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Abstract—The migration of computation to the cloud has
raised concerns regarding the security and privacy of sensitive
data, as their need to be decrypted before processing, renders
them susceptible to potential breaches. Fully Homomorphic
Encryption (FHE) serves as a countermeasure to this issue by
enabling computation to be executed directly on encrypted data.
Nevertheless, the execution of FHE is orders of magnitude slower
compared to unencrypted computation, thereby impeding its
practicality and adoption. Therefore, enhancing the performance
of FHE is crucial for its implementation in real-world scenarios.
In this study, we elaborate on our endeavors to design, implement,
fabricate, and post-silicon validate CoFHEE, a co-processor for
low-level polynomial operations targeting Fully Homomorphic
Encryption execution. With a compact design area of 12mm2,
CoFHEE features ASIC implementations of fundamental polyno-
mial operations, including polynomial addition and subtraction,
Hadamard product, and Number Theoretic Transform, which
underlie most higher-level FHE primitives. CoFHEE is capable
of natively supporting polynomial degrees of up to n = 214 with
a coefficient size of 128 bits, and has been fabricated and silicon-
verified using 55nm CMOS technology. To evaluate it, we conduct
performance and power experiments on our chip, and compare
it to state-of-the-art software implementations and other ASIC
designs.

Index Terms—Data privacy, Encrypted computation, Fully
Homomorphic Encryption, Co-processor, ASIC

I. INTRODUCTION

The proliferation of cloud services has intensified the user
dependency on outsourced computation. While standard en-
cryption schemes like RSA and AES protect data in-transit
and data at-rest, they cannot protect data in-use, since they
require data decryption before processing; thus, sensitive data
is exposed during computation. High-profile attacks in cloud
services [1] have shown that access control is not sufficient.
The advent of Fully Homomorphic Encryption (FHE) in 2009
[2] came as a solution for the problem of data in-use as it
enables computation to be performed directly in the encrypted
domain without the need for decryption.

Although promising from a security and privacy standpoint,
FHE is multiple orders of magnitude slower than unencrypted
computation, a characteristic that hinders its adoption in the
industry. Much progress has been done in the last decade
through improvements in FHE schemes and their software im-
plementation. However, software-only performance improve-
ment of FHE computation is still not sufficient for the majority
of applications. In recent years, hardware acceleration of

encrypted computation is becoming a means to improve its
practicality [3], [4], [5]. Several works have been proposed
using GPUs [6] and FPGAs [7] for FHE acceleration. Fur-
thermore, ASIC accelerator protypes demonstrated significant
speedups compared to software solutions [8] [9]. To the best
of our knowledge, however, there is no fabricated and silicon
proven ASIC design supporting FHE computation.

FHE computation operations can be broadly characterized
in two levels: High-level ones, such as key switching and
bootstrapping, and low-level, such as polynomial addition
and multiplication. All high-level FHE primitives are realized
using low-level ones. Recent work [10] has shown that a
prototype of an ASIC FHE accelerator which includes also
high level operations exceeds 150mm2 (GF12/14) in size,
being a shuttle run which can eventually cost many hundreds
of thousands of dollars. Therefore, in order to produce a real
chip, we need to constrain the design to focus on acceleration
of the low-level primitives only. Such a design will eventually
serve as a small component in a much bigger design, where
the larger design will mostly focus on data movement.
Contributions: Given a limited design area of 12mm2 avail-
able to us given budget constraints, we design an architecture
that accelerates the underlying polynomial computation, and
it is the base of most high-level FHE operations. This study
describes our process for designing, implementing, fabricating,
and validating CoFHEE, the first silicon-proven ASIC co-
processor for FHE. More specifically, our contributions are:

• We present the design and implementation of CoFHEE,
a specialized hardware architecture that accelerates low-
level operations of FHE

• We present a compact low power and wide tuning range
All Digital PLL (ADPLL), replacing a traditional PLL to
greatly reduce the silicon area occupied

• We perform all the physical design preparations to ac-
quire a physical implementation of CoFHEE, including
Floor Planning, Power Planning, Place and Route, and
Sign-off Analysis

• We fabricate CoFHEE using 55nm CMOS technology
from GlobalFoundries, utilizing a compact design area
of 12mm2. CoFHEE is capable of natively supporting
polynomial degrees of up to n = 214, with a maximum
native coefficient size of 128 bits

• In addition to the fabrication and implementation of
CoFHEE, we intend to open-source the Register Transfer
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Level (RTL) code of CoFHEE and its functional units,
which can serve as building blocks for future research and
development efforts in the design of Fully Homomorphic
Encryption (FHE) co-processors

II. PRELIMINARIES

A. Fully Homomorphic Encryption

Homomorphic encryption is a special type of encryption that
enables performing meaningful computations directly on en-
crypted data. It can be understood as the functional equivalent
of Eq. 1, where f(·) is a function over plaintexts and F (·) is its
equivalent over ciphertexts, Dk(·) and Ek(·) are respectively
the decryption and encryption functions for a given key k, and
R(·) is a function that provides randomness for Ek(·) from
ciphertexts ca and cb. Although functionally equivalent to Eq.
1, homomorphic encryption enables equivalent computation
on the encrypted domain without the need for any decryption
function during computation.

F (ca, cb) = Ek(f(Dk(ca), Dk(cb)), R(ca, cb)) (1)

While there are several types of homomorphic encryption,
Fully Homomorphic Encryption (FHE) possesses at least two
orthogonal homomorphic operations allowing any number of
arbitrary computations. FHE was introduced in 2009 [2] and
it is deemed as the ”holy grail” of cryptography. It has seen
much progress since its inception with the development of new
encryption schemes such as BFV [11], BGV [12], CGGI [13],
and CKKS [14].

B. BFV Encryption Scheme

The Brakerski/Fan-Vercauteren (BFV) scheme is an FHE
scheme based on the Ring-Learning With Errors (RLWE)
problem [15]. It works over two polynomial rings, one for
the plaintext space and another for the ciphertext space. The
plaintext space is defined over the polynomial ring P =
Zt[x]/(x

n + 1), while the ciphertext space in defined over
C = Zq[x]/(x

n+1), where n is the polynomial degree, and t,
q, and xn + 1 are the plaintext, ciphertext, and polynomial
moduli, respectively. BFV is supported by several libraries
and frameworks, such as ALCHEMY [16], Cingulata [17],
E3 [18], nGraph-HE2 [19], Palisade [20], Ramparts [21], and
SEAL [22], as well as methods to improve computation speed
by combining it with other FHE schemes [23].

C. Ciphertext Multiplication

The Homomorphic Encryption Security Standard defines
the basic primitives of BFV [24]. Out of those primitives,
the homomorphic multiplication of ciphertexts (EvalMult)
is the slowest operation, and therefore, the main candidate
for hardware acceleration. In order to understand ciphertext
multiplication, we first need to understand encryption. Let
m be a plaintext in the plaintext space (m ∈ P), kp =
(kp1, kp2) be an encryption key in the ciphertext space C, and
c = (c1, c2) ∈ C be an encryption of m with key kp; the
encryption function E(kp,m) → c defines a map from P to
C. The ciphertext c is composed of two polynomials c1 and

c2, which are computed according to Eqs. 2 and 3, where
u is a random polynomial from the set {−1, 0, 1}, e1 and
e2 are small random polynomials from a discrete Gaussian
distribution, and ∆ = ⌊q/t⌋ is a scaling factor.

c1 = kp1 · u+ e1 +∆m mod q (2)
c2 = kp2 · u+ e2 mod q (3)

The ciphertext multiplication cc = ca ·cb ⇔ (cc1, cc2, cc3) =
(ca1, ca2) · (cb1, cb2) is calculated by evaluating the tensor in
Eq. 4. The term t/q is a scaling factor, while the remaining
operations are polynomial multiplications and additions over
rings. The polynomial addition is a simple operation with
linear time complexity. However, a naive implementation of
polynomial multiplication has quadratic time complexity. In
addition, there is need for polynomial reduction after the
polynomial multiplication. More efficient algorithms using
the Number Theoretic Transform (NTT) with nega-cyclic
convolutions have been proposed [25], [26], reducing the
time complexity to O(n log n) and avoiding the need for
polynomial reduction over the polynomial modulus xn + 1.

