pre

k and
Yk is, the more similar results the subnets generate compared
with the original neural network.

In the retraining phase, we train the subnets in an ascending
order in each epoch using the modified cost function in (4).
During this training, we also reduce the learning rates of
subnets as described in Section III-A2 to avoid drastic weight
change in smaller subnets. With this multi-subnet knowledge
distillation, the inference accuracy of all these subnets can be
enhanced and balanced as a whole.
IV. Experimental Results

To evaluate the effectiveness of SteppingNet, three neural
networks, LeNet-3C1L, LeNet-5 and VGG-16 were applied
onto two datasets, Cifar10 and Cifar100, respectively. as
shown in the first two columns of Table I. The construction of
subnets and their retraining were implemented using PyTorch
and tested on Nvidia Quadro RTX 6000 GPUs.

To demonstrate that SteppingNet provides an incremen-
tal accuracy improvement with respect to computational re-
sources, four subnets were constructed and retrained with the
framework described in Section III. During this construction,

SteppingNet
Slimmable Net.
Any-width Net. LeNet-3C1L

In
fe

re
nc

e
ac

cu
ra

cy
 (

%
)

65

70

75

80

#MAC(%)
20 40 60 80 100

SteppingNet
Slimmable Net.
Any-width Net.LeNet-5

In
fe

re
nc

e
ac

cu
ra

cy
 (

%
)

45
50
55
60
65
70
75

#MAC(%)
20 40 60 80 100

SteppingNet
Slimmable Net.
Any-width Net. VGG-16

In
fe

re
nc

e
ac

cu
ra

cy
 (

%
)

50

55

60

65

70

75

#MAC(%)
20 40 60 80 100

Fig. 6: Comparison with the any-width network and the slimmable
network.

the connections from new neurons in a subnet to the neurons
in the previous smaller subnets were prohibited to enable
computational reuse as described in Section III. To provide
the construction process more flexibility, we expanded the
number of neurons/filters of each layer in the original network
as in [13] and initialized the first subnet in the construction
process with this expanded network. For LeNet-3C1L, LeNet-
5, and VGG-16, the corresponding expansion ratios were set
to 1.8, 2.0, 1.8, respectively. For example, in the expanded
LeNet-3C1L, the number of neurons/filters is 1.8 times of that
of the original network. In the flow in Figure 3, we set the
number of training batches at the beginning of each iteration
to 250, 250, and 100 for LeNet-3C1L, LeNet-5, and VGG-16,
respectively. The total number of allowed iterations Nt was
set to 300. The weight threshold in the unstructured pruning
was set to 1× 10−5. The coefficients αk in (3) were increased
to 1.5 times from α1=1 for each larger subnet to emphasize
the importance of the neurons to these larger subnets, so that
the neurons remaining in the current subnet also make good
contribution to the inference accuracy of the larger subnets. β
in weight update suppression in Section III-A2 was set to 0.9.
γ in (4) was set to 0.4 to balance the cross entropy and the
effect of knowledge distillation in retraining.

During subnet construction and retraining, the inference
accuracy of the largest subnet could not be improved further
after a certain number of MAC operations was reached. For
example, in LeNet-3C1L and LeNet-5, after executing around
85% MAC operations of the original network, the inference
accuracy of the largest subnet reached more than 95% of the
inference accuracy of the original network and did not increase
any further. For VGG-16, this threshold was around 70%.

No expansion
1.2 expansion
1.4 expansion
1.6 expansion
1.8 expansion
2.0 expansionIn

fe
re

nc
e

ac
cu

ra
cy

 (
%

)

50

55

60

65

70

75

80

#MAC (%) LeNet-3C1L
10 20 30 40 50 60 70 80

No expansion
1.2 expansion
1.4 expansion
1.6 expansion
1.8 expansion
2.0 expansionIn

fe
re

nc
e

ac
cu

ra
cy

 (
%

)

40

45

50

55

60

65

70

75

#MAC (%) LeNet-5
10 20 30 40 50 60 70 80

Fig. 7: Accuracy comparison with different expansion ratios.

Accordingly, we set these numbers of MAC operations as the
resources allowed in the largest subnets and decreased from
these numbers to set the resources allowed in smaller subnets,
so that the subnets can produce inference accuracy at different
levels of MAC operations. For the three neural networks,
LeNet-3C1L, LeNet-5 and VGG-16, the allowed MAC opera-
tions in the four subnets were then set to 10%/30%/50%/85%,
15%/30%/60%/85%, 20%/40%/50%/70% of the original neu-
ral networks, respectively.

Table I shows the inference accuracy of the test cases. The
third column shows the inference accuracy of the original
neural networks. The columns A1, A2, A3, and A4 show
the inference accuracy of the subnets. The columns M1/Mt,
M2/Mt, M3/Mt and M4/Mt show the percentages of MAC
operations in the subnets with respect to the number of MAC
operations Mt of the original neural network. According to
this table, it can be observed that the inference accuracy of
subnets was improved by more MAC operations. In addition,
the incremental accuracy enhancement was not necessarily
linear with respect to the number of MAC operations. For
example, with even about 10% of the total number of MAC
operations, the inference accuracy of LeNet-3C1L can already
reach 68.5%, which is important for some scenarios, e.g.,
autonomous driving, to make a preliminary decision. The
inference accuracy of the largest subnets was already close
to that of the original neural networks, and the difference was
to provide the property of incremental enhancement.

To demonstrate the performance of SteppingNet com-
pared with the any-width network [13] and the slimmable
network[10], we executed the any-width network and the
slimmable network on the three networks in Table I to obtain
the inference accuracy of five subnets under various numbers
of MAC operations. The accuracy comparison is illustrated
in Figure 6. This comparison demonstrates that SteppingNet
outperforms the any-width network and the slimmable network
in inference accuracy under the same numbers of MAC
operations, due to the fact that SteppingNet enables more
flexible subnet structures than the any-width network and the
slimmable network.

