
Energy-efficient Wearable-to-Mobile Offload of ML
Inference for PPG-based Heart-Rate Estimation

Alessio Burrello∗†, Matteo Risso†, Noemi Tomasello†, Yukai Chen, Luca Benini∗,
Enrico Macii†, Massimo Poncino†, Daniele Jahier Pagliari†

∗ DEI, Università di Bologna, Bologna, Italy † Politecnico di Torino, Turin, Italy
Emails: name.surname@unibo.it, name.surname@polito.it

©2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.
Published at 2023 Design, Automation & Test in Europe Conference & Exhibition (DATE).

Abstract—Modern smartwatches often include photoplethysmo-
graphic (PPG) sensors to measure heartbeats or blood pressure
through complex algorithms that fuse PPG data with other signals.
In this work, we propose a collaborative inference approach
that uses both a smartwatch and a connected smartphone to
maximize the performance of heart rate (HR) tracking while also
maximizing the smartwatch’s battery life. In particular, we first
analyze the trade-offs between running on-device HR tracking or
offloading the work to the mobile. Then, thanks to an additional
step to evaluate the difficulty of the upcoming HR prediction, we
demonstrate that we can smartly manage the workload between
smartwatch and smartphone, maintaining a low mean absolute
error (MAE) while reducing energy consumption. We benchmark
our approach on a custom smartwatch prototype, including the
STM32WB55 MCU and Bluetooth Low-Energy (BLE) commu-
nication, and a Raspberry Pi3 as a proxy for the smartphone.
With our Collaborative Heart Rate Inference System (CHRIS), we
obtain a set of Pareto-optimal configurations demonstrating the
same MAE as State-of-Art (SoA) algorithms while consuming less
energy. For instance, we can achieve approximately the same MAE
of TimePPG-Small [1] (5.54 BPM MAE vs. 5.60 BPM MAE) while
reducing the energy by 2.03×, with a configuration that offloads
80% of the predictions to the phone. Furthermore, accepting a
performance degradation to 7.16 BPM of MAE, we can achieve
an energy consumption of 179 uJ per prediction, 3.03× less than
running TimePPG-Small on the smartwatch, and 1.82× less than
streaming all the input data to the phone.

Index Terms—PPG, HR, MCUs, TinyML

I. INTRODUCTION

First-generation wrist-worn devices were equipped mainly
with accelerometers to predict daily human activities and
assess the user’s fitness status. More recently, thanks to the
introduction of new miniaturized sensors and energy-efficient
MCUs [2], wearable systems started supporting additional
personal care functionalities, such as HR monitoring and blood
pressure measurement [3]. Nowadays, the PPG sensors in
smartwatches have almost wholly replaced chest bands with
Electrocardiograms (ECG) for continuous HR monitoring, be-
ing much easier to wear and comfortable for daily usage.
However, PPG sensors, which measure an optical signal related
to the blood flow in capillaries, are less accurate and more
prone to noise than ECGs. The main noise sources are Motion
Artifacts (MAs), usually caused by a leakage of light between
the skin and the smartwatch during movement.

The problem of reducing the impact of MAs has been
extensively addressed in the SoA. Since the introduction of
the first publicly available PPG-based dataset [4] in 2014, a
series of algorithms [4], [5] based on filtering or correlating ac-
celerometer and PPG signals have been proposed to cope with

MAs distortion. These techniques achieve excellent accuracy,
but they are often computationally expensive and generalize
poorly on subjects not observed during parameters’ tuning.

Recently, deep learning approaches have demonstrated to i)
improve accuracy, ii) improve generalization, and iii) reduce the
cost of HR estimation. In 2019, PPGDalia [6] introduced the
largest publicly available PPG dataset, together with the first
deep learning algorithm for HR estimation, based on frequency
spectrum extraction and 2D convolutional networks. This
algorithm obtained superior performance to the SoA but with
very high costs for embedded deployment. Subsequent works
on PPG-based HR estimation have given more consideration
to deployment aspects but focused only on scenarios in which
the prediction is performed entirely on the smartwatch that
collects the PPG data [7], or on a higher-end mobile device [8].