(cc1, cc2, cc3) =
(⌊ t(ca1 · cb1)

q

⌉
q
,⌊ t(ca1 · cb2 + ca2 · cb1)

q

⌉
q
,
⌊ t(ca2 · cb2)

q

⌉
q

) (4)

D. Residue Number System

As one can see, the coefficient size log q is usually larger
than 64 bits, making computations on 64-bit processors inef-
ficient. To cope with that, q is usually broken into smaller qi
using the Residue Number System (RNS). In RNS, a large
number is represented by its value modulo several coprime
moduli following the Chinese Remainder Theorem. This effec-
tively breaks each polynomial into several polynomials with
smaller coefficients. In the case of ciphertexts, each pair of
polynomials (c1, c2) is broken into several pair of polyno-
mials (c11 , c21), (c12 , c22), (c13 , c23), ..., called towers. During
ciphertext multiplication, each tower operates independently,
and Eq. 4 must be applied to all towers individually.

III. COFHEE DESIGN FLOW OVERVIEW

A. Ciphertext Multiplication

CoFHEE’s architecture is illustrated in Figure 1. The most
computationally intense low-level FHE operation is the cipher-
text multiplication. Consequently, the main objective of the
CoFHEE co-processor is native support for modular opera-
tions, which is essential for accelerating FHE cryptosystems.
CoFHEE is designed to natively support polynomial degrees
of up to 214 (and larger degrees for additional communication
costs) in powers of two and modulus size up to 128 bits, while
it is optimized to work with a polynomial degree n = 213.
These values offer a trade-off between maximizing perfor-
mance of FHE applications [27], [28], [29] and minimizing
CoFHEE’s area.
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CoFHEE’s design is constrained by a limited chip area of
12mm2 and the use of 55nm CMOS technology from Global-
Foundries. Given the aforementioned limitations and the com-
mon encryption parameters used in FHE applications (Section
III-A), we have determined that the maximum polynomial
degree that can be supported on the chip is n = 213, with
coefficient sizes of 128 bits. This is the largest coefficient size
that can be accommodated within the design area constraints.
In the case of n = 214, extra communication is required. To
achieve this goal, we have developed a system architecture
that includes 1 Processing Element (PE), 3 dual-port and 5
single-port SRAMs. This configuration of units allows for full
on-chip ciphertext multiplication with an Initiation Interval
(II) of 1, as the dual-port SRAMs enable the simultaneous
fetching and storing of 2 different operands in the same
cycle. Moreover, we employed dual-port memory instead of
having two single-port memories, because this choice helped
in reducing memory layout complexity to load and store
multiplier operands/results at the same time, mainly during
NTT. It also helped in reducing area (since the area of a
single dual-port memory is smaller than that of two single-
port memories of the same size) and simplified controller
design as both the operands/results required for the PE can be
loaded/stored from/to the same memory. As in other works,
dual-port memory is not specifically mentioned, we assume
they use single-port SRAMs. Hence larger memory layout
complexity for NTT. The majority of the available chip area is
occupied by the SRAMs, with the remaining space allocated
for the PEs, Multiplier Data Mover and Controller (MDMC),
Direct Memory Access controller (DMA), General Purpose
Configuration registers (GPCFG), and an ARM Cortex-M0
processor with its own memory. Additionally, the chip operates
at a target frequency of 250 MHz, which is limited by the
memory latency, and has two voltage supplies, 3.3 V for
the IO pads and 1.2 V for the logic core. Table II shows
a representative subset of the 35 Configuration Registers in
CoFHEE. The configuration registers in CoFHEE are mapped
to the memory range of 0x4002 0000 – 0x4002 FFFF, and
the chip’s memory base address follows the ARM Cortex M
series memory map convention for memory and peripheral
addresses. As mentioned before, our on-chip memory includes
both dual-port and single-port memory. Dual-port memories
are managed by assigning different base addresses to each
port, treating them as two distinct address spaces at the bus
level. The addition of dual-port memories helped in reducing
memory layout complexity especially while loading/storing in-
termediate results for NTT. It also helped in simpler controller
design, especially while performing NTT.

There were other design challenges based on feedback from
the physical design, on how to optimally combine multiple
banks of memory to form a single logical bank that gives a
good floorplan for the chip. As all the other works like F1,
Craterlake, etc. are based on simulated results, and not actual
fabrication, such optimization challenges are overlooked.

B. Execution & Operations
CoFHEE supports a range of operations that can be

broadly classified into two categories: compute and memory

Fig. 1: CoFHEE Top Level Architecture

Fig. 2: Execution flow of operations

operations. Compute operations include the Number Theo-
retic Transform (NTT), Inverse Number Theoretic Transform
(INTT), and a set of pointwise operations such as normal and
modular multiplication, modular squaring, modular multipli-
cation by a constant, and modular addition and subtraction.
CoFHEE provides an Instruction Set Architecture (ISA) to
execute any of these operations when the relevant polynomials
are loaded into the memory. On the other hand, memory
operations include the replication or transfer of data from
one memory to another. While compute operations run in
a sequential manner, memory operations can be run simul-
taneously, which allows for concurrent execution of both
types of operations. The operations supported by CoFHEE are
summarized in Table I.

Algorithms: Regarding polynomial multiplication, CoFHEE
implements and operates using the Cooley-Tukey NTT algo-
rithm [25]. CoFHEE also handles a ciphertext multiplication
algorithm. Two ciphertexts (polynomial pairs) are passed as
input. The ciphertext polynomials are multiplied following
Eq. 4. Each polynomial is used twice in polynomial multi-
plications. Nevertheless, we only need one NTT operation per
polynomial as they can stay in the NTT domain during the
polynomial multiplication and addition. At the end, we can
convert back from the NTT domain using the iNTT operation.
The entire ciphertext multiplication in CoFHEE utilizes 4
NTTs, 4 Hadamard products, 1 pointwise addition, and 3
iNTTs.

Regarding execution, when executing a command such



4

as NTT, an internal state machine within the MDMC is
activated. This state machine is responsible for managing data
transfers: specifically, it relocates data from the memory to the
processing element (PE) and subsequently transfers the PE’s
computation results back to the memory.

The state machine also handles the incrementation of ad-
dresses for both operands and twiddle factors, although the
twiddle factors themselves don’t undergo an address incre-
ment. The decision regarding how the address is incremented
is contingent upon the current stage of the NTT operation.
Once a stage is finalized, the MDMC processes the out-
put, subsequently initiating the subsequent stage. Once the
computational operation reaches completion, an interrupt is
generated, prompting the command first-in-first-out (FIFO)
buffer to issue the succeeding instruction. Figure 2 provides
an illustration of the execution flow of the proposed method.

