
Accepted copy for Publication at the Design, Automation and Test in Europe (DATE) Conference 2023
Final published version available at: https://doi.org/10.23919/DATE56975.2023.10137025

Establishing Dynamic Secure Sessions for ECQV
Implicit Certificates in Embedded Systems

Fikret Basic, Christian Steger
Institute of Technical Informatics

Graz University of Technology
Graz, Austria

{basic, steger}@tugraz.at

Robert Kofler
R&D Battery Management Systems

NXP Semiconductors Austria GmbH Co & KG
Gratkorn, Austria

robert.kofler@nxp.com

Abstract—Be it in the IoT or automotive domain, implicit
certificates are gaining ever more prominence in constrained
embedded devices. They present a resource-efficient security
solution against common threat concerns. The computational
requirements are not the main issue anymore. The focus is now
placed on determining a good balance between the provided
security level and the derived threat model. A security aspect that
often gets overlooked is the establishment of secure communica-
tion sessions, as most design solutions are based only on the use
of static key derivation, and therefore, lack the perfect forward
secrecy. This leaves the transmitted data open for potential future
exposures by having keys tied to the certificates rather than the
communication sessions. We aim to patch this gap, by presenting
a design that utilizes the Station to Station (STS) protocol with
implicit certificates. In addition, we propose potential protocol
optimization implementation steps and run a comprehensive
study on the performance and security level between the proposed
design and the state-of-the-art key derivation protocols. In our
comparative study, we show that with a slight computational
increase of 20% compared to a static ECDSA key derivation, we
are able to mitigate many session-related security vulnerabilities
that would otherwise remain open.

Index Terms—ecqv, implicit, certificate, sts, dynamic, session,
key derivation, embedded, security, constrained, automotive.

I. INTRODUCTION

Security is becoming increasingly important in protecting
the ever-expanding connections of modern embedded devices.
The use of common schemes, e.g., Transport Layer Security
(TLS), often proves to be difficult due to the constrained
nature of the used devices, which can only allow for a limited
performance overhead [1]. In contrast, implicit certificates are
showing promise in replacing the traditional security architec-
ture schemes. Implicit certificates offer a lightweight certificate
format, and a flexible public key derivation and authentication
mechanism that make the use of public key infrastructures
more accessible for constrained embedded systems [2]–[6].

Different schemes exist based on the implicit certificates,
with Elliptic Curve Qu-Vanstone (ECQV) still being the
most popular and researched one [7]. While there has been
numerous research done on ECQV and its use with embedded
systems [2]–[6], [8]–[10], we noticed that certain security
aspects are left out when considering the session key derivation
process. The key derivation (KD) and session establishment
solutions often neglect a very important key aspect, the per-
fect forward secrecy, specifically, the ephemeral key security

characteristic. Forward secrecy allows for a dynamic KD and
it considers the state where each newly derived key has a
high-enough entropy and is independent of a previous one
[11]. This is especially important in session communication,
where interactions happen on a frequent basis. We believe
that is characteristic often gets neglected due to a believed
premise of the necessity for sacrificing the security strength
for the performance gain with the limited embedded devices.
Rather, what often gets deployed is a static KD where key
computations are directly linked to their certificate material.
These keys would, hence, only be changed by the change
of the certificates and through re-initiating the authentication
and session establishment steps. It is, therefore, called a
static key exchange, since no other KD function or additional
input data is used to mask the present session key which is
fully dependent on the current certificate. This can be very
problematic in situations where, implementation-wise, either
due to the limitations in the system’s architecture, constrained
nature of the devices, or neglect from the developers, can lead
to longer than the intended use of the same session key.

