
CorrectNet: Robustness Enhancement of Analog
In-Memory Computing for Neural Networks by

Error Suppression and Compensation
Amro Eldebiky1, Grace Li Zhang2, Georg Böcherer3, Bing Li1, Ulf Schlichtmann1

1Technical University of Munich, 2TU Darmstadt, 3Huawei Munich Research Center
Email: {amro.eldebiky, b.li, ulf.schlichtmann}@tum.de, grace.zhang@tu-darmstadt.de, georg.bocherer@huawei.com

Abstract—The last decade has witnessed the breakthrough of
deep neural networks (DNNs) in many fields. With the increasing
depth of DNNs, hundreds of millions of multiply-and-accumulate
(MAC) operations need to be executed. To accelerate such
operations efficiently, analog in-memory computing platforms
based on emerging devices, e.g., resistive RAM (RRAM), have
been introduced. These acceleration platforms rely on analog
properties of the devices and thus suffer from process variations
and noise. Consequently, weights in neural networks configured
into these platforms can deviate from the expected values,
which may lead to feature errors and a significant degradation
of inference accuracy. To address this issue, in this paper,
we propose a framework to enhance the robustness of neural
networks under variations and noise. First, a modified Lipschitz
constant regularization is proposed during neural network train-
ing to suppress the amplification of errors propagated through
network layers. Afterwards, error compensation is introduced
at necessary locations determined by reinforcement learning to
rescue the feature maps with remaining errors. Experimental
results demonstrate that inference accuracy of neural networks
can be recovered from as low as 1.69% under variations and
noise back to more than 95% of their original accuracy, while
the training and hardware cost are negligible.

I. Introduction
Deep neural networks (DNNs) have been applied success-

fully in many fields, e.g., image recognition [1] and language
processing [2]. DNNs achieve their accuracy using a large
number of layers [3]. This results in tens of millions weights
and hundreds of millions of multiply-and-accumulate (MAC)
operations in a neural network. To accelerate these operations,
analog in-memory computing platforms based on emerging
technologies, e.g., resistive RAM (RRAM) [4], [5], have been
introduced. In such platforms, MAC operations are imple-
mented by analog devices based on Ohm’s law and Kirchhoff’s
current law, so that a high computation and energy efficiency
can be achieved.

These analog-based computing platforms, however, suffer
from manufacturing process variations and noise [6]. Accord-
ingly, inference accuracy of neural networks implemented with
such platforms may degrade significantly in practice. For ex-
ample, in an RRAM-based computing platform, RRAM cells
should be programmed to specific conductances to represent
weights of neural networks. However, variations of physical
parameters of RRAM cells, e.g., cross-section area, cause
variability in their electrical properties. Accordingly, when
a programming voltage is applied onto an RRAM cell, the

resulting conductance value under process variations and noise
deviates from the nominal value. Consequently, weights in
neural networks may not be reflected accurately, and the fea-
ture maps at the output of layers can become erroneous. When
such incorrect feature maps travel through subsequent layers
with deviated weights, the errors can be amplified, which
results in a significant degradation of inference accuracy and
thus offsets the advantages of these platforms in computation
and energy efficiency [7].

Several previous approaches have been proposed to tackle
the accuracy degradation problem due to hardware uncertainty.
The method in [8] applies knowledge distillation to train a
variation-aware model and replicates some important weights
into SRAM cells to enhance computational robustness. Sim-
ilarly, [9] randomly selects some weights and maps them
into on-chip memory for further training to improve accu-
racy. However, these methods still require online retraining
to restore the inference accuracy, which incurs extra train-
ing and test cost. Trying to adjust weights to absorb the
effect of variations, [7] proposes a variation-aware training
approach by compensating the impact of device variations
and including it in the loss function. The methods in [10],
[11] train neural networks statistically by directly modeling
variations as functions of random variables. [12] follows a
similar approach regarding variation-aware mapping which
represents large weights by RRAM cells with lower variations
in the crossbar and trains the neural network adaptively online.
Such approaches, however, either need prior knowledge of the
variation profile, which requires testing and measurement of
each manufactured chip, or are limited to neural networks with
only a small depth.