Conversely, our work considers a more general setting in
which both the wearable and the mobile, connected through a
BLE link, can perform HR predictions. To properly map the
workload on this multi-device system, we propose CHRIS, a
Collaborative Heart Rate Inference System, which combines
and orchestrates classical and DL approaches. CHRIS evalu-
ates, for each input sample, which one of the available HR
tracking algorithms should be executed, and where (smartwatch
or phone), to achieve good accuracy while minimizing energy
consumption. In detail, our contributions are:

• We demonstrate that running HR tracking algorithms only
on a smartwatch is not always the optimal solution.

• We propose CHRIS, a mapping system that uses an
Activity Recognition algorithm to differentiate between
easy and hard to process PPG windows based on the
amount of MAs, consequently selecting an appropriate
HR tracking model and dispatching its execution to the
smartwatch or to the mobile.

• We analyze the results obtained deploying CHRIS on a
real system composed by the HWatch [9], which features a
STM32WB55 as the main MCU, and by a Raspberry Pi3,
as a proxy of the phone. We compare CHRIS with single-
device solutions in terms of mean absolute error (MAE)
and wearable energy. To benchmark the MAE, we use
PPGDalia [6], the largest publicly available PPG dataset
for HR prediction.

Thanks to CHRIS, we obtain a rich collection of Pareto points,
including solutions that are superior to any single-model/single-
device approach. For instance, we achieve 5.54 Beats Per
Minute (BPM) of MAE (roughly equivalent to the 5.60 BPM
obtained by a state-of-the-art deep learning model, TimePPG-

ar
X

iv
:2

30
6.

06
12

9v
1

 [
ee

ss
.S

P]
 8

 J
un

 2
02

3

Small [1]), while consuming 22% less energy compared to an
approach that always executes this model on the phone (i.e.,
streaming all the data to it), and 44.3% less compared to always
executing it on the smartwatch. This result is obtained by
executing a deep network (on the phone) only for particularly
difficult inputs, and replacing it with a much simpler determin-
istic model, executed on the smartwatch, for easy samples.

II. BACKGROUND & RELATED WORK

A. Photopletismographic signal

The photoplethysmographic signal measures the light absorp-
tion variations of blood vessels [10]. A PPG sensor measures
1 to 3 components, acquired through Light-Emitting Diodes
(LEDs) that continuously emit light to the skin at different
frequencies (green, red, and infrared), and a corresponding
photodetector that measures the amount of the reflected light
caused by the blood flow, which follows the HR periodicity.
In particular, a larger blood volume implies a more significant
attenuation of the light emitted by the LED. Therefore, the
photodetector will generate a lower current that can be associ-
ated with a heartbeat. As anticipated in Sec. I, the simplicity of
this sensor comes with the significant challenge of managing
the so-called MAs generated by light leaking between the skin
and the device due to the subject’s movement. The standard
approach to tackle the MAs is to leverage sensor fusion, using
additional inputs from an inertial sensor (accelerometer), whose
correlation with PPG is used to mitigate the MAs. More details
can be found in [8].

B. Collaborative Inference

Collaborative inference refers to the execution of ML in-
ference tasks on a distributed system composed of multiple
edge and cloud devices [11]. It is a specialization of the more
general edge-cloud offloading paradigm [12], and was initially
proposed to split the execution of large deep neural networks
(e.g., layer-wise or input-wise) in a way that optimizes the total
response time of the system, or the energy consumption of the
edge node [11], [13]. More recently, collaborative inference
has been extended to scenarios in which the involved devices
can execute heterogeneous ML models based on their com-
putational capabilities [14]. While this approach can generally
involve any number of connected devices and various types
of relationships among them, the most common embodiment
includes one low-power, low-performance “in-field” device
offloading computational tasks to a more powerful “remote
device” [11]. In our work, these two roles are taken by the
PPG-equipped wearable and by the mobile, respectively.