C. CoFHEE API
CoFHEE exposes assembly-like instructions for the oper-

ations listed in Table I. Composed operations such as poly-
nomial multiplication or ciphertext multiplication build on
top of the atomic ones. CoFHEE’s design is optimized for
n = 213. Nevertheless, it supports any n, assuming that n is a
power of two. It can perform NTT, polynomial multiplications,
and ciphertext multiplications on chip with II = 1, without
requiring back-and-forth communication to the host during
the computation for any n ≤ 213. In the case of n ≥ 214,
CoFHEE can perform NTT on chip with II = 2, as single-
port memories need to be used for computation. CoFHEE is
also capable of supporting larger polynomials, however, while
polynomial multiplications and ciphertext multiplications are
possible, they require back-and-forth data movement with the
host, as it is not possible to fit all data at once on chip.
For larger polynomials the communication costs increase, and
the NTT operation becomes more expensive. Nevertheless
CoFHEE can support large polynomials, even if they are not
commonly used in FHE applications.

The maximum coefficient size supported by CoFHEE is 128
bits. Additions and subtractions take 1 cycle and multiplication
takes 4 cycles, independently of the coefficient size. Coeffi-
cients larger than 128 bits must be broken using RNS, similarly
to how it is done in software, to fit in CoFHEE.

We chose a coefficient size of 128 bits for specific reasons
tied to the intricacies and computational burdens associated
with Residue Number System (RNS) when breaking down
computations into multiple segments. While RNS enables the
split of a large modulus polynomial into several smaller mod-
ulus towers or limbs, increasing the number of RNS towers
also elevates the complexity of computation by introducing
additional overheads. Accommodating a larger modulus size
allows for fewer RNS towers, resulting in a less expensive
execution. Moreover, by utilizing a 128-bit coefficient size, we
enable the seamless integration of an efficient key-switching
mechanism in future endeavors. It’s important to note that
key-switching exhibits significantly improved efficiency when
operating on 128 bits compared to 32 or 64 bits. This strategic
planning ensures a smooth incorporation of key-switching in
future developments.

Command Inputs Operations
n [x⃗] [y⃗] [ω⃗] q n−1 [⃗t] δ ↱ ↣

NTT • • • • • Performs NTT on x⃗.

iNTT • • • • • • Performs inverse NTT
on x⃗.

PMODADD • • • • • Pointwise modular
addition of x⃗ and y⃗.

PMODMUL • • • • • Pointwise mod. multi-
plication of x⃗ and y⃗.

PMODSQR • • • • Pointwise modular
squaring of x⃗.

PMODSUB • • • • • Pointwise mod. sub-
traction of x⃗ and y⃗.

CMODMUL • • • • Mod. multiplication
of x⃗ by a constant.

PMUL • • • • Pointwise multiplica-
tion of x⃗ and y⃗.

MEMCPY • • • Memory-to-memory
data transfer.

MEMCPYR • • • Memory data transfer
in bit-reverse.

TABLE I: CoFHEE’s operations. [·]: memory address function,
n: polynomial degree, x⃗ and y⃗: polynomials, ω⃗: twiddle
factors, q: modulus, n−1: inverse of n, t⃗: temporary values,
δ: length (in words), ↱: source address, ↣: output/destination
address

Register Name Description Bit
Size

UARTMTX PAD CTL IO pad control for primary UART TX 32
UARTMRX PAD CTL IO pad control for primary UART RX 32
UARTSTX PAD CTL IO pad control for secondary UART TX 32
SPIMOSI PAD CTL SPI data in pad control 32
SPIMISO PAD CTL SPI data out pad control 32
SPICLK PAD CTL SPI clock pad control 32
SPICSN PAD CTL SPI chip select pad control 32
HOSTIRQ PAD CTL IO pad control for Host Interrupt 32
UARTM BAUD CTL Baud control for primary UART 32
UARTS BAUD CTL Baud control for secondary UART 32
UARTM CTL Primary UART control 32
UARTS CTL Secondary UART control 32
SIGNATURE Stores Chip ID 32
Q Modulus q 128
N Polynomial degree n 128
INV POLYDEG n−1 mod q 128
BARRETTCTL1 barrettk = 2 · logn 32
BARRETTCTL2 barrett constant = 2barrettk/q 160
FHECTL1 Command FIFO select and n 32
FHECTL2 Trigger bits for different commands 32
FHECTL3 Select or bypass PLL clock 32
PLLCTL Control bits required for the PLL 32
COMMANDFIFO Trigger bits for different commands 32
DBG REG Debug register 32

TABLE II: Subset of CoFHEE Configuration Registers.

D. Clock frequency

CoFHEE’s frequency is defined by the critical path of the
design as well as the technology node targeted. The critical
path can be either in the computation unit due to a complex
data path or it can be in the memory as a consequence of
memory read latency. While the former can be reduced with
pipelining, memory read latency is fixed for the technology
node and memory size used. As expected, CoFHEE’s critical
path is in the memory read for loading data from the memory
to the computation unit. For the technology node targeted,
i.e., Globalfoundries (GF) 55nm low power enhanced (LPE)
process, the memory read path is around 4ns, which translates
to a clock frequency of 250MHz.

E. Processing Element

CoFHEE comprises a singular modular multiplier, along
with modular adder and subtractor units. Furthermore, the pro-



5

cessing element encompasses a series of multiplexers (MUXs)
designed to direct operands and intermediate data, depending
on whether the operation involves multiplication, addition, or
subtraction within the utilized butterfly structure. This enables
the processing element to function as a versatile unit for
NTT and iNTT operations, as well as element-wise additions,
subtractions, and multiplications.

Surrounding the processing element, we have implemented
a wrapping logic that orchestrates the movement of data from
memory to the processing element, tailored to the specific
operation at hand, whether it’s NTT, iNTT, or element-wise
operations. In the context of NTT and iNTT, the processing
element essentially serves as a singular radix-2 butterfly NTT
unit.

CoFHEE’s PE supports modular multiplication, modular
addition, and modular subtraction. Each operation has an
II = 1. Modular addition and subtraction have a latency
of one clock cycle, while modular multiplication completes
in five clock cycles. In contrast to the state-of-the-art that
uses Montgomery multipliers, CoFHEE employs a Barrett
multiplier to implement multiplication and modular reduction
due to its pipelining capabilities [30]. The pipeline depth
is chosen such that the critical path matches the memory
read latency. Our PE operates in four distinct modes defined
by the mode selection input. The operations modes are: (1)
Modular Multiplication, (2) Modular Addition, (3) Modular
Subtraction, and (4) Butterfly operation. The butterfly opera-
tion is an atomic computational unit of NTT. It is executed
by performing modular multiplication followed by modular
addition and modular subtraction. We implement the butterfly
operation using radix 2, and acquire a PE that occupies 6%
of the design area.

F. NTT considerations

For a 2× performance improvement of NTT, the input
and output polynomials are stored in dual-port memories. In
addition, there is a third dual-port memory to store the next
polynomial to go under NTT. If the next polynomial is in
a single-port memory, DMA is used to transfer polynomial
coefficients to the available dual-port memory while NTT
operates on the current polynomial. This is possible since
the bus architecture allows the MDMC, DMA, and ARM
CM0 to access memories in parallel. Once NTT completes,
the dual-port memories switch tasks; the one containing the
next polynomial participates in the following NTT, while the
memory containing the output uses DMA to offload the result
to a single-port memory and load the next polynomial for NTT.
This process happens transparently in the background without
performance degradation due to data movement.