Different from the approaches above, in this paper, we
introduce a method to mitigate the effects of weight variations
and noise in analog in-memory computing platforms by two
techniques: error suppression and error compensation. The key
contributions of this work are summarized as follows:
• Error suppression is realized by training neural networks

under modified Lipschitz constant regularization, so that
weight variations do not cause the amplification of errors
resulting from previous layers.

• Error compensation is introduced to recover feature maps
from potential errors. The locations of error compensation
and the number of filters for compensation are determined

ar
X

iv
:2

21
1.

14
91

7v
1

 [
cs

.A
R

]
 2

7
N

ov
 2

02
2

Fig. 1: The structure of RRAM crossbar.

by reinforcement learning to achieve a balance between
accuracy recovery and computational cost.

• Experimental results demonstrate that the inference accu-
racy of neural networks can be recovered from as low as
1.69% under variations and noise back to more than 95%
of their original accuracy, while the training and hardware
cost are negligible.

The rest of this paper is organized as follows. In Section II,
we explain the background and motivation of this work. In
Section III, we introduce the techniques of error suppression
by Lipschitz constant regularization and error compensation
for sensitive layers. Experimental results are reported in Sec-
tion IV and conclusions are drawn in Section V.

II. Preliminaries and motivation
To accelerate DNNs, emerging platforms with analog de-

vices, e.g., RRAM, have a huge advantage in computation
and energy efficiency. Figure 1 illustrates the structure of
an RRAM-based crossbar, where RRAM cells sit at the
crossing points and transistors are used to enable RRAM
cells. To implement MAC operations, RRAM cells are first
programmed to the target conductance values to represent
weights of DNNs. Afterwards, voltages are applied on the
horizontal wordlines while voltages on the vertical bitlines
are connected to ground. The resulting current in an RRAM
cell is thus the multiplication result of the voltage and its
conductance. The accumulated currents at the bottom of each
column is the addition result.

Analog accelerators, however, are inherently susceptible to
variations and noise from manufacturing process and operation
environments, respectively. These variations and noise cause
the programmed conductances to deviate from the target
values. Accordingly, weights of neural networks represented
by conductances of RRAM cells vary from their nominal
values, leading to a degradation of inference accuracy.

To demonstrate the effect of variations and noise on the
inference accuracy of neural networks, we use a log-normal
distribution to inject variations into weights of neural networks
as an example. This log-normal variation model is widely
adopted, e.g., in [11], [12], [7].

w = wnominal ∗ eθ (1)

θ ∼ N(0, σ2) (2)

where wnominal is the nominal value of a weight after training
and θ is a Gaussian random variable with σ as its standard

VGG16-Cifar100
VGG16-Cifar10

A
cc

ur
ac

y
(%

)

0

20

40

60

80

100

Weight variation (σ)
0 0,1 0,2 0,3 0,4 0,5

LeNet-5-MNIST
LeNet-5-Cifar10

A
cc

ur
ac

y
(%

)

0

20

40

60

80

100

Weight variation (σ)
0 0,1 0,2 0,3 0,4 0,5

Fig. 2: Inference accuracy degradation of neural networks under
variations in weights.

deviation. For different weights, their corresponding variables
θs are independent.

Figure 2 shows the mean values and the standard deviations
of the inference accuracy of VGG16 [13] and LeNet-5 [14] on
Cifar100, Cifar10, and MNIST datasets under different levels
of weight variations using the model in (1) and (2). The solid
lines in the middle of the ranges represent the mean values
and the ranges represent the standard deviations. According to
Figure 2, even with relatively small variations, the accuracies
of the neural networks have degraded noticeably. As the
amount of variations increases, the accuracy drops even more
drastically, which makes the neural networks unusable in
practice. In addition, VGG16 with more layers exhibited a
more drastic accuracy degradation than LeNet-5. The reason
is that as these data propagate through more layers, not only
are further variations accumulated but the deviations in early
layers can also be amplified by the computation in later layers.