Regular key updates are important, as in unfortunate cases,
where the session key might get compromised, e.g., via the
node capturing attack by compromising a valid device that
holds it, all the captured exchanged messages would also be
able to be decrypted. Any attack that can compromise the
stored device credentials would be able to exploit the statically
derived keys. An especially dangerous attack, which is also
prevalent in TLS, is the key compromise impersonation (KCI).
It is a man-in-the-middle (MitM) attack where an attacker
can impersonate the trusted server side to manipulate the key
derivation process [12]. In 2018, OWASP rated for internet
of things (IoT) weak, guessable and hard-coded passwords as
the number one weakness for the IoT systems, which also
considers the key credentials [13]. In fact, based on the study
by the SEC Consult between 2015 and 2016, the number of
exposed private keys by IoT devices grew by 40% [14]. The
ENISA initiative, targeted at investigating automotive security
vulnerabilities, listed remote attacks, theft and surveillance as
one of the most potent attacks that can happen due to the
lack of the required cryptographic functionality support. In
their document, all three attacks are affiliated with the lack of
forward secrecy for both the wide and local networks [15].

ar
X

iv
:2

31
1.

11
44

4v
1

 [
cs

.C
R

]
 1

9
N

ov
 2

02
3

Central Authority
Gateway

Device

Bob

Device

Alice

Session Key Session Key

Encrypted
Session

3

1

2Certificate
Derivation

Device
Authentication

Fig. 1. Centralized implicit certificate architecture.

To mitigate these security vulnerabilities, we focus on pro-
viding a solution that is independent of the rate of the certifi-
cate updates, and which ensures that each new communication
session would always yield a new key derivation. Additionally,
we want to make sure that a session key compromise does not
lead to exposure of previous or further keys, i.e., to guarantee
perfect forward secrecy. To fulfil these constraints, we present
a design based on the Station-to-Station (STS) protocol [11]
for a dynamic KD for implicit certificate schemes and extend
on the general lightweight ECQV implementation by Pollicino
et al. [2]. Furthermore, we investigate the optimization steps
for the STS KD protocol execution for the implicit certificates,
analyze its applicability for the embedded hardware by imple-
menting and evaluating it on different devices, and compare
it with other related implicit certificate schemes. Summarized,
our main contributions contained within this work are:

1) Design and implementation of a dynamic key derivation
approach for implicit certificate architecture schemes
using the STS protocol.

2) Performance and security evaluation of state-of-the-art
(SotA) KD implicit certificate schemes by expanding on
the existing work from the automotive and IoT domains.

3) Testing the protocol’s feasibility in an automotive system
by implementing it on top of a battery management
system (BMS) to depict a real-world scenario.

II. BACKGROUND ON THE SECURITY ARCHITECTURE

We consider three main stages when deploying implicit cer-
tificates in a network, as shown in Figure 1 [5], [8]: (1) device
authentication and deployment, (2) certificate derivation, and
(3) session establishment. The deployment phase primarily
depends on the main system architecture, however, it generally
contains a central, and a more powerful, certificate authority
(CA) device. The certificate derivation phase is straightforward
with ECQV and almost identical among different solutions [3],
[5], [6], [8]. The session establishment process often differs
and depends on the KD and node authentication algorithms.

A. Key derivation for secure sessions

We differentiate between two sessions, the certificate session
and the communication session. The certificate session consid-
ers the validity duration of the currently issued certificates,
e.g., in a vehicle during each new engine start, while the
communication session considers the duration during one

message exchange between two or multiple devices, e.g.,
monitoring, updates, status readout, etc.

We refer to static key derivation (SKD) as the calculation
approach that relies on the traditional Diffie-Hellman KD, i.e.,
where the keys or the underlying secret are derived from the
multiplication of the stored private key and the other device’s
public key as Sk = Prka ∗ Pukb = Prkb ∗ Puka. The SKD
secret is tied to its current certificate session rather than the
communication session. As long as the private and public key
pairs are not updated, the underlying session key will also not
change. Contrarily, the dynamic key derivation (DKD), as the
one presented in this work, fulfils the condition that a new
session key is derived on each new communication session
start, regardless of the current certificate session. The DKD
makes sure that each communication session remains inde-
pendent from the other sessions and should, ideally, provide
the perfect forward secrecy attribute. A key derived via this
method is also known as the ephemeral secret key.