C. The HWatch Platform

Although our proposed method, CHRIS, is orthogonal to
the underlying hardware platform, in this work, we benchmark
it on the HWatch [9], a custom board specifically designed
to develop wrist-worn applications with the form factor of a
smartwatch. The watch includes a STM32WB55RGV6 System-
on-Chip (SoC) from ST Microelectronics 1, named STM32WB

1https://www.st.com/en/microcontrollers-microprocessors/stm32wb55rg.html

hereafter. The STM32WB is composed of two fully indepen-
dent cores, an Arm® Cortex®-M4 core running at 64 MHz
(application processor) and an Arm® Cortex®-M0+ core at
32 MHz (network processor). The STM32WB also includes a
Radio-Frequency (RF) transceiver with a radio stack compliant
with BLE 5.0 standard. The power supply sub-system of the
board exploits a TPS63031 buck-boost converter from Texas
Instruments. This converter reaches 90% efficiency during sen-
sor acquisition and processing modes. A Li-Ion 370 mA@3.7V
battery is used by the TPS63031 as primary power source.

Besides MCU and power supply, two other sensors, a
MAX30101 2, and an LSM6DSM 3, are included in the system.
The former is a low-power pulse oximeter and HR monitor (i.e.,
PPG) module, while the latter is a 6-D inertial measurement
unit with a ML core optimized for executing Random Forests
(RFs). They are connected with the MCU using respectively
I2C and SPI digital busses. The hardware power consumption
of the different components is analyzed in [9].

D. Related Work

The seminal work that paved the way for PPG-based HR
monitoring was published in 2014 [4], together with the first
open-access dataset (the 12-subject SPC). The authors proposed
an algorithm based on signal decomposition, spectrum extrac-
tion, and peak tracking (TROIKA), achieving 2.34 BPM of
MAE. In successive years, many works have been published
which use similar processing chains to improve the results on
the SPC dataset, reducing the MAE down to 0.89 BPM [5].

Despite the impressive results, these processing pipelines
hardly generalize to new and unseen data [6]. For this reason,
in 2019, the authors of [6] introduced the first deep learning
approach to this task, a 2D-CNN with a pre-processing step to
extract the signal’s spectrum. In [6], the authors also introduced
PPGDalia, the largest PPG dataset publicly available, which is
also used in this work. In the following few years, many dif-
ferent deep learning based solutions have been published [15]–
[18]. However, only a very limited number of works coupled
the powerful generalization of DNNs with studying their de-
ployment on real devices. In particular, [7], [19] introduced
two collections of temporal convolutional networks, QPPG
and TimePPG, with different accuracy and complexity, which
could be deployed on low-power MCUs. Furthermore, [19]
also introduced an arbitration criterion to combine multiple
DNNs at runtime. These works, however, only considered the
scenario in which the HR tracking task is entirely handled by
the smartwatch.

In our work, we extend the concept of an ensemble of
classifiers of [19] with collaborative inference, allowing the
usage of different models on board and the possibility to offload
the workload to a more powerful connected device, opening
more opportunities for energy minimization. To the best of our
knowledge, we are the first to investigate collaborative inference
for this task.

2https://www.maximintegrated.com/en/products/interface/sensor-
interface/MAX30101.html

3https://www.st.com/resource/en/datasheet/lsm6dsm.pdf

Fig. 1. The CHRIS framework. The main components are the Decision Engine
and the Models Zoo. The framework outputs are the model to be executed and
the platform to be used (phone or smartwatch).

TABLE I
EXAMPLE OF MODELS USED TO CONSTRUCT CHRIS CONFIGURATIONS.

Energy [mJ]
MAE [BPM] Board Phone BLE

AT 10.84 0.23 1.61
0.52TimePPG-Small 5.63 0.543 5.54

TimePPG-Big 4.88 41.11 25.60

III. COLLABORATIVE HEART RATE INFERENCE SYSTEM

CHRIS is a simple runtime executing on the smartwatch,
which optimizes the HR tracking error and energy consumption
based on: i) a proxy of the “difficulty” of the current input, ii)
the connection status, and iii) a user-defined error or energy
constraint. To achieve this goal, CHRIS embodies multiple
models for HR estimation: for each new estimation, a model is
chosen from the set and either executed locally on the wearable
or offloaded to a connected phone.