III. Design methodology for error suppression
and compensation

In this paper, we propose to suppress error propagation
through layers by applying a modified Lipschitz constant
regularization [15], [16], [17]. To further enhance inference
accuracy, an error compensation for selected layers is pro-
posed. With these techniques, the inference accuracy of neural
networks can be recovered effectively to enable their execution
on analog accelerators for energy-efficient computing. The
proposed method is very general and can be applied into any
analog in-memory computing platform for neural networks by
adapting the variation model according to the corresponding
analog devices.

A. Lipschitz constant regularization for error suppression
A function f : X → Y is Lipschitz constrained [16], [15]

if it satisfies a certain p-distance metric

|f(x1)− f(x2)|p ≤ k |x1 − x2|p , ∀x1,x2 ∈ X (3)

where the p-norm |·|p calculates the p-distance metric between
two vectors. For the function f , the smallest value of the
non-negative constant k is denoted as the Lipschitz constant
L(f) = k and f is said to be k-Lipschitz. The Lipschitz
constant L(f) describes how f scales with respect to its input.
If L(f) is larger than 1, any change in the input is amplified by
f ; otherwise, the change is suppressed. For multiple functions
f1, . . . fl with Lipschitz constants k1, · · · kl, their composition

Layer 1

Layer

Layer

0

0

ReLU

Layer

S
oftm

ax

Fig. 3: Lipschitz constant regularization and composition in a neural
network.

is also Lipschitz constrained as

f = (fl ◦ fl−1 ◦ ... ◦ f1)(x) (4)
L(f) ≤ kl · kl−1 · ... · k1. (5)

In other words, the Lipschitz constant of the composition
function is upper bounded by kl · kl−1 · ... · k1.

The composition of functions and the Lipschitz constant of
the composition can be used to bound the forward propagation
of errors in a neural network, because forward propagation
of a neural network can be considered as a composition of
operations of successive layers, as shown in Figure 3. If the
ith layer of a neural network realizes a function fi(x), the
function of the neural network with l layers can thus be written
as (4).

The concept of suppressing errors in neural networks can
be illustrated in Figure 4. When specific data, e.g., an image,
travels through the neural network, the inputs to the ith layer
may differ from the nominal values, because the variations in
the weights of the first i − 1 layers cause changes in their
outputs and thus in the inputs of the ith layer. The task of
error suppression is thus to train the neural network to obtain
a set of weights that limit the deviation of the outputs of
layers of the neural network from their nominal values when
variations are considered. This training is implemented based
on the composition of the functions of the layers in the neural
network and Lipschitz constant regularization.

Assume that the nominal inputs to the ith layer are written
as x1 and the inputs affected by variations in the first i − 1
layers are written as x2, then the deviation of the outputs
of the ith layer from the nominal values can be evaluated as
|fi(x1)− fi(x2)|p, where fi(·) is the function of the ith layer
converting its inputs to the outputs. To suppress this deviation,
called error henceforth, we will use (3) with k ≤ 1. In other
words, errors will not be amplified after a layer is traveled
through. According to the composition in (4), if all the layers
in the neural network can meet the Lipschitz constraint with
k ≤ 1, the errors at the outputs of the neural network will also
be restrained according to (5).

For a specific layer in the neural network, its function fi can
be expressed as the composition of f ′i and fϕ, as illustrated in
Figure 3. f ′i = w ◦ eθ · x + b implements the matrix-vector
multiplication and the sum with bias, in which b is the bias
vector and w is the weight matrix of the layer. w ◦ eθ is
the element-wise multiplication of the weight values with the
random variables eθ to incorporate the effect of variations
according to (1). fϕ is the ReLU function. The ReLU function
does not amplify any deviations and its Lipschitz constant is

Base model

Input features to
layer i with errors

Lipschitz regularized
Error amplification
due to variations

Weight distributions

Error suppression
layer i layer i+1

Nominal
value

Nominal
value

Fig. 4: Lipschitz constant regularization for error suppression.

always equal to 1. Therefore, we only need to constrain the
Lipschitz constant of f ′i to suppress error amplification, as∣∣(w ◦ eθ · x1 + b)− (w ◦ eθ · x2 + b)