III. RELATED WORK

Several research works have already been published on the
use of the ECQV and the session KD, both under the general
and embedded environments. Porambage et al. [3], [9] present
one of the earlier session authentication and key exchange
solutions for the wireless networks, where the communication
between the nodes is done using an SKD. For authentica-
tion, the protocol uses Message Authentication Code (MAC)
with pre-embedded keys, but it also requires that each node
possesses from each other the authentication key. A different
authentication scheme is presented by Siddhartha et al. [6],
where an “authenticator” is used. It is made out of certificate-
related data and signed by the CA. A hash function is also used
for the additional integrity check. The session key calculation,
however, is still based on the standard SKD.

D. Lee and I. Lee [16] present two approaches to KD in a
constrained IoT environment. The first approach is based on
the pure ECQV methodology with no additional authentication
steps. It relies on validating the identification (ID) and correct-
ness of the certificate calculation, but this does not guarantee
the authenticity of the device itself. The certificates and the
ID could be spoofed, resulting in a false identification by a
malicious actor. Additionally, similar to the work presented
by Sciancalepore et al. [4], the KD uses additional nonces
to diversify the key. However, this does not add additional
protection since the underlying secret is still calculated using
an SKD, i.e., it only considers the multiplication of the private
and public keys. The nonces used in the KD can be read from
a monitored network. Their second method does provide DKD
and ephemeral keys, nonetheless, both methods suffer from a
central problem, and that is that the device authentication is
not considered, rather only the public key validity.

Recently, Zi-Yuan Liu et al. [10] presented an extension of
the ECQV, where devices might house multiple certificates and
keys. While novel, the challenges presented in the paper are
currently not relevant for this work’s use cases, as the focus
is placed on larger dynamic networks.

ALICEBOB
IDA, XGA Gen. XGA

Gen. XGB

Derive key KS

Authentication RespB

IDB, CertB, XGB, RespB

Derive pub. key QB
Derive key KS
Verify RespB

Authentication RespA
 CertA, RespA

Derive pub. key QA

Verify RespA

Fig. 2. Key derivation using STS protocol for ECQV architectures.

IV. A NOVEL DYNAMIC KEY DERIVATION FOR ECQV

A. Security requirements

For the security requirements, it is intended to provide a
design that can answer to the following threats: (T1) past data
exposure, (T2) MitM attacks, (T3) node capturing attacks,
(T4) key data reuse for further session calculations, (T5)
key derivation exploitation; each unique key needs to have
a high-enough entropy, and that is only stored, and being
able to be stored, by the valid parties. We aim to protect two
important system assets: session data, and security credentials.
The design also needs to be lightweight in its implementation
so as to be easily accessible for the embedded devices.

B. Protocol formalization

We base our design of the DKD on the use of the STS
protocol [11], [17]. STS is a known protocol used in wide
networks; however, it has not been previously investigated for
use with the ECQV. The STS derivation should consider the
ECQV implicit certificate calculation properties. The protocol
steps are shown in Figure 2. It is assumed that the first two
phases are correctly done as explained in Section II.

The protocol uses the implicit certificate with the elliptic
curve digital signature algorithm (ECDSA) to provide authen-
tication as shown with Algorithm 1, and verification with
Algorithm 2. What makes it unique compared to other STS
algorithm derivations, is that ECQV relies on the implicit
derivation of the public key for the signature verification. The
security of the ECDSA algorithm with the ECQV scheme has
been proven secure against passive attacks [18]. The public
key calculation used for verification is derived as:

QX = Hash(CertX) ∗Decode(CertX) +QCA (1)

The STS provides ephemeral keys, by always deriving a
new random elliptic curve (EC) point in the request as:

X ∈R [1, ..., n− 1] → XG = X ∗G (2)

Derivation of session KS keys is done by calculating:

KPM = XA ∗XGB = XB ∗XGA (3)

KS = KDF (KPM , salt) (4)

Fig. 3. Time duration of individual STS operation runs on an STM32F676.