Fig. 1 depicts the system, its inputs, and the network dis-
patching. The main components are the Decision Engine, which
is utilized to choose which model to execute and on which
device (Fig. 2), and a Models Zoo, a collection of models each
characterized by its error and by the on-board and on-phone
energy consumption (Table I).

A. CHRIS Configurations

The first component of CHRIS is a collection of operating
configurations that are profiled offline, storing the results of
such profiling on the smartwatch. We call configuration a group
of 2 HR prediction models, where only one model is executed
for each input window. Each configuration is characterized in
terms of average energy consumption, average MAE, difficulty
threshold used by the decision engine (detailed below), and type
of execution (entirely on the smartwatch or hybrid). Average
energy and MAE are estimated on a profiling dataset. Each
configuration includes a more accurate but more energy-hungry
model and a less accurate but more efficient one.

Table I reports the characterization of individual models,
whereas Table II shows an example of the configurations’
profiling information stored in the smartwatch MCU memory.

TABLE II
CONFIGURATIONS STORED INSIDE CHRIS.

MAE [BPM] E. [mJ] Models Diff. Exec.
C1 10.11 0.92 [AT, TimePPGSmall] 9 Local
C2 10.05 0.87 [AT, TimePPGBig] 9 Hybrid
. . .
CN 5.11 40.05 [AT, TimePPGBig] 1 Local

Given a configuration and an incoming input window, the
difficulty threshold is used to decide which model to employ
for estimating the HR. We consider 9 different difficulty levels,
corresponding to the activities performed by the subjects in
the PPGDalia dataset [6]. These activities includes i) sitting,
ii) ascending/descending stairs, iii) playing table soccer, iv)
cycling, v) driving a car, vi) having lunch, vii) walking, viii)
working and ix) resting. As discussed in [19], each activity
can be associated with a different quantity of movement,
which corresponds to a different amount of MAs in the PPG
signal, and, therefore, to a different HR estimation difficulty.
For instance, playing table soccer is associated with lots of
MAs, due to the sudden movements of the arms. We can
therefore order the activities by difficulty based on the average
accelerometer signal energy, as proposed in [19], associating
them with a cardinal number from 1 to 9, where lower numbers
correspond to a lower degree of MAs. The difficulty threshold
in CHRIS then determines the maximum difficult level for which
the simpler and more efficient model of a given configuration
will be employed for HR tracking. For instance, if the threshold
is set to 4 for a given configuration, then CHRIS will invoke the
smaller model when it predicts that the subject is executing one
of the 4 “simplest” activities. The more complex model will be
used for inputs that correspond to the remaining five activities.

To reduce the overhead of identifying the appropriate model
to run and the target device, we store configurations ordered
by energy and MAE. In this way, a single linear-complexity
pass-on is sufficient to retrieve the optimal configuration given
the user-defined constraints, which are discussed below.

B. CHRIS Decision Engine

1) Constraints-dependent configuration selection: Fig. 2
shows the internal structure of the decision engine of CHRIS.
The connection status and a user-defined threshold are used
to choose a configuration from the profiling table stored in the
MCU memory. The connection status is used to limit the search
to feasible configurations, i.e., only the local ones (in which
both models run on the smartwatch) when the BLE link is not
available, filtering out hybrid configuration (in which the largest
model runs on the phone). The user-defined threshold, instead,
identifies a specific configuration within the feasible set. It
can be defined either as a maximum expected MAE (ThMAE,
horizontal line in Fig 2), in which case CHRIS identifies the
configuration with the lowest energy consumption achieving a
MAE smaller than ThMAE, or as a maximum expected energy
consumption (ThEn., vertical line in Fig 2), in which case
CHRIS selects the configuration with the best MAE among
those consuming less than ThEn.. These user-defined thresholds
represent a soft constraint that will be respected only when the
on-field input data is distributed similarly to the dataset used
for profiling the configurations.