∣∣
p
≤ k |x1 − x2|p

(6)

⇔
∣∣w ◦ eθ · (x1 − x2)

∣∣
p
≤ k |x1 − x2|p

(7)

⇔

∣∣w ◦ eθ · (x1 − x2)
∣∣
p

|x1 − x2|p
≤ k. (8)

According to the definition of the p-norm of a matrix ‖ . ‖p,
the condition in (8) can be expressed further as

sup

(∣∣w ◦ eθ · (x1 − x2)
∣∣
p

|x1 − x2|p

)
=‖ w ◦ eθ ‖p≤ k (9)

which shows that error propagation in a layer can be sup-
pressed by constraining ‖ w · eθ ‖p.

Since eθ in (9) represents a matrix of independent random
variations, ‖ w ◦ eθ ‖p cannot be evaluated directly. To
address this problem, we use µeθ + 3 · σeθ to bound the
random variable eθ. Since eθ has a lognormal distribution,
µeθ + 3 · σeθ = e

σ2

2 + 3
√

(eσ2 − 1)eσ2 , in which σ is the
standard deviation of θ. Accordingly, (9) can be converted
into

‖ w ‖p≤ λ, λ =
k

e
σ2

2 + 3
√
(eσ2 − 1)eσ2

. (10)

In the proposed method, we use the L2 norm to bound w
in (10), which corresponds to the spectral norm of w. The
spectral norm of a matrix is the maximum singular value of
the matrix. To limit the spectral norm of the weight matrix, a
regularization term is added to the loss function when training
the neural network, as

Loss = Lce + β ∗
∑

wi∈W

‖ wT
i wi − λ2I ‖2 (11)

where Lce is the original cross-entropy loss and wi is the
weight matrix of the ith layer, W is the set of weight matrices
of all layers, and β is a regularization hyperparameter. The
added regularization term keeps the weight matrix orthogonal
to limit its maximum singular value by λ and hence limit its
spectral norm.

The extra regularization term in (11) is calculated from
all the layers in the neural network. In applying (11), λ is
determined by setting the Lipschitz constant k to 1, so that
errors will not be amplified. According to (4) and (5), this

Generator

Compen-
sator

conv1

Average
pooling

Feature maps
to next layer

Error
compensation

data

&

&

3
 1

 1

 6

 filters

3
 1

 1

 6

 filters

3
 3

 3

 3

 filters

Input/output feature maps
of the original layer conv1

Fig. 5: Error compensation for a convolutional layer.

composition can thus suppress error propagation in the whole
neural network.
B. Error compensation for accuracy recovery

To further enhance inference accuracy, we propose to intro-
duce light-weighted error compensation to the early layers to
recover the inference accuracy. This error compensation incurs
only a marginal computational cost, so that it can be executed
on digital circuits [18] and is thus considered immune from
the effect of variations.

Inspired by the concept of error correction in communica-
tion systems, which has been proposed as early as in [19], we
generate error compensation data from the input and the output
of a layer. The error compensation data are then used by a
compensator to reduce the errors propagated through this layer.
The concept of applying error compensation to a convolutional
layer in a neural network is illustrated in Figure 5. The
generator is a small convolutional layer. The input and output
feature maps of the original convolutional layer (conv1) are
concatenated and used as the input of the generator to produce
the compensation data. Since the dimensions of input feature
maps and output features maps of the original layer do not
match, we apply average pooling to reduce the dimension of
the input feature maps so that they can be concatenated with
the output feature maps and processed by the same filter.

The generator contains m 1 × 1 × (l + n) filters, where
l and n are the number of input feature maps and the
number of output feature maps in the original layer (conv1),
respectively. In the example in Figure 5, we use l = n = 3 to
explain the working mechanism of the generator. We use 1×1
kernel dimension for two advantages. First, its computational
overhead is low. Second, the generated compensation data has
the same dimension of the output feature maps of the original
layer, so that error compensation can also be implemented with
simple 1×1 kernels in the compensator. The number of filters
m indicates the number of output feature maps produced by
the generator, e.g., 3 in Figure 5. The larger m is, the larger is
the computational cost and the more robust the neural network
potentially becomes.