Algorithm 1: STS implicit certificate auth. response.
Input: XGA, XGB , KS
Output: Resp

1 if deviceA then
2 dsign ← sign(PrkA, (XGA||XGB))
3 else
4 dsign ← sign(PrkB , (XGB ||XGA))
5 end
6 Resp← encrypt(KS , dsign)
7 return Resp

Algorithm 2: STS implicit certificate sign. verification.
Input: RespX , CertX
Output: StatusOk , StatusErr

1 dsignX ← decrypt(KS , RespX)
2 QX ← hash(CertX) ∗ decode(CertX) +QCA
3 Status← verify(QX , dsignX)
4 return Status

C. STS protocol optimization

Even though the STS protocol might provide more security
advantages compared to related KD implicit certificate proto-
cols (see Section V-D), the main drawback is in its timely
execution. As this is still an important aspect of modern
constrained systems, we investigate potential optimizations.
We divide the entire STS ECQV protocol into four operations:

• Op1 - Request phase; random XG point derivation
• Op2 - Public key and premaster session key generations
• Op3 - Auth. signature derivation and encryption
• Op4 - Auth. signature decryption and verification
In this analysis, we do not consider the transfer time.

We derive two potential optimizations. Similar to the work
presented by Sciancalepore et al. [4], the initial request can
be made to contain both the certificate and the XG data, with
the calculations of the public key and premaster secret data
(see Op2) being done in parallel. Further optimization could
be to also include the following Op3 to be executed parallel
after Op2 as well. There is a drawback here, and that comes at
the expense of the algorithm’s flexibility. Failed authentication
requests would only be checked after the calculations have
been processed. This could open some doors for misuse by
malicious users, either through denial-of-service, or similar at-
tacks. But the actual implementation does not suffer in terms of
general security since the calculations are still processed in the
same manner. The main advantage would be from the system
design perspective, which would allow additional operations
to run in parallel. The sent data is identical to the original
protocol, but the message and content order vary slightly.
Figure 3. shows individual operation time requirements.

Fig. 4. Comparison of the total KD protocols processing time.

The total execution time with the conventional STS between
two devices can be represented as:

τT =

NOp∑
i=1

TOpAi +

NOp∑
i=1

TOpBi ,with NOp = 4 (5)

As the optimization can be applied through the Op2 and
Op3, we get the following derivation based on the time that
each device takes to calculate the operations:

∀x ∈ {2, 3}, TOpAx =

{
0, if A = B

|TOpAx − TOpBx|, otherwise
(6)

This means that no additional time is taken per device A (or
B, as it is symmetrical) if they are identical, or if they are not,
the extra amount of time depends on the difference in their
execution time for Op2 and Op3.

If the devices are equal, ideally, optimization formulas for
two different steps of optimizations based on the system
requirements would bring the total run times to:

Opt. I τ
′

T = 2 ∗ TOp1 + TOp2 + 2 ∗ TOp3 + 2 ∗ TOp4 (7)

Opt. II τ
′′

T = 2 ∗ TOp1 + TOp2 + TOp3 + 2 ∗ TOp4 (8)

The primary advantage of the optimization is the clear
reduction in the total execution time by maintaining a minimal
change to the original STS protocol structure. In Section V-A,
we compare different protocols for the implicit certificate KD
and show the difference in time execution between the opti-
mized and non-optimized STS on real embedded hardware.