Fig. 2. Decision Engine of CHRIS. Using as input the connection status and
a user-defined threshold, it selects a configuration and decides which model to
run and where based on the current input.

2) Input-dependent model selection: Having selected a con-
figuration (i.e. a pair of HR tracking models) as discussed
above, CHRIS works by automatically assigning each input
window to one of the two models based on the estimated
amount of motion artifacts. Accordingly, the decision is per-
formed based on accelerometer data through a simple activity
recognition model that assigns each input window to one of the
9 activities described in Sec. III-A. Any classification model
can be used for this step, but in this work we select a small
Random Forest (RF) which, besides reaching a good accuracy,
allows us to deploy the activity recognition classifier directly
on the specialized ML core of the LSM6DSM accelerometer,
relieving the main MCU from this task and saving power
accordingly. As output, the RF provides the activity performed
by the subject, which is compared with the decision threshold
discussed in Sec. III-B. If the predicted activity has a lower
ID than the threshold, the input window is fed to the simplest
model of the pair. Otherwise, the most complex model is exe-
cuted. In all our experiments, we take into account the impact of
RF mispredictions when computing the actual MAE and energy
of a configuration. Nevertheless, since the RF consistently
achieves an accuracy greater than 90% in discerning easy from
difficult activities, we found that occasional mispredictions do
not affect the overall functionality of CHRIS significantly.

C. Benchmark HR tracking and activity recognition models

In this work, we consider three individual HR predictors (a
simple classical algorithm and two deep learning models) as the
basis for building CHRIS configurations. This yields a total of
60 possible configurations (10 difficulty levels, three combina-
tions of 2 out of the 3 models, and two possible destinations
for the execution of the most complex model, i.e., wearable or
mobile). Out of these, 30 are Pareto-optimal, and their profiling
results are stored in the MCU. Notice that, despite the large
number of configurations, the smartwatch only needs to store
(at most) 3 HR tracking models in its local memory. Hence the
memory overhead of CHRIS is limited. Moreover, we underline
that the three models considered in this work are just examples
since, in general, CHRIS’s functionality is orthogonal to the
characteristics of the individual HR predictors.

More specifically, our simplest HR predictor is based on the
Adaptive Threshold (AT) method described in [20]. It computes
the rolling mean of the signal over a window of 24 samples.
Then, regions of interest, i.e., regions where the raw signal is
higher than the mean, are identified. The largest values of each

region are identified as peaks of the signal. Lastly, the distance
between two successive peaks is associated with the HR. AT
requires only ≈ 3k operations per input window, but it is also
the least accurate model, achieving 10.99 BPM of MAE on the
PPGDalia dataset.

The two deep learning models are called TimePPG-Small and
TimePPG-Big, and are taken from [19]. They are two Temporal
Convolutional Networks (TCNs), i.e., 1D convolutional neural
networks with dilation, an additional hyper-parameter that
allows increasing the receptive field without increasing the
network complexity by inserting a fixed gap between the input
activations convolved with the weights’ filters. Both models
have a modular structure with 3 blocks, composed of three
convolutional layers each, two with dilation > 1, and one with
stride = 2 (for a total of 9 convolutional layers in each network).
The difference between TimePPG-Small and TimePPG-Big is
in the number of filters of each layer, which has been optimized
by means of a NAS algorithm. Accordingly, TimePPG-Small
has 5.09k parameters and performs 77.63k operations per
prediction, achieving a MAE of 5.6 BPM on Dalia. TimePPG-
Big, instead, is characterized by 232.6k parameters and 12.27M
operations, which allow it to obtain a lower MAE of just
4.87 BPM on the same dataset. Note that while the MAEs
of the two networks are considerably lower than AT, their
complexity in terms of number of operations is 25.9× and
4090× higher, respectively. Overall, the three considered HR
tracking algorithms span over 6 BPM of MAE, and three orders
of magnitude in complexity, providing a wide optimization
space to CHRIS.