The compensator is also a convolutional layer taking the
compensation data generated by the generator and the output
feature maps of the original layer as input. This compensator
contains n 1 × 1 × (n + m) filters. The n filters in the
compensator guarantee that the compensator produces the
same number of feature maps as the original layer. The n+m

kernels are required due to the concatenation of the output
feature maps of the original layer and the outputs of the
generator.

When training the weights in the generators and compen-
sators introduced to some layers in a neural network, the
weights in the original layers are fixed to the values after ap-
plying Lipschitz constant regularization and stay non-trainable,
while the weights in the generators and compensators are
kept trainable. The generators and compensators are then
trained with the same training data using the original cost
function. In this training, variations are sampled statistically
and applied to the corresponding weight values in the original
layer during each training batch. The weights in the generators
and compensators are then adjusted in backward propagation
to reduce the cost function.

To determine the locations of error compensation, we first
inject variations into the layers from the last one backwards
to the ith layer. When i is reduced, more layers contain
variations, leading to a decreased inference accuracy. The
candidates of the neural network layers for error compensation
are then determined as the first i layers when the variations
in the ith layer to the last layer lead to an inference accuracy
lower than 95% of the original accuracy.

In the next step, we will apply RL to select concrete
layers in the first i layers and their numbers of filters for
error compensation. During this process all the layers of a
neural network are injected variations. Figure 6 illustrates the
application of RL, where the environment is defined as the
neural network trained with error suppression and compensa-
tion whose locations and the filter numbers are determined by
RL. The state of the environment is the specified locations of
error compensation and the corresponding number of filters.
To represent the state, we use a sequence of n floating point
numbers, e.g., S1, ..., Si, ... Sn, where Si is the ratio of the
number of filters in the generator to the number of filters in
the original ith layer. For example, S2 = 0.5 means that the
number of filters in the corresponding generator of the second
layer is 0.5 times the number of filters of the original second
layer. S ≤ 0 means no insertion of error compensation at a
layer. To generate such a sequence for the environment state,
we adopt recurrent neural network as the policy neural network
in the agent.

To train the policy neural network, we define a reward
function as follows

R =

{
accavg − accstd − overhead, if overhead ≤ limit
−overhead, otherwise

(12)
where accavg , and accstd are the average and the standard
deviations of the inference accuracy of the trained neural
network under the current environment state, respectively. The
overhead represents the ratio of the number of weights in
the compensation layers to the number of weights in the
original neural network. To avoid large computational cost
incurred by error compensation during the search process, a
maximum number of weights for error compensation is set. If
the overhead of a solution exceeds the maximum limit in (12),

𝐿𝑜𝑠𝑠 = 𝐿𝑐𝑒 + 𝛽 ∗
𝑤𝑖 ∈ 𝑾

𝑤𝑖
𝑇𝑤𝑖 − 𝜆2𝐼

2

A1

S1

RNN

A2

S2

RNN

An

Sn

RNN

A
ctions R

ew
ard

&
 S

tate

Agent

Train withEnvironment

Fig. 6: RL search for locations and filter numbers of error compen-
sation. A1, A2, ... An is the action sequence generated by the policy
neural network in the agent. S1, S2, ... Sn is the sequence to represent
the state of the environment.

a negative reward is generated directly, so that the training of
neural networks with error suppression and compensation in
the current iteration can be skipped to make the agent learn
fast and thus reduce execution time. In the experiments, 1%,
2%, and 3% weight overhead were used as the maximum limit
and the solution that generates the best accuracy was selected
as the result. To determine the parameters of the policy neural
network, a given number of episodes, each of which includes
a specific number of learning iterations, are used.