V. IMPLEMENTATION AND EVALUATION

A. Protocol performance evaluation

To show the feasibility of the proposed STS protocol
derivation in modern systems and compare it with other SotA
KD protocols for implicit certificates, we implement and run
the protocols under different embedded devices. We analyze
the runs under three main hardware performance level groups:

• Low-end: Arduino, ATmega2560, 8-bit 16MHz
• Mid-tier: S32K144, ARM Cortex-M4F 32-bit 80MHz;

and STM32F767, Cortex-M7 32-bit 216MHz
• High-end: Raspberry Pi 4, Cortex-A72 64-bit 1.5GHz
The implementations are done in C and make use of the

functions provided by the micro-ecc, tiny-aes, and bear-ssl
libraries, as well as the micro ECQV functions provided by
Pollicino et al. [2]. All protocols have been tested with the
secp256r1 256-bit EC, with 256-bit level for the SHA and
HMAC, and 128-bits for the AES and CMAC.

Fig. 5. Test suite for the ECQV and KD protocol evaluation.

App. Data

 S
 O
F

 E
 O
F

Identifier Control field Data field CRC
field

ACK
field

Type Index
or Size Frag. Data

Comm.
Code

Sess.
Comm. ID

OP
Code

Data
Link

Transport

Application

Fig. 6. CAN-FD network layers used for the session test communication.

In total, we test four different protocols derived from two
groups based on the use of the authentication mechanism, i.e.,
on those that rely on the use of ECDSA: (i) static ECDSA by
Basic et al. [5] as S-ECDSA, and (ii) STS from this work, and
those that only use the symmetric cryptography authentication
without the EC operations: (iii) from Porambage et al. [3] as
PORAMB, and (iv) from Sciancalepore et al. [4] as SCIANC.
We also consider the extension of the S-ECDSA protocol,
specifically the additional authentication of the ack acknowl-
edgement messages, based on the finished message handling
as seen from Porambage et al. [3]. Furthermore, we also
evaluate the STS protocol when considering the optimization
steps explained in Section IV-C. Only STS is the true DKD,
while the rest fall into the SKD category. The results of
the evaluation are shown in Table I, with Figure 4. showing
the graphical representation for the STM32F767. The times
are averaged after ten runs. The measurements were done
using system ticks and Nordic PPK2. The run time scalability
is relatively consistent regarding the devices’ performances.
While STS shows the highest execution time, its optimization
variants show the potential time similar to or faster than the
S-ECDSA. The PORAMB and SCIANC show the fastest time
as they use a different authentication mechanism and do not
rely on the EC operations. However, these protocols lack some
of the necessary security options as discussed in Section V-D.

B. Overhead examination

To give a clearer analysis of the algorithm processing
time, it would be advantageous to consider the transmission
overhead, however, that parameter is heavily dependent on the
used communication protocol and its configuration. Here, we
provide an overview of the overhead for each algorithm during
the KD exchange protocol, independent of the communication
technology in use. We consider only the protocol-affiliated
transmission data on the application level. Security algorithms
bit sizes are the same as the ones used in Sect. V-A. We assume
IDs to be of 16 bytes and use the minimal certificate encoding
with 101 total bytes [7]. The results are shown in Table II.

Both the S-ECDSA and STS protocols showed similar trans-
mission sizes, with also the least communication steps when

TABLE I
EXECUTION TIME IN MILLISECONDS OF THE KD PROTOCOLS FOR ECQV FOR THE RESPECTIVE EMBEDDED HARDWARE.

Protocol / Device ATMega2560 S32K144 STM32F767 RaspberryPi 4

S-ECDSA 36859.26± 0.18 2894.1± 9.83 2521.77± 5.87 18.76± 0.11
S-ECDSA (ext.) 36882.64± 0.23 2976.2± 11.56 2602.69± 8.61 18.68± 0.12
STS 46262.03± 0.13 3622.71± 7.034 3162.07± 7.52 23.26± 0.12
STS (opt. I) 41680.23± 1.2 3246.55± 12.97 2818.02± 11.26 20.87± 0.07
STS (opt. II) 32410.81± 1.14 2556.84± 13.13 2219.25± 11.3 16.31± 0.07
SCIANC 8990.49± 0.03 721.67± 0.28 628.1± 0.32 4.58± 0.02
PORAMB 17932.17± 0.05 1471.66± 0.63 1263.0± 0.42 8.98± 0.04

TABLE II
COMMUNICATION STEPS AND TRANSMISSION OVERHEAD OF THE KD PROTOCOLS FOR ECQV.