Lastly, the RF used as an activity recognition model is made
of 8 trees with a maximum depth of 5. It is fed with a set
of 4 features extracted from the three accelerometer axes and
selected by performing a grid search over common statistical
features. The 4 selected predictors are: mean, energy, standard
deviation, and number of peaks (i.e., number of discrete deriva-
tive sign changes).

IV. EXPERIMENTAL RESULTS

1) Platforms: We use the HWatch as a target embedded
system for our experiments (Sec. II-C) and a Raspberry Pi3
equipped with an Arm® Cortex®-A53 core as a proxy of the
typical processors found in smartphones. CHRIS and the pre-
diction models are deployed on the STM32WB55 present in the
HWatch using the STM neural network deployment toolchain
X-CUBE-AI [21]. On the Raspberry Pi3, deep learning models
are executed with the TensorFlow Lite interpreter. TimePPG-
Small and -Big are quantized to 8bit using quantization-aware
training before deployment for both target platforms.

2) Dataset: To train the HR-prediction models and the
difficulty detector, we employ data from PPGDalia [6]. The
dataset comprises 37.5 hours of data recorded from 15 subjects.
Each subject performs eight (+ rest) different daily activities,
during which the PPG data is recorded together with 3D-
accelerometer data and the golden HR values collected through
an ECG chest band. We employ the acceleration data and the
activity labels to train the difficulty detector, whereas we use
PPG data, acceleration data, and HR golden values to train

Fig. 3. Baseline models. On the left is the energy consumption of the three
models. On the right is the average MAE over PPGDalia dataset.

the HR tracking neural networks (TimePPG-Big and TimePPG-
Small). We split the data into 5 folds, each composed of three
subjects: in each iteration, we use 4 folds for training, two
subjects of the last fold as validation, and the last subject for
testing. We then rotate each subject within the latter fold as
test, before switching to the next iteration. The raw acceleration
and PPG data are sampled at 32 Hz. We separate the original
time series into windows of 256 samples (8 seconds) with a
stride of 64 (2 seconds) before feeding them to the models. All
experiments are performed using Python 3.6 and PyTorch 1.6.

A. Individual Models Deployment

Fig. 3 reports the energy consumption and MAE of each
model. Specifically, we report the total computation energy on
the HWatch MCU (green bar, including also the energy spent
in idle between two subsequent predictions), the computation
energy on the phone (dark blue), and the BLE transmission
energy (light blue). Note that the latter is fixed since the input
samples dimension does not depend on the selected HR tracking
model. Numerical results are also reported in Table III, together
with the execution time of each model on both platforms and
the number of clock cycles on the HWatch.

As expected, AT is not only the least accurate algorithm but
also the most efficient one to execute on the HWatch (0.234
mJ vs. 0.735 mJ and 41.11 mJ of the two DNNs). Offloading
the execution of this algorithm to a smartphone is thus clearly
sub-optimal, since both the energy consumed by the watch (for
streaming data through BLE) and by the Cortex-A core would
be higher (0.234 mJ vs. 0.519 mJ and 1.604 mJ respectively).

TimePPG-Small achieves a good compromise between MAE
and energy. The consumption of this algorithm on the HWatch
is 3.1× higher than the one of AT, for a 1.96x reduction in MAE
(5.6 BPM vs 10.99 BPM). Therefore, running HR tracking
on the smartwatch with this model is convenient from the
perspective of the whole system’s energy. On the other hand,
if the objective is to optimize the energy consumed by the
smartwatch (often the most critical one from the point of view
of the total lifetime of the system), offloading the HR tracking
to a phone is slightly more convenient (0.735 mJ for execution
vs. 0.519 mJ for BLE transmission).

Lastly, TimePPG-Big is the most accurate and energy-hungry
model; it consumes 41.07 mJ per prediction on the HWatch, a
value more than 2 orders of magnitudes higher than AT, in order

Fig. 4. CHRIS’ configurations in the space MAE vs. Energy. In red are the
points that involve the execution on the smartphone.