IV. Experimental results
To evaluate the proposed framework, two neural networks,

VGG16 [13] and LeNet-5 [14] were tested against three
different datasets, Cifar100, Cifar10 and MNIST. The neural
networks were trained with Nvidia Quadro RTX 6000 GPUs.
The variation model used in the experiments was the log-
normal distribution of weights mapped onto RRAM cells (1)
and (2) as in [11], [12], [7]. In (10) and (11), k is set to
1 to suppress the propagation of errors and λ is determined
based on the variations and the value of k. In the experiments,
the network weights were sampled 250 times according to the
variation model in (1) and (2) and inference accuracy was
evaluated for each sample.

Table I summarizes the results showing the performance of
the CorrectNet framework when σ in (1) and (2) was set to
0.5. This variation setting is already very large for variations
in RRAM cells [11], [12], [7]. The column σ = 0 in Table I
shows the inference accuracy of the original neural networks
without variations. When variations of the amount σ = 0.5
were applied to the weights in the original neural networks, the
inference accuracy degraded significantly down to as low as
1.69% on average for VGG16-Cifar100. With the CorrectNet
framework, this accuracy can be recovered back to 67.01%
on average, more than 95% of the inference accuracy without
variations. In Table I, the lowest ratio of the inference accu-
racy of CorrectNet to the original inference accuracy without
variation is 92% (LeNet-5-Cifar10, 74.9%/80.89%=92.6%).

In the CorrectNet framework, the Lipschitz training method
does not require extra resource or incur extra computational
cost. The overhead results from the compensation layers. In
Table I, the weight overhead is calculated as the percentage
of the number of weights in the compensation layers to the
number of weights in the original neural network. Compared

TABLE I: Experimental results of CorrectNet.

Network-Dataset
Inference accuracy CorrectNet

Original network CorrectNet overhead
σ = 0 σ = 0.5 σ = 0.5 Weights #Layers

VGG16-Cifar100 70.52% 1.69% 67.01% 1.03% 4
VGG16-Cifar10 93.2% 16.01% 91.29% 0.58% 3
LeNet-5-Cifar10 80.89% 25.29% 74.9% 3.47% 1
LeNet-5-MNIST 98.79% 84.58% 97.47% 5% 2

corrected (overhead=1.03%)
VGG16-Cifar100

A
cc

ur
ac

y
(%

)

0
10
20
30
40
50
60
70
80

Weight variation (σ)

0 0,1 0,2 0,3 0,4 0,5

corrected (overhead=0.58%)
VGG16-Cifar10

A
cc

ur
ac

y
(%

)

0
10
20
30
40
50
60
70
80
90

100

Weight variation (σ)

0 0,1 0,2 0,3 0,4 0,5

corrected (overhead = 3.47%)
LeNet-Cifar10

A
cc

ur
ac

y
(%

)

0
10
20
30
40
50
60
70
80
90

Weight variation (σ)

0 0,1 0,2 0,3 0,4 0,5

Corrected (overhead=5%)
LeNet-MNIST

A
cc

ur
ac

y
(%

)

0
10
20
30
40
50
60
70
80
90

100

Weight variation (σ)

0 0,1 0,2 0,3 0,4 0,5

Fig. 7: Accuracy of CorrectNet under different variations.

with the computational operations in the original neural net-
works, the weight overhead of CorrectNet is marginal while
an effective accuracy recovery is still achieved. The numbers
of compensation layers in the neural networks after applying
CorrectNet are also shown in the last column of Table I,
which confirm that only some layers in the original neural
networks require error compensation after error suppression
with Lipschitz constant regularization is applied.

To demonstrate the capability of CorrectNet under different
variation scenarios, we tested this framework using the same
combinations of neural networks and datasets under different
variation settings. The results are shown in Figure 7. In
each of these figures, we compare the inference accuracy of
CorrectNet and the original neural network. The mean values
are shown with the solid lines while the ranges show the
standard deviations. In all these test cases, CorrectNet has
demonstrated an effective and robust trend to recover inference
accuracy under different variations.