Protocol S-ECDSA(+ext.) STS SCIANC PORAMB

Step: Op. (X bytes) A1: ID(16), Nonce(32) A1: ID(16), XG(64) A1: ID(16),
Nonce(32), Cert(101) A1: Hello(32), ID(16)

B1: ID(16), Cert(101),
Sign(64), Nonce(32)

B1: ID(16), Cert(101),
XG(64), Resp(64)

B1: ID(16),
Nonce(32), Cert(101) B1: Hello(32), ID(16)

A2: Cert(101),
Sign(64)

A2: Cert(101),
Resp(64) A2: Auth MAC(32) A2: Cert(101),

Nonce(32), MAC(32)
B2: ACK(1),
(+Ext Fin(96)) B2: ACK(1) B2: Auth MAC(32) B2: Cert(101),

Nonce(32), MAC(32)
A3: (+Ext Fin(96)) A3 & B3: Finish(197)

Total 4(+1): 427(+192) B 4: 491 B 4: 362 B 6: 820 B

not considering the last ack message. The SCIANC protocol
also requires only four transmissions, but with only 362 total
bytes under the assumed setup. Contrarily, the PORAMB algo-
rithm showed the largest overhead, with 6 total steps and 820
bytes. We did not include the optimized version of STS since
it does not differ in terms of the transmitted data. Considering
the fast data rates of most communication protocols and the
presented data sizes, we can conclude that the influence of the
transmission overhead would be minimal in comparison to the
individual KD protocols. This is further complemented by the
prototype evaluation results from Section V-C.

C. Prototype implementation evaluation

In order to evaluate the proposed protocol design on its
technical use, we implemented a prototype system that depicts
a common communication occurrence between two ECUs in
an automotive network. It handles the secure communication
between a BMS controller, and an electric vehicle charging
controller (EVCC) [19]. Both devices are represented with an
S32K144 microcontroller from the NXP Semiconductors to
portray a real-world environment. The BMS is additionally
connected to a battery cell controller and a battery emulator
for emulating a functional unit. The setup is shown in Figure 5.

The session communication between the devices takes place
over a Controller Area Network (CAN) interface. The test
suite uses the CAN-FD derivation with an implemented CAN-
TP layer for message fragmentation [20]. Figure 6 shows the
message formats. The devices also communicate with a more

Calc. PubK & Verify

EVCC

BMS 2.
59

 m
s

XG gen. & Sign. gen.

BMS

EVCC

(A)

(B)

Request
(XG gen.)

323.341 ms

1038.907 ms

15
.7

9
m

s

Calc. Keys
& Verify

1050.864 ms

Create and
Enc. Sign.
401.056 ms

11
.4

2
m

s

738.410 ms

AC
K

0.
86

 m
s

Request
gen.

7.733 ms

0.
87

 m
s

477.898 ms
Resp. Sign. gen.

734.226 ms
Verify Resp.

384.773 ms
Sign. gen.

736.772 ms
Verify Resp. Derive Key

316.410 ms

316.395 ms
Derive Key

7.
97

 m
s

6.
64

 m
s

0.
85

 m
s

AC
K

Fig. 7. Timeline model of the prototype session communication between a
BMS and EVCC for: (A) STS & (B) S-ECDSA, ECQV KD protocols.

powerful CA gateway (represented with a Raspberry Pi 4) to
handle the initial device authentication and certificate distri-
bution. The nominal phase CAN-FD bit rate was configured
at 0.5 Mbit/s, with the data phase rate being set at 2 Mbit/s.