G. Internal Data Flow

1) Interconnect: We implement a parameterized Advanced
High-Performance Bus (AHB) lite interconnect [31] as it
supports the required bus transfer operations and has low
area utilization. We opted for a lightweight AHB-Lite bus
which has less area, latency, and signal counts (helps in less
congestion at the backend). F1 [10], on the contrary, uses three

16x16 512-byte cross bars, each having an area of 3.33mm2 in
a 12nm technology node. CoFHEE’s bus area is 0.07mm2 in
55nm technology node (0.008192mm2 after applying the 55-
to-14nm scaling factor) and it is a 10x11-152 byte crossbar.
CoFHEE requires single memory transfers as well as burst
memory operations, with the data sizes ranging from 32 to
128 bits. Our configuration registers map to the 0x4002 0000
– 0x4002 FFFF memory range. In our design, the memory
base address follows the ARM Cortex M series memory map
convention for memory and peripheral addresses.

2) Multiplier Data Mover and Controller (MDMC): The
sequence of commands to be executed is stored in the com-
mand FIFO, which decodes the command and triggers the
MDMC for the requested operation. The FIFO also provides
the memory base addresses of input operands and output re-
sult. When running computation-based operations, the MDMC
fetches data from memory and forwards to the PE on every
clock cycle until the operation is completed. Once the data
is processed, the MDMC stores the data back to the output
memory. In order to achieve an II = 1 for each butterfly
operation, we store the input and output polynomials in dual-
port memories. Thus, we can fetch two polynomial coefficients
from one memory (dual-port) and a twiddle factor from
another (single-port) in a single clock cycle. After computing
the butterfly operation, the MDMC stores the two outputs in
the output memory (dual-port). Once an NTT stage completes,
the output memory acts as input memory and vice-versa, until
the NTT/iNTT is finalized.

H. External Interfaces

CoFHEE provides SPI and UART interfaces for external
host communication. These interfaces are used for loading
polynomials, triggering the required operation and reading
back the result. SPI and UART are chosen mainly for their
simplicity in implementation as well as the ability to com-
municate from an external PC. One can always replace these
interfaces with faster ones such as PCI-express or HSIC (High-
Speed Inter-Chip). Other IOs in CoFHEE are clock, reset,
voltage supplies, bias voltages, bias currents, PLL controls,
and debugging IOs.

I. Execution modes

There are three ways to execute the basic operations sup-
ported by CoFHEE (Table I). The simplest option is for the
external host to directly trigger the MDMC to perform the
commands through a configuration register write. This mode
is slow as there are delays imposed by the communication
interface when writing to the configuration register. A second
possibility is to use the command FIFO, where the external
host preloads the sequence of commands to be executed and
waits for an interrupt issued by CoFHEE signaling that the
queue is empty. As soon as the first command is written
to the queue, the command FIFO sends it to the MDMC.
The MDMC starts the operation and once it completes, it
sends a signal to the command FIFO. The process repeats
until all commands have been executed. The command FIFO
guarantees the execution of a single command at a time
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in a predefined order. Thus, it requires less control logic
and avoids complicated out-of-order executions. In addition,
the command FIFO gives the flexibility to execute different
complex operations as combinations of basic instructions. We
define the length of the queue to be 32 commands, as it is
more than sufficient for our target applications. The host can
continuously load more commands while the queue is not
full. Lastly, for a faster and flexible sequencing and execution
of commands, we introduce a third mode, which utilizes
a 32-bit ARM Cortex M0 (CM0) along with a dedicated
instruction memory. In this mode, the processor is used instead
of the command FIFO. One can write complex subroutines
and sequence of operations in embedded C, then compile and
preload it in CM0’s instruction memory for later execution.

J. Pre-silicon verification

We verified the functionality of our RTL design using both
simulation and FPGA-based validation. The simulation was
performed using Synopsys VCS at the top-level. A python
script is used to calculate the modulus following the equation
q = 2k · n + 1, where k ≥ 1 is an arbitrary constant. In ad-
dition, the script finds twiddle factors, generate random input
polynomial coefficients, and calculate expected results. We use
random coefficient values modulo q for our test polynomials
since the 128-bit operand range cannot be exhaustively tested.
These values are then ported to the verilog testbench, where
they are loaded and the result from the design is compared
against the expected result. Moreover, for our FPGA design,
we implemented a scaled-down version of CoFHEE, as n =
213 is incompatible with the available resources of our FPGAs.
Specifically, the maximum polynomial degree that could be
supported on a Digilent Nexys 4 is n = 212 running at 10
MHz.

K. Synthesis

CoFHEE’s RTL code is synthesized using a 55nm standard
cell library from GlobalFoundries and a clock constraint of
250MHz. SPI IO timing is constrained to meet 50MHz of in-
terface speed. There is no specific IO timing constraint set for
UART as it is an asynchronous interface. Following standard
practices, the standard cell library used for synthesis was the
one characterized for the worst voltage (1.08V), temperature
(125C), resistance, and capacitance. Synthesizing with such
a library ensures that we can achieve the target frequency
in various operating conditions. For synthesis, we use the
Synopsys Design Compiler (DC). In Table VIII, we present the
post synthesis area and timing of the major CoFHEE blocks.
Other than memory, the largest design is the PE, followed
by the AHB and configuration registers. Post-synthesis, we
observe many blocks with critical timing path much higher
than the target clock period of 4ns. This is because synthesis
setup uses restricted standard cell library with no access to
faster library cells such as the ones with lower threshold
voltage Vt. As these paths are long combinational paths, they
easily meet timing in the backend, where all the standard
cell libraries are used. In this condition, paths starting from
memory become the critical path due to memory read latency

(around 3.1ns). We verified the functionality of our RTL
design using both simulation and FPGA-based validation.

IV. FUNCTIONAL UNITS

A. Modular Multiplier Unit

Modular multiplication involves normal multiplication fol-
lowed by a modular reduction of the product. There are few
popular ways to implement modular multipliers; interleaved
multiplier, Barrett multiplier, and Montgomery multiplier [32].
Barrett is selected for our implementation as there is no need
to transform the arguments, as required for Montgomery [30].

B. NTT Unit

The Number Theory Transform (NTT) is the generalized
Discrete Fourier Transform (DFT). It is an integral part of
FHE algorithms for accelerating polynomial multiplications
over finite fields. Without NTT, polynomial multiplications
have quadratic complexity O(n2). NTT converts polynomials
to a domain that reduces the complexity of polynomial multi-
plications to linear O(n). There are several algorithms for NTT
[25], [26]; CoFHEE implements the Cooley-Tukey algorithm
[25] as shown in Algorithm 1. Each of the log n stages of
NTT computes n/2 butterfly operations. As discussed earleir,
the butterfly operation is an atomic computational unit of the
NTT. The operation is comprised of the primitive operations of
modular multiplication, modular addition, and finally, modular
subtraction.

C. Polynomial Multiplication Unit

Polynomial multiplication over rings is the main operation
in ciphertext multiplication for RLWE-based FHE. This op-
eration can be divided into two parts: (1) Multiplication and
(2) Reduction. 1) For the first part, we use NTT to reduce
the complexity of the operation from O(n2) to O(n log n),
as discussed in Section IV-B. 2) The second part reduces the
polynomial over the polynomial modulus. This operation is
avoided using Negative Wrapped Convolution (NWC). NWC
requires the 2nth primitive root of unity and reduces the
polynomial degree to n − 1 over the polynomial xn + 1.
Algorithm 2 describes the polynomial multiplication operation
supported by CoFHEE.