To evaluate CorrectNet, we also compare its results with
those from [9], [8], [11] as shown in Figure 8. The x-
axis represents the overhead incurred by weights for error
compensation, and the y-axis is the mean value of the in-
ference accuracy under variations of σ = 0.5. According to
this comparison, CorrectNet achieves a higher accuracy than
[8] and [9] with a smaller overhead in case of non-online
retraining. In the case with time-consuming online retraining
in [8] and [9], CorrectNet can also achieve a similar accuracy
with a lower overhead while time-consuming online retraining
is not needed. CorrectNet also outperforms [11] in accuracy
with a slightly larger overhead.

To demonstrate the effectiveness of Lipschitz constant reg-
ularization, we added variations to the weights from the ith
layer to the last layer of the neural networks after training
with this regularization, while error compensation was dis-

LeNet-CIFAR10

CorrectNet outperforms non-retrained [12]

CorrectNet: same accuracy, lower cost
Time-consuming online retraining in [12]

[12] without online retraining
CorrectNet
[12] with online retraining

A
cc

ur
ac

y
at

 σ
 =

 0
.5

 (
%

)

40

50

60

70

80

90

overhead (%)

0 5 10 15 20

VGG16-CIFAR10
CorrectNet: similar accuracy, lower cost

CorrectNet outperforms non-retrained [11][14]

Time-consuming online retraining in [11]

[11] without online retraining
[14] without online retraining
CorrectNet
[11] with online retraining

A
cc

ur
ac

y
at

 σ
 =

 0
.5

 (
%

)

60

70

80

90

100

overhead (%)

0 2 4 6 8 10

Fig. 8: CorrectNet versus the state of the art [9], [8], [11].

abled. Figure 9 shows the inference accuracy of the neural
networks with these variations from the ith layer to the last
layer while σ was set to 0.5. The results corresponding to
starting layer 1 on the x-axis are the cases applying Lipschitz
constant regularization to the whole neural networks without
error compensation. From this figure, it can be observed that
Lipschitz constant regularization can counter variations in the
late layers of the neural networks effectively. But the inference
accuracy of the neural networks is very sensitive to variations
in early layers and the accuracy can only be recovered by error
compensation in early layers to achieve the results shown in
Table I.

In CorrectNet, the locations and parameters of error com-
pensation are determined by RL. According to Figure 9, the
first six layers of VGG16 processing the dataset Cifar100
were selected as candidates to be evaluated in RL search.
Figure 10 shows the quality of the explored solutions for
error compensation with σ set to 0.5. The x-axis shows the
weight overhead of compensation layers and the y-axis shows
the corresponding inference accuracy. The range for each dot
represents the standard deviation of the inference accuracy. If
all these six layers contain error compensation, the overhead
is 4.29% while the mean value and the standard deviation of
the inference accuracy are 67.14% and 0.83%, respectively.
In contrast, RL determines that only four layers need error
compensation and the mean value and the standard deviation
of the inference accuracy can be recovered to 67.01% and
0.87%, respectively. This inference accuracy, which already
reaches 95% of the original inference accuracy, is comparable
with that achieved by exhaustive error compensation where all
six layers contain error compensation.

V. Conclusion
In this paper, we have proposed the CorrectNet framework

to recover inference accuracy of in-memory analog computing

VGG16-Cifar100
VGG16-Cifar100, 95% accuracy
VGG16-Cifar10
VGG16-Cifar10, 95% accuracy
LeNet-5-Cifar10
LeNet-5-Cifar10, 95% accuracy

A
cc

ur
ac

y
(%

)

10
20
30
40
50
60
70
80
90

#Starting layer of variations (σ = 0.5)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 9: Lipschitz constant regularization against variations from a
given layer to the last layer.

compensation
Exhaustive error

Selected by RL balancing accuracy and overhead

VGG16-Cifar100 RL search

A
cc

ur
ac

y
at

 σ
 =

 0
.5

 (
%

)

61
62
63
64
65
66
67
68
69

overhead (%)

0 1 2 3 4 5

Fig. 10: RL search for locations and parameters of error compensa-
tion.

platforms under variations. The proposed framework con-
sists of error suppression by training with Lipschitz constant
regularization and error compensation for sensitive layers.
With only a marginal overhead, the CorrectNet framework
can recover inference accuracy from as low as 1.69% under
variations and noise back to more than 95% of their original
accuracy.