For the evaluation, we compare the proposed STS imple-
mentation against the common static ECDSA [2], [5]. For a
fair comparison, as to account for the conventional deployment
of these protocols in the field, we did not consider the
optimization handling for the parallel operation runs argued
in Section IV-C. The implemented security protocols use the
same library sources as those mentioned in Section V-A.
The timeline of both protocols is shown in Figure 7. The

TABLE III
SECURITY OVERVIEW OF THE KD PROTOCOLS FOR ECQV.

S-ECDSA STS SCIANC PORAMB

Data exposure X ✓ X X
Node capturing ∆ ∆ X X
Key data reuse X ✓ ∆ X
Key der. exploit ∆ ✓ ∆ ∆
Auth. procedure ✓ ✓ ∆ ∆

Session

Data

Security
Credentials

[T1] Past Data
Exposure

[T2] MitM

Attacks

[T3] Node
Capture

[T4] Key Data
Reuse

[T5] Key Deriv.
Exploitation

[C1] Forward
Secrecy

[C2] ECDSA
Authentication

[C3] STS &
ECQV Property

[R]

 Partial

Protection

Fig. 8. Block diagram representation for the STS-ECQV KD threat model.

STS implementation showed only a slight difference in the
total run time with 3.257 s compared to S-ECDSA’s 2.677 s,
i.e., an increase of 21.67%. The CAN-FD transfer time over
the physical link was negligible (< 1ms). The majority of
the communication time from Figure 7. was for the data
processing on the remaining layers.

D. Security analysis

We concern ourselves with the listed threats from Sec-
tion IV-A and compare the previous KD algorithms on the
provided security level. We also specially look at the mutual
authentication procedure, as an important feature against MitM
attacks. The analysis is presented in Table III, with the
following notation: X - weak or no countermeasure, ∆ -
partial protection, ✓ - fully protected.

The lack of forward secrecy for all protocols, except STS,
makes them highly vulnerable to previous session data expo-
sure, key material reuse (while having the same certificates),
and node-capture attacks. However, we note that no algorithm
is fully protected against the node-capture attacks, as even with
STS, the protection can only be guaranteed for the previous
messages, not the future ones. The mutual authentication for
both SCIANC and PORAMB is based on symmetric cryptog-
raphy with some concerns. PORAMB has the requirement to
store individual keys per the number of devices, which makes
future updates troublesome. SCIANC algorithm ties its session
key with the KD authentication, meaning that if the session
key gets exploited so will the future authentication. On the
other hand, with S-ECDSA and STS, the authentication is
based on the ECDSA with private keys used for signature
derivation. Figure 8. shows the derived countermeasures on
the listed threats for the STS-ECQV KD.

VI. CONCLUSION

In this work, we have presented a key derivation and session
establishment model using the STS protocol within the ECQV
implicit certificate framework, and its relation and compar-
ison with other KD protocols on embedded devices. While

requiring more time, the STS offers a good balance between
providing additional security features and certainty without
compromising much of the performance. It showed a slight
run time increase of ≈ 21% compared to a static ECDSA KD
protocol, with no additional communication overhead. While
other non-EC authentication-based KD protocols showed a
noticeable faster execution time, they also lacked the security
level acceptable for modern systems. To compensate for the
STS run time, we introduced a series of optimization steps for
the protocol operations. For future work, we plan to investigate
the influence of security modules and hardware accelerators
when considering the implicit certificate protocols on embed-
ded devices, especially those related to session establishment.

ACKNOWLEDGMENT

This project has received funding from the “EFREtop:
Securely Applied Machine Learning - Battery Management
Systems” (Acronym “SEAMAL BMS”, FFG Nr. 880564).

REFERENCES

[1] J. P. Hughes and W. Diffie, “The Challenges of IoT, TLS, and Random
Number Generators in the Real World: Bad Random Numbers Are Still
with Us and Are Proliferating in Modern Systems.,” Queue, jun 2022.