Before subnet construction, we expanded the number of
neurons/filters in the original network with a given ratio to
allow more flexible subnet structures to be identified. To
demonstrate how this ratio affects the inference accuracy, we
changed these ratios and tested the inference accuracy of
the constructed subnets, as shown in Figure 7, where the
ratio of MAC operations is with respect to the number of
the MAC operations of the original neural network without
expansion. According to this figure, it can be seen that different

w/o weight suppression
w/o knowledge distillation
SteppingNet

In
fe

re
nc

e
ac

cu
ra

cy
 (

%
)

40

50

60

70

80

90

LeNet-3C1L
Subnet1 Subnet2 Subnet3 Subnet4

w/o weight suppression
w/o knowledge distillation
SteppingNet

In
fe

re
nc

e
ac

cu
ra

cy
 (

%
)

50

55

60

65

70

75

80

LeNet-5
Subnet1 Subnet2 Subnet3 Subnet4

Fig. 8: Accuracy comparison with and without suppression of weight
update and knowledge distillation.

expansion ratios do affect the accuracy of the subnets due to
more available subnet structures. The ratios that provide the
best overall accuracy were selected to generate the results in
Table I.

During the construction of subnets, we suppressed the up-
date of weights in smaller subnets to avoid accuracy loss when
larger subnets were trained, as described in Section III-A2.
After subnet construction, we adopted knowledge distillation
to retrain the subnets. To demonstrate the effectiveness of
these techniques, we compared the inference accuracy with
these techniques disabled individually. The results are shown
in Figure 8. According to this figure, both weight update sup-
pression and knowledge distillation contribute to the inference
accuracy. When these two techniques are combined, inference
accuracy of many subnets, especially the smaller ones, can be
enhanced. For larger subnets, these techniques may interfere
with each other and lead to slight accuracy fluctuation, but the
overall accuracy still stays relatively stable.
V. Conclusion

In this paper, we have proposed a design scheme, called
SteppingNet, for neural networks executed on resource-
constrained and resource-varying platforms. SteppingNet con-
structs a series of subnets with different numbers of MAC
operations and the intermediate results of smaller subnets
in SteppingNet can be reused directly in subsequent larger
subnets. Experimental results demonstrated that SteppingNet
outperforms state-of-the-art work in inference accuracy under
the same limit of computational resources.
References

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE
Conf. Comput. Vis. Patt. Recog. (CVPR), 2016.

[2] J. Kocić, N. Jovičić, and V. Drndarević, “An end-to-end deep neural network for autonomous
driving designed for embedded automotive platforms,” Sensors, vol. 19, no. 9, 2019.

[3] S.-C. Lin, Y. Zhang, C.-H. Hsu, M. Skach, M. E. Haque, L. Tang, and J. Mars, “The architectural
implications of autonomous driving: Constraints and acceleration,” in International Conference
on Architectural Support for Programming Languages and Operating Systems, 2018.

[4] S. C. Jha, A. T. Koc, R. Vannithamby, and M. Torlak, “Adaptive DRX configuration to optimize
device power saving and latency of mobile applications over LTE advanced network,” in IEEE Int.
Conf. on Comm., 2013.

[5] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and
H. Adam, “MobileNets: Efficient convolutional neural networks for mobile vision applications,”
CoRR, vol. abs/1704.04861, 2017.

[6] A. Howard, A. Zhmoginov, L.-C. Chen, M. Sandler, and M. Zhu, “Inverted residuals and linear
bottlenecks: Mobile networks for classification, detection and segmentation,” in IEEE Conf.
Comput. Vis. Patt. Recog. (CVPR), 2018.

[7] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An extremely efficient convolutional neural
network for mobile devices,” CoRR, vol. abs/1707.01083, 2017.

[8] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once-for-All: Train one network and specilize it
for efficient deployment,” in Int. Conf. Learn. Repr. (ICLR), 2020.

[9] E. Kim, C. Ahn, and S. Oh, “NestedNet: Learning nested sparse structures in deep neural
networks,” in IEEE Conf. Comput. Vis. Patt. Recog. (CVPR), 2018.

[10] J. Yu, L. Yang, N. Xu, J. Yang, and T. Huang, “Slimmable neural networks,” in Int. Conf. Learn.
Repr. (ICLR), 2019.

[11] J. Yu and T. Huang, “Universally slimmable networks and improved training techniques,” in
IEEE/CVF Int. Conf. Comp. Vision (ICCV), 2019.

[12] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, and K. Q. Weinberger, “Multi-scale dense
networks for resource efficient image classification,” in ICLR, 2018.

[13] T. Vu, M. Eder, T. Price, and J.-M. Frahm, “Any-width networks,” in IEEE Conf. Comput. Vis.
Patt. Recog. (CVPR), 2020.

[14] S. Han, H. Mao, and W. J. Dally, “Deep Compression: Compressing deep neural network with
pruning, trained quantization and huffman coding,” in Int. Conf. Learn. Repr. (ICLR), 2016.

[15] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual learning,” in IEEE Conf. Comput.
Vis. Patt. Recog. (CVPR), 2018.

[16] J. M. Joyce, Kullback-Leibler Divergence. Springer Berlin Heidelberg, 2011.

	I Introduction
	II Background and Motivation
	III Construction and Training of SteppingNet
	III-A Constructing subnets of SteppingNet by neuron assignment
	III-A1 Structural construction of subnets
	III-A2 Importance evaluation for neuron reallocation

	III-B Retraining subnets with knowledge distillation

	IV Experimental Results
	V Conclusion
	References