D. Ciphertext Multiplication

The ciphertext multiplication is the slowest operation in
FHE computation. We discuss it in detail in Section III-A.
Algorithm 3 describes this operation as handled by CoFHEE.
Two ciphertexts (polynomial pairs) are passed as input. The
ciphertext polynomials are multiplied following Eq. 4. Each
polynomial is used twice in polynomial multiplications. Nev-
ertheless, we only need one NTT operation per polynomial
as they can stay in the NTT domain during the polynomial
multiplication and addition. At the end, we can convert back
from the NTT domain using the iNTT operation. The entire
ciphertext multiplication in CoFHEE utilizes 4 NTT opera-
tions, 4 Hadamard products, 1 pointwise addition, and 3 iNTT
operations.
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Algorithm 1 Number Theory Transform

Input: polynomial (x⃗)
Input: roots of unity (ω⃗)
Input: modulus (q)
Output: polynomial (x⃗)

1: idx = 0
2: for i← n/2; i >= 2;i = i >> 1 do
3: for j ← 0; j < n/2;j = j + i do
4: twiddle = ω⃗[idx++]
5: for k ← j; k < j + i; k = k + 1 do
6: m = twiddle * x⃗[k+i]
7: m = reduceq(m)
8: x⃗[k+i] = reduceq(x⃗[k] - m)
9: x⃗[k] = reduceq(x⃗[k] + m)

10: end for
11: end for
12: end for

Algorithm 2 Polynomial Multiplication

Input: A(x), B(x) ∈ Zq[x]/x
n + 1

Input: nth roots of unity ω⃗ ∈ Zq

Input: 2nth roots of unity ψ⃗ ∈ Zq

Output: Y (x) ∈ Zq[x]/x
n + 1

� Y (x) = A(x)×B(x)

1: A′(x) = NTT((A(x) • ψ⃗), ω⃗)
2: B′(x) = NTT((B(x) • ψ⃗), ω⃗)
3: Y ′(x) = A′(x) • B′(x)
4: Y (x) = iNTT((Y ′(x) • ψ⃗−1), ω⃗)
5: return Y (x)

Algorithm 3 Ciphertext Multiplication

Input: (A0(x), A1(x)) ∈ Zq[x]/x
n + 1

Input: (B0(x), B1(x)) ∈ Zq[x]/x
n + 1

Input: nth roots of unity ω⃗ ∈ Zq

Input: 2nth roots of unity ψ⃗ ∈ Zq

Output: Yi(x) ∈ Zq[x]/x
n + 1 ∀i ∈ [0, 2]

� Y0(x) = A0(x)×B0(x)
� Y1(x) = A0(x)×B1(x) +A1(x)×B0(x)
� Y2(x) = A1(x)×B1(x)

1: B′
0(x) = NTT((B0(x) • ψ⃗), ω⃗)

2: A′
0(x) = NTT((A0(x) • ψ⃗), ω⃗)

3: Y ′
0 (x) = A′

0(x) • B′
0(x)

4: Y0(x) = iNTT((Y ′
0 (x) • ψ⃗−1), ω⃗)

5: B′
1(x) = NTT((B1(x) • ψ⃗), ω⃗)

6: Y ′
01(x) = A′

0(x) • B′
1(x)

7: A′
1(x) = NTT((A1(x) • ψ⃗), ω⃗)

8: Y ′
2 (x) = A′

1(x) • B′
1(x)

9: Y2(x) = iNTT((Y ′
2 (x) • ψ⃗−1), ω⃗)

10: Y ′
10(x) = A′

1(x) • B′
0(x)

11: Y ′
1 (x) = Y ′

01(x) + Y ′
10(x)

12: Y1(x) = iNTT((Y ′
1 (x) • ψ⃗−1), ω⃗)

13: return (Y0(x), Y1(x), Y2(x))

V. PHYSICAL DESIGN

This section covers CoFHEE’s physical design aspects.
Table VI summarizes the stages and EDA tools utilized.
CoFHEE’s total die area, including the seal ring, is 15mm2.
We also note that we have implemented the use of inline

Parameter Initial Place CTS Route
Standard cells 225,797 376,853 378,957 379,921
Sequential cells 18,686 18,686 18,686 18,686
Buffer/Inverter cells 22,561 89,072 91,372 92,379
Std. Cell Utilization 45% 54% 56.5% 59%
Signal nets 257,856 398,340 401,407 401,510
HVT cells 100% 13.75% 13.5% 13.4%
RVT cells 0% 17% 12.1% 12%
LVT cells 0% 69.25% 74.4% 74.6%

TABLE III: Design statistics through PnR

(a) Floorplan (b) Power Network (c) Clock Network

(d) Power Pad (e) Power Connection (f) Module placement

Fig. 3: Backend Results

pads placed on all four sides of the chip. Table IX provides
information about the signal and power/ground pads, obtained
from Synopsys Design Compiler. Table IV shows the physical
parameters after place and route multiple iterations.

A. Floor Planning

The die dimensions are 3660µm× 3842µm. Fig. 3a shows
the design’s floorplan, which focused on utilizing the maxi-
mum available silicon area. The overlapping regions within
the corner pads are empty, thus they do not cause any
DRC/LVS concerns. At the same time, they maximize the
available area for logic gates or memories placement. The
Phase-Locked Loop (PLL) is placed at the upper right corner
of the chip. IO pads dedicated for the PLL are also placed
in the same corner. Overall, there are 68 memory instances,
out of which 48 (16x2096) are dual-port, and 16 (32x8192)
plus 4 (32x4096) are single-port. There are 47 digital IO
pads including power pads. There are two pads for VDD
(core power supply), VSS (core ground), and IO power/ground
(DVDD/DVSS). Furthermore, in this stage we place edge cells
at the boundaries, and well tap cells throughout the layout in
a staggered fashion (according to the foundry specifications)
to avoid latchup violations.

B. Power Planning

In this section we discuss our efforts regarding power plan-
ning. Our power network consists of four pairs of VDD/VSS
rings around the core region. Out of the eight metal layers, the
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Parameter Value
IU (Initial Utilization) 45 %
FU (Final Utilization) 59 %
MA (Macro Area) 8,941,959 µm2

HIO (IO PAD Height) 120 µm
CIO (Core to IO spacing) 10 µm
A (Aspect ratio) 1.05
CA (std cell Area) 1,963,585 µm2

CW (Core Width) 3400 µm
CH (Core Height) 3582 µm
DW (Die Width) 3660 µm
DH (Die Height) 3842 µm

TABLE IV: Layout physical parameters

top two (BA and BB) are used for rings. Furthermore, all the
power and ground pads are connected to the aforementioned
rings through multiple connections, as shown in Fig. 3d.
Multiple power and ground straps in layers BA, BB, M5,
and M4 run over the entire core region at different pitches of
30µm (BA/BB), and 50µm (M4/M5). M1 rails are connected
directly to M4 straps through stacked vias. Fig. 3b provides
a high-level illustration of our power/ground network, which
includes power rings, straps, standard cell power rails, and
connections to pad and memory pins. The power straps are
connected to each other in the power network until M4, which
delivers power to the standard cell rails through stacked vias.
The connection, in Fig. 3e, is done, so that power straps in
M2 are avoided, else there can be standard cell pin access
issues. Optimal pitches were selected after multiple iterations
of analyzing the routing congestion, IR drop and effective
resistance. As it is a memory dominant design, delivering
power in all the channels between the memories was another
challenge we faced. The flow was modified to ensure that every
such channel is delivered power and ground sufficiently, and
that the memory power ground pins run on top of them, on
layer M4. The connections to the memories power/ground pins
are made by dropping vias from M5 straps which run over
them.

C. Place and Route

The design is then taken through place and route. Placement
optimization is done in one slow and one typical corner.
No-buffering blockages are added in the narrow channels
between memories to prevent the placement of logic cells
in the channels, as placing them in the wrong location can
result in either timing, and congestion issues, or affect the
clock tree synthesis. Fig. 3f shows the module placement. Post
placement, the clock tree synthesis is done using standard rules
like double width and double spacing for the clock nets. In
addition, it is verified that clock buffers and inverters used are
of optimal drive strength, so that they don’t contribute much
to IR drop. Fig. 3c shows clock network routing, followed
by signal routing and post-route optimization. Redundant via
insertion is performed in order to improve yield, and decap
and standard cell fillers are inserted before streaming out GDS
from the IC compiler.