[2] F. Pollicino et al., “An experimental analysis of ECQV implicit certifi-
cates performance in VANETs,” in IEEE 92nd VTC2020-Fall, 2020.

[3] P. Porambage et al., “Two-phase authentication protocol for wireless
sensor networks in distributed iot applications,” in IEEE WCNC, 2014.

[4] S. Sciancalepore, G. Piro, G. Boggia, and G. Bianchi, “Public Key
Authentication and Key Agreement in IoT Devices With Minimal
Airtime Consumption,” IEEE Embedded Systems Letters, vol. 9, 2017.

[5] F. Basic et al., “Trust your BMS: Designing a Lightweight Authentica-
tion Architecture for Industrial Networks,” in 23rd IEEE ICIT, 2022.

[6] V. Siddhartha, G. S. Gaba, and L. Kansal, “A Lightweight Authentication
Protocol using Implicit Certificates for Securing IoT Systems,” Procedia
Computer Science, vol. 167, pp. 85–96, 2020.

[7] M. Campagna, Standards for Efficient Cryptography 4 (SEC4): Elliptic
Curve Qu-Vanstone Implicit Certificate Scheme (ECQV). Certicom
Corp., 2013.

[8] D. Puellen et al., “Using Implicit Certification to Efficiently Establish
Authenticated Group Keys for In-Vehicle Networks,” in Proc. of the
11th IEEE VNC Conf., 2019.

[9] P. Porambage et al., “Certificate-Based Pairwise Key Establishment
Protocol for Wireless Sensor Networks,” in 16th IEEE CSE, 2013.

[10] Z.-Y. Liu et al., “Extension of Elliptic Curve Qu–Vanstone Certificates
and Their Applications,” J. Inf. Secur. Appl., vol. 67, jun 2022.

[11] W. Diffie et al., “Authentication and Authenticated Key Exchanges,”
Design, Codes and Cryptography, p. 107–125, June 1992.

[12] C. Hlauschek et al., “Prying Open Pandora’s Box: KCI Attacks against
TLS,” in 9th USENIX WOOT, (Washington, D.C.), Aug. 2015.

[13] OWASP, “OWASP IoT Top 10.” https://owasp.org, 2018.
[14] S. Consult, “House Of Keys: 9 Months Later. . . 40% Worse.” https://sec-

consult.com/blog/detail/house-of-keys-9-months-later-40-worse/, 2016.
Accessed: 05.09.2022.

[15] ENISA, Cyber Security and Resilience of smart cars – Good practices
and recommendations. ENISA EU, 2016.

[16] D.-H. Lee and I.-Y. Lee, “A Lightweight Authentication and Key
Agreement Schemes for IoT Environments,” Sensors, vol. 20, 2020.

[17] F. Basic, C. Steger, and R. Kofler, “Poster: Establishing Dynamic Secure
Sessions for Intra-Vehicle Communication Using Implicit Certificates,”
in ACM EWSN 2022 Conf., oct 2022. poster session.

[18] D. R. L. Brown et al., “Security of ECQV-Certified ECDSA Against
Passive Adversaries.” Cryptology ePrint Archive, Paper 2009/620, 2009.

[19] A. Fuchs et al., “Securing Electric Vehicle Charging Systems Through
Component Binding,” in Computer Safety, Reliability, and Security,
pp. 387–401, 2020.

[20] ISO 15765-2:2016, “Road vehicles — Diagnostic communication over
Controller Area Network (DoCAN) — Part 2: Transport protocol and
network layer services,” Standard, ISO, 2016.

	Introduction
	Background on the Security Architecture
	Key derivation for secure sessions

	Related Work
	A Novel Dynamic Key Derivation for ECQV
	Security requirements
	Protocol formalization
	STS protocol optimization

	Implementation and Evaluation
	Protocol performance evaluation
	Overhead examination
	Prototype implementation evaluation
	Security analysis

	Conclusion
	References