Acknowledgement
This work is funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) – 457473137.

References
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Advances in neural information processing systems, vol. 25, pp. 1097–1105, 2012.
[2] C.-C. Chiu, T. N. Sainath, Y. Wu et al., “State-of-the-art speech recognition with sequence-to-

sequence models,” in IEEE Int. Conf. Acoustics, Speech, and Signal Proc. (ICASSP), 2018.
[3] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, 2015.
[4] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie, “Prime: A novel processing-

in-memory architecture for neural network computation in ReRAM-based main memory,” in
International Symposium on Computer Architecture (ISCA), 2016.

[5] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu, R. S. Williams,
and V. Srikumar, “ISAAC: A convolutional neural network accelerator with in-situ analog arithmetic
in crossbars,” in International Symposium on Computer Architecture (ISCA), 2016.

[6] D. Niu, Y. Chen, C. Xu, and Y. Xie, “Impact of process variations on emerging memristor,” in
ACM/IEEE Des. Autom. Conf. (DAC), 2010.

[7] B. Liu, H. Li, Y. Chen, X. Li, Q. Wu, and T. Huang, “Vortex: Variation-aware training for memristor
X-bar,” in ACM/IEEE Des. Autom. Conf. (DAC), 2015.

[8] G. Charan, J. Hazra, K. Beckmann et al., “Accurate inference with inaccurate RRAM devices:
Statistical data, model transfer, and on-line adaptation,” in ACM/IEEE Des. Autom. Conf. (DAC),
2020.

[9] A. Mohanty, X. Du, P.-Y. Chen, J.-S. Seo, S. Yu, and Y. Cao, “Random sparse adaptation for accurate
inference with inaccurate multi-level RRAM arrays,” in IEEE Int. Electron Dev. Meeting (IEDM),
2017.

[10] Y. Zhu, G. L. Zhang, T. Wang, B. Li, Y. Shi, T.-Y. Ho, and U. Schlichtmann, “Statistical training
for neuromorphic computing using memristor-based crossbars considering process variations and
noise,” in IEEE Des., Autom., and Test Europe Conf. (DATE), 2020.

[11] Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN accelerator with un-reliable
ReRAM,” in IEEE Des., Autom., and Test Europe Conf. (DATE), 2019.

[12] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang, “Accelerator-friendly neural-
network training: Learning variations and defects in RRAM crossbar,” in IEEE Des., Autom., and
Test Europe Conf. (DATE), 2017.

[13] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recogni-
tion,” in Int. Conf. Learn. Repr. (ICLR), 2015.

[14] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel,
“Backpropagation applied to handwritten Zip code recognition,” Neural computation, vol. 1, no. 4,
pp. 541–551, 1989.

[15] H. Gouk, E. Frank, B. Pfahringer, and M. J. Cree, “Regularisation of neural networks by enforcing
Lipschitz continuity,” Machine Learning, vol. 110, no. 2, pp. 393–416, 2021.

[16] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier, “Parseval networks: Improving
robustness to adversarial examples,” in Int. Conf. Machine Learn. (ICML), 2017.

[17] J. Lin, C. Gan, and S. Han, “Defensive quantization: When efficiency meets robustness,” in Int.
Conf. Learn. Repr. (ICLR), 2019.

[18] A. Kosta, E. Soufleri, I. Chakraborty, A. Agrawal, A. Ankit, and K. Roy, “HyperX: A hybrid RRAM-
SRAM partitioned system for error recovery in memristive xbars,” in IEEE Des., Autom., and Test
Europe Conf. (DATE), 2022, pp. 88–91.

[19] C. E. Shannon, “A mathematical theory of communication,” The Bell system technical journal,
vol. 27, no. 3, pp. 379–423, 1948.

	I Introduction
	II Preliminaries and motivation
	III Design methodology for error suppression and compensation
	III-A Lipschitz constant regularization for error suppression
	III-B Error compensation for accuracy recovery

	IV Experimental results
	V Conclusion
	References