Table IX provides the details of clock tree QOR for the
main clock. The clock tree was built in the slow process corner

for around 18k sinks and achieved skew of 240ps with 2ns
latency. In Table VII, we present the percentage of redundant
vias for various via layers. We were able to achieve more than
98% conversion of single to multi-cut vias for the lower via
layers V1, V2, V3, V4, yet a lower percentage was achieved
for higher layers. In Table III, we present design statistics
over various stages in the place & route. We remark that
the standard cell count increases as the design moves from
initial to final routing stages, primarily due to buffers/inverters
inserted in the design to fix design rule violations, clock tree
synthesis, and timing issues. Our design started with 100%
HVT cells and ended up with 13.4%, as HVT cells were
swapped with RVT and LVT cells to address timing and DRV
fixes (Table III).

D. Sign-Off Analysis

The design GDS obtained from the IC compiler is merged
with the standard cell, memory, and IO pad GDS. The seal ring
is added on top, followed by the metal fill insertion procedure,
and the corresponding GDS is generated, which is then merged
with the design GDS to obtain the final GDS. The sign-off
DRC/LVS is then performed on this GDS using Cadence PVS.
The design parasitic extraction is done using STARRC-XT
and the resulting SPEF along with the design netlist is fed
to Synopsys Primetime-SI for static timing analysis. The final
DRC/LVS and timing clean GDS is then sent for fabrication.

E. PLL design

In this section we discuss our efforts regarding the design of
the PLL. Silicon area, power consumption, range of operation,
and timing uncertainty are among the metrics that dictate the
choices of a PLL architecture as well as implementation strate-
gies. For a given jitter performance, analog implementations
require a loop filter with a big capacitor making the overall
PLL size large. On the other hand, a digital PLL provides
an alternative with significantly smaller silicon area. A digital
implementation results in a low power implementation. In ad-
dition, a wide range of operation is essential to run the chip at
different frequencies. This enables reusing the PLL in different
designs, avoiding PLL redesign. In this work, a compact, low
power, and wide tuning range All Digital PLL (ADPLL) has
been implemented. The block diagram of the proposed ADPLL
is shown in Fig. 4a, while the layout is presented in Fig. 4b.
It is a dual-loop architecture with dedicated frequency and
phase-locking loops. The Frequency-Locking Loop (FLL) is a
feedback loop which forces the frequency difference between
the input signal and the oscillator output down to the capture
range of the phase-locking loop. Similarly, the Phase-Locking
Loop (PLL) forces the phase error between input signal and
the oscillator output to zero.

The capture range of the phase detector (PD) is a few per-
cent of the reference clock frequency which is much smaller
than the required tuning range of the ADPLL. Consequently, a
frequency-locking mechanism is required to pull the frequency
of the local oscillator close to the operating frequency such that
the PD with its narrow pull-in range can assume responsibility.
The choice of the frequency detector architecture used is based
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Algorithm Latency Power (mW )
(cc) (µs) avg. peak

n = 212

PolyMul 83,777 335.1 22.9 30.4
NTT 24,841 99.4 24.5 30.4
iNTT 29,468 117.9 19.9 27.2

n = 213

PolyMul 179,045 716.2 21.2 29.7
NTT 53,535 214.1 24.4 29.7
iNTT 62,770 251.1 18.3 23.9

TABLE V: CoFHEE performance for n =
{212, 213}

Stage Tool

Place and Route Synopsys
IC compiler

Interconnect Synopsys
parasitic extraction STAR-RCXT
Static timing Synopsys
analysis Prime-Time-SI
GDS merging and Cadence
layout modification Virtuoso
Physical Cadence PVS
verification System

TABLE VI: Stages and EDA tools.

Layer multi- total multi-
cut (#) (#) cut (%)

V1 21,659 21,945 98.70
V2 21,732 21,844 99.49
V3 21,991 22,035 99.80
V4 26,391 26,455 99.76
WT 2,438 2,450 99.51
WA 1,390 1,393 99.78

TABLE VII: Redundant via statistics

(a) Block diagram (b) Layout in GF 55nm

(c) Power Straps (d) Power Ring

Fig. 4: Proposed ADPLL design and additional Backend
Results

on the requirement that it should be easily interfaced with
digital loop filters and allow a wide range of operation. A
digitized Phase and Frequency Detector (PFD) with a Succes-
sive Approximation Register (SAR) algorithm [33][34][35] is
employed to generate the appropriate digital control word to
switch the required current value.

The phase-locking loop consists of a modified Alexander
(Bang-Bang) phase detector [36][37], and an all-digital loop
filter in order to detect the phase error and generate an
appropriate control signal. The main requirements on the
choice of the phase detector architecture originate from the
need to use an all-digital loop filter, as it is compact, can
easily be integrated with ASIC designs, and ported between
technology nodes. For these reasons, the phase detector should
generate outputs which enable a digital implementation. In
this design, a modified version of the widely used Bang-Bang
phase detector (BBPD) is proposed. BBPD, also known as the
early-late detection method, utilizes three data samples taken
by three consecutive clock edges to determine whether a data

transition is present or not, and if the clock leads or lags the
data. In the absence of data transitions, all three samples are
equal, and no action is taken.

The loop filters in the FLL and PLL produce respectively
digital control values from the instantaneous phase and fre-
quency error signals generated by the frequency and phase
detectors. The outputs of the loop filters are used to allow
the appropriate amount of supply current to the oscillator in
order to correct for possible frequency or phase errors. Since
the oscillator frequency is controlled by current switching, seg-
mented decoding is employed to avoid potential discontinuities
and glitches. This is achieved by implementing a combination
of binary and unary weighted current sources. To avoid any
conflict between the frequency and phase correcting loops, a
digital lock detector is used. We implement the ADPLL in
GF 55nm CMOS technology. It occupies an active area of
0.05mm2 and consumes 350µW from a supply of 1.1V .

F. Post-Silicon Validation

CoFHEE is packaged in a 48-pin QFN, and connects to
a breadboard via QFN to the DIP adapter for chip bring-
up and testing. For interfacing with a host computer, we use
a UMFT230XA development board that features an FTDI
chip for USB-to-UART conversion. The UMFT230XA board
provides a 3.3V supply for CoFHEE’s IO pad, as well as
a clock output which is used as reference clock. Moreover,
the required 1.2V supply was generated using a DC-DC ad-
justable step-down module that converts the 5V source of the
UMFT230XA board. In addition, a USB-to-UART breakout
is used to receive the computation complete signal from
CoFHEE. For the power measurement, we use a Tektronix
MSO 5204B oscilloscope with current probe. Our post-silicon
validation setup is shown in Fig. 5, and confirms that the
fabricated chip is fully functional.

VI. EXPERIMENTAL EVALUATION

A. Power and latency

We have measured the power consumption and latency for
several operations supported by CoFHEE using polynomial
degrees of n = {212, 213}. The results of these measurements
are summarized in Table V. Our measurements show that the
NTT operation results in the highest peak power consumption,
while the Hadamard and Inverse NTT (iNTT) operations con-
sume less power. The iNTT operation includes a multiplication
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Fig. 5: CoFHEE’s validation and experimental setup

with a constant (n−1) and a decimation in frequency operation,
which results in a lower average power consumption compared
to NTT, due to the lower power consumption of the constant
multiplication. However, iNTT takes more cycles to execute
than NTT. To conclude, CoFHEE requires a power supply with
a peak power rating of around 30mA and an average power
of around 25mA to perform polynomial multiplication in a
fraction of a millisecond.

B. Comparison to CPU

We have performed a comparative analysis of CoFHEE
against a software implementation in terms of both execu-
tion time and power consumption by executing a ciphertext
multiplication without relinearization using one instance of
CoFHEE. For the software implementation, we have employed
the Microsoft SEAL 3.7 library [22], executing it on an AMD
Ryzen 7 5800h (TSMC 7nm FinFET) processor operating at
3.8Ghz, paired with 16GB of RAM on Ubuntu 20.04 LTS, and
we have gathered power measurements using powertop. We
have established the polynomial degree as n = {212, 213} and
log q = {109, 218} bits, which provide a security level of 128
bits against classical computers. The results of this comparison
are illustrated in Fig. 6.

For (n, log q) = (212, 109), we break SEAL’s 109-bit
modulus into two smaller moduli of 54 and 55 bits using RNS
for faster computation in the native 64-bit architecture. Each
of these two towers must perform the ciphertext multiplication
according to Eq. 4. For the same operation, CoFHEE natively
supports 128 bits, therefore, it requires only one tower. As
shown in Fig. 6a, the software implementation takes 1.5ms to
operate on the two towers running on a single thread, while
CoFHEE needs 0.84ms to finalize the ciphertext multiplica-
tion. Regarding power (Fig. 6b), CoFHEE is two orders of
magnitude more efficient as it requires 22mW of power, while
the software implementation uses 1.48W .

When (n, log q) = (213, 218), we set the software im-
plementation to use four towers of around 55 bits (54 +
54 + 55 + 55 = 218) and CoFHEE requires two towers
(109 + 109 = 218). For the four < 64-bit towers, SEAL
spends 6.91ms when running on one thread, while CoFHEE
takes 3.58ms to operate on the two < 128-bit towers. Power

Module Area Delay
(mm2) (ns)

3 DP SRAMs 5.3506 4.22
4 SP SRAMs 3.2036 4.19
PE 0.6394 5.65
CM0 SRAM 0.4062 6.13
AHB 0.0747 5.76
GPCFG 0.0534 7.03
ARM CM0 0.0354 5.24
MDMC 0.0273 4.16
SPI 0.0202 7.74
DMA 0.0075 7.17
UART 0.0065 5.66
GPIO 0.0035 6.73
Others 0.0063 -
Total 9.8345 -

TABLE VIII: Part estimations

Parameter Value
Width 3660 µm
Height 3842 µm
Signal pads 26
PG pads 11
PLL bias pads 8
Memories 68
clock name HCLK
CTS synth. corner slow
Levels 26
Sinks 18413
Clock tree buffers 464
Global Skew 240 ps
Longest Ins. delay 2.079 ns
Shortest Ins. delay 1.838 ns

TABLE IX: Design statistics

(a) Time for all towers

(b) Power

Fig. 6: Comparison to CPU execution

readings are 21.2mW for CoFHEE and 2.3W for the software
implementation. We also evaluate SEAL using multi-thread
(4× for four and 16× for sixteen threads in Fig. 6). As
expected, the execution time reduces as we add threads to the
point of becoming faster than a single instance of CoFHEE.
We also notice diminishing returns as we add extra threads. It
is important to consider that CoFHEE contains only one PE
because it is manufactured with an area footprint of 12mm2 in
55nm technology, which is smaller compared to the CPU we
analyzed. The CPU has an area of 180mm2 and is built using
the 7nm technology node. If CoFHEE could accommodate
four PEs (which would allow it to perform radix-4 butterfly
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TABLE X: End-to-End Application comparison

CPU CoFHEE Speedup
CryptoNets [38] 197s 88.35s 2.23×
Logistic Regression [39] 550.25s 377.6s 1.46×

operations in a pipeline), its performance would increase by
a factor of =∼ 4 (The NTT cycle count is calculated as
(N/radix) ∗ logbase−radix(N)), and the area would increase
by only 1.9mm2 for the addition of three additional PEs (refer-
ence: Table VIII). This improvement exceeds the performance
achieved with 16 threads.

Nevertheless, the power consumption increases near lin-
early. Thus, the software Power-Delay Product (PDP) is low-
est when using a single thread, which gets a PDP equal
to 2.22 W · ms (15.9 W · ms), while CoFHEE’s PDP is
18.5·10−3 W ·ms (75.9·10−3 W ·ms) for n = 212 (n = 213),
2 to 3 orders of magnitude more efficient. While at its current
instantiation CoFHEE provides a modest speed-up compared
to a modern CPU, it is much smaller in size and uses a much
bigger technology node. Therefore, when fabricated in the
same node and normalized for the area used, CoFHEE will
offer orders of magnitude improvement over CPU execution
of FHE.

C. End-to-End Applications

We evaluated CoFHEE based on its performance in two
comprehensive applications. The first is CryptoNets [38], a
method that leverages neural networks and Fully Homomor-
phic Encryption for efficient secure inference. The second is a
test against the logistic regression inference as detailed in [39].
The expected processing times for both of these applications
when using CoFHEE are provided in Table X.

In our analysis, the execution runtime was assessed in
relation to the number of operations involved in the appli-
cation. Specifically, operations such as ciphertext-ciphertext
multiplications (ct · ct) and additions (ct + ct), as well as
ciphertext-plaintext multiplications (ct · pt), were considered.
For CryptoNets, the total operations consisted of 457,550
ct-ct additions, 449,000 ct-pt multiplications, and 10,200 ct-
ct multiplications. This subsequently necessitated 10,200 re-
linearization operations. In contrast, the logistic regression
inference entailed 168,298 ct-ct additions, 49,500 ct-pt mul-
tiplications, and 128,700 combined ct-ct multiplications and
relinearizations.

Upon evaluating these operations using CoFHEE, the exe-
cution times were found to be 88.35 seconds for CryptoNets
and 377.6 seconds for Logistic Regression. In comparison
to CPU execution, CoFHEE exhibited speedups of 2.23x for
CryptoNets and 1.46x for logistic regression.

VII. RELATED WORK

FHE acceleration has become a major research interest in
the recent years. So far, many different approaches have been
proposed, consequently leading to a state-of-the-art that is
comprised of FHE acceleration solutions that are based on
software, GPU, FPGA, and ASIC [45], [46], [47], [48], [49],
[50], [51], [52]. Each method has demonstrated considerable

advantages, however due to hardware differences, establishing
an accurate comparison point between each technology is not
feasible, therefore we focus on ASIC designs in our discussion.
Table XI summarizes existing works on ASIC and FPGA.

In addition, there are also works that have focused on
the acceleration of polynomial multiplications using ASIC
designs, however they do not focus in FHE applications.
While some may focus on different variants of homomorphic
encryption such as PHE and SHE, many works focus purely on
developing an acceleration method without taking into account
the application the method can potentially be applied to [53]
[54] [55] [56] [57] [58] [59] [60].

CuFHE is an FHE library designed for use with CUDA-
enabled GPUs. It uses the TFHE scheme and introduces a
new method for handling FHE computations. However, its
approach takes about 4µs to process NTT operations with
polynomial sizes of 214, which is slower than what CoFHEE
offers.

The closest work to CoFHEE is F1, a work proposed by
Feldmann et al. that focuses on developing an accelerator
for the execution of FHE programs [10]. The solution can
be described as a wide-vector processor with functional units
specialized to FHE primitives like modular arithmetic, NTT,
and structured permutations. However, there is limited infor-
mation about the backend process of the design, and whether
the proposed architecture can be placed on real silicon without
routing congestion, as well as power and clock issues. The
API is not clear either, since the focus is more on architecture
exploration and less on getting a realized chip.

When comparing CoFHEE with F1, we need to consider the
differences between the area, frequency, technology nodes, as
well as the input size (bits) of each design. Consequently, to
conduct a fair and accurate evaluation, we have normalized
the performance in terms of the area and the scaling factor
between the technology nodes. To obtain the scaling factor, we
synthesized the Barrett modular multiplier using the GF7nm
technology library, which is the same as that used for F1.
The results indicate that the scaling factor reduces the area by
16.7× and the critical path by 3.7×. We compare the NTT
operation of CoFHEE and F1 in terms of time per area with a
polynomial degree of 8k and a modulus size of 128 bits. We
compare the PE and RF area in F1 against the PE and MDMC
area of CoFHEE. We exclude memory as F1 contains extra on-
chip memory to support higher-level operations, such as key
switching. Also, we consider that F1 has to do RNS to split
128-bit coefficients into 32-bit towers. Upon normalization
of the performance metrics, it was found that F1 executed
7.21 · 10−5 NTT operations per ns per mm2, while CoFHEE
achieved 4.54 · 10−4, resulting in a speedup of 6.3×. This
enhancement in performance is mainly attributed to the use
of a pipelined Barrett multiplier, as opposed to an iterative
Montgomery multiplier.

CraterLake [40], ARK [42], and BTS [41] also represent
three hardware accelerators dedicated to enhancing the per-
formance of Fully Homomorphic Encryption (FHE) computa-
tions. While each is proficient at handling comprehensive FHE
tasks on-chip and showcases notable efficiency enhancements,
their physical footprints are extensive. Specifically, they cover
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Design Technology Max log q Area Power Freq. Clock Efficiency* Silicon
n (bits) (mm2 — LUT/FF/BRAM/DSP) (W ) (Mhz) Cycles* (Performance per mm2) Proven

CoFHEE ASIC - GF 55nm 214 128 12 2.3 · 10−2 250 53248 4.54 · 10−4 ●

F1 [10] ASIC - GF 14/12nm 214 32 151.4 1.8 · 102 1000 476 7.21 · 10−5 ❍

CraterLake [40] ASIC - 14/12nm 216 28 472.3 3.2 · 102 1000 22 3.26 · 10−4 ❍

BTS [41] ASIC - 7nm 217 64 373.6 1.6 · 102 1200 554 9.83 · 10−6 ❍

ARK [42] ASIC - 7nm 216 64 418.3 2.8 · 102 1000 104 9.62 · 10−5 ❍

HEAX [43] FPGA - Intel Arria10 GX 1150 214 27 582148 / 1554005 / 3986 / 2018 - 300 1536 † N/A
Roy [44] Xilinx Zynq UltraScale+ ZCU102 212 30 63522 / 25622 / 400 / 200 - 200 16425 † N/A

TABLE XI: Comparative table and performance of the NTT operation against related work
† No information is available to accurately map FPGA resources to silicon area

∗ Evaluation of Efficiency and clock cycles are performed for n = 213

areas of 472.3mm2, 418.3mm2, and 373.6mm2, respectively.
Such expansive dimensions pose challenges for fabrication
as the wafer would necessitate even more space during the
production phase. This factor renders them impractical for
manufacturing and, subsequently, for potential real-world uti-
lization as opposed to CoFHEE that only occupies 12mm2

of area. Nevertheless, after conducting the same comparison
process as F1, CoFHEE exhibits 1.39×, 46.19×, and 4.72×
improvement against CraterLake, BTS, and ARK respectively
when compared on the NTT operation with a polynomial
degree of n = 213.

Besides ASIC, there is a number of works that propose
FPGA-based solutions for FHE acceleration. HEAX [43]
is a parallelizable architecture focusing on number-theoretic
transform (NTT), and Roy [44] presents an FPGA-based
co-processor for FHE computation using the BFV scheme.
A comparison of the NTT performance against the related
work is presented in Table XI, in terms of clock cycles. The
performance per mm2 efficiency metric cannot be accurately
calculated, however, as we cannot map FPGA resources to
silicon area. In terms of raw numbers, F1 reports a 1, 733×
improvement over HEAX, so we expect CoFHEE to also be
significantly more efficient than HEAX.

VIII. DISCUSSION

A. CoFHEE scalability

To support operations on higher polynomial degrees n ≥
214 with II = 1, CoFHEE needs more area for memories,
which increase linearly to the polynomial degree. As the
memory size increases, memory read latency increases, which
leads to a minor reduction in clock frequency. However, if
the goal is to improve performance for a particular n, there
are a few options: First, we could perform more than one one
butterfly operations per cycle. For that, one has to duplicate
the multiplier pool and add more memories to increase parallel
accesses of operands. For NTT with II = 1, two dual-port
memories and one multiplier pool are required. Doubling this
improves throughput by close to 2× as one can split the
polynomial of degree n into two smaller polynomials of degree
n/2, perform NTT on these smaller polynomials in parallel,
recombine them and perform the last stage of NTT of the
original polynomial. This effectively means that log(n) − 1
stages operate with II = 0.5, while the last stage has an II of
1. Furthermore, a second approach is to increase the number of
memories and processing units available. The former increases
the number of polynomials on chip, enabling more complex
scheduling methods which reduce communication costs with

the host. With more memories and processing units, parallel
operations on non-dependent data is also possible. Combined
better scheduling and parallel processing, doubling CoFHEE’s
resources would more than double the throughput.

CoFHEE’s AHB interface connects to scalable and flexible
components. It supports up to 16 controllers, memories, and
peripherals and, with ARM Cortex M0, it has 28 bits for
addressing internal memory. Hence, it is possible to increase
the total memory size from 1 MB (currently used) to 256 MB.
For faster communication, UART or SPI can be replaced with
protocols such as Peripheral Component Interconnect Express.

B. Lessons Learned
Using the AHB bus to fetch operands and load them to the

computation unit avoids complex MUX structures [61] that
come from non trivial addressing of operands and twiddle
factors in every NTT stage. During NTT, CoFHEE’s address
generation unit generates the relevant addresses for operands
and twiddle factors at every cycle and issues a bus transaction.

Although the addition of dual-port memories improves the
throughput significantly, their area is 2× the area of single-
port memories of the same size. Therefore, it is important to
minimize the number of dual-port memories without affecting
throughput. In CoFHEE, the number of dual-port memories is
three. Thus, two of them can be used for computation, while
the third is used along with DMA to buffer the next polynomial
for execution.

While separate twiddle factors have been used for NTT and
iNTT in previous works [61], CoFHEE uses the same twiddle
factors for both operations by combining MDMC and DMA
operations. Thus, it reduces the required chip area for FHE
acceleration.

IX. CONCLUSION

In this work, we presented a year-long effort to design,
implement, and validate CoFHEE, a co-processor for pro-
cessing of low-level polynomial operations targeting Fully
Homomorphic Encryption execution. CoFHEE is a 12mm2

design fabricated in 55nm technology node and it natively
supports polynomial degrees of up to 214, as well as coefficient
sizes up to 128 bits. The architecture design is highly scalable
and can be expanded to support higher polynomial degrees,
more polynomials on chip, and more processing units given a
larger design area. This paper presents all required steps for
a fully functional silicon, from the RTL design to fabrication
and validation. The RTL code and functional units of CoFHEE
are open-sourced, to serve as components for future FHE
acceleration work.
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