Fig. 5. Energy and MAE while varying the number of ”easy” and ”difficult”
human activities.

to reach a 2.25x lower MAE (4.87 BPM). For this algorithm,
local execution on the smartwatch is always sub-optimal, both
in terms of total system energy and considering only the
smartwatch consumption, since BLE transmission requires the
usual 0.519 mJ, while running the model on the Cortex-A
consumes 25.60 mJ. Overall, these results demonstrate that
the choice between local and offloaded execution is not trivial
and depends on the target model, which in turn should be
selected based on the desired maximum HR tracking error or
consumption.

B. CHRIS Exploration of MAE vs. Energy

Fig. 4 shows all the possible solutions covered by CHRIS
in the space MAE vs. smartwatch energy. We focus on the
smartwatch consumption because it is where CHRIS can make
a bigger difference; mobiles execute tens of tasks simultane-
ously, thus HR tracking has a smaller impact on the overall
battery life. The green diamonds in the figure correspond to the
baseline solutions described above, and in particular, the BLE
+ TimePPG-Big point corresponds to a solution that always
offloads HR tracking to the mobile; since in this experiment
we do not optimize the smartphone energy, offloaded samples
are always processed with the most accurate model available
(TimePPG-Big), which yields the lowest possible MAE.

Red and black diamonds connecting individual models cor-
respond to the intermediate solutions provided by CHRIS,
combining two HR tracking algorithms. Each point corresponds
to a different “difficulty threshold”. In this experiment, the
hybrid solution, which combines the local execution of AT
and the remote execution of TimePPG-Big, Pareto-dominates

TABLE III
DEPLOYMENT OF BASELINE MODELS ON THE STM32WB55 AND ON THE RASPBERRY PI3.

STM32WB55 Raspberry Pi3
Cycles Time [ms] Energy [mJ] Time [ms] Energy [mJ] MAE [BPM]

AT 100k 1.563 0.234 1.00 1.60 10.99
TimePPG-Small 1.365M 21.326 0.735 3.45 5.54 5.60
TimePPG-Big 103.16M 1611.88 41.11 15.96 25.60 4.87
Bluetooth n.a. 10.240 0.52 n.a. n.a. n.a.
STM32WB55 MCU Frequency = 64 MHz. Raspberry Pi3 Frequency = 600 MHz.

the others (red points). Given a user-defined MAE (energy)
threshold, CHRIS will thus select the topmost (rightmost) red
point within the half-space defined by the horizontal (vertical)
line corresponding to the constraint. For example, given an
MAE constraint of 5.60 BPM, (the same value obtained by
TimePPG-Small alone) shown as Constraint 1 in the figure,
CHRIS will select Sel. Model 1. This corresponds to a com-
bination of AT and TimePPG-Big with a difficulty threshold
of 8, in which ∼ 80% of the windows are offloaded to the
phone. This combination yields a MAE of 5.54 BPM, while
reducing the energy consumption on the smartwatch by 2.03×
compared to running TimePPG-Small locally. Relaxing the
MAE constraint to 7.2 BPM (Constaint 2), instead, CHRIS
will select a configuration with a difficulty threshold of 6 (Sel.
Model 2), further reducing the average energy consumption
to 179 uJ per prediction, 3.03× less than running TimePPG-
Small on the smartwatch, and 1.82× less than streaming all the
input data to the phone. Lastly, if the BLE connection to the
smartphone is lost (excluding the red points from the feasible
solutions), CHRIS would still find 19 Pareto points spanning
from 4.87 BPM to 10.99 BPM of MAE and from 0.234 mJ
to 41.07 mJ of energy consumption, by combining AT with
TimePPG-Small or TimePPG-Small with TimePPG-Big.

Fig. 5 shows in detail how the MAE and the energy con-
sumption breakdown change for the red curve of Fig. 4 when
adding more activities to the “easy” group, i.e., processing more
windows on the smartphone. While the variation of energy and
MAE is almost linear in this graph, we underline that these
results are obtained from the PPGDalia dataset, where all the
activities are identically represented. We have, in other words,
an equal number of inputs in which the subject is running
compared to the ones in which they are sitting or working.
In a real-world scenario, the static and easier-to-process inputs
would likely be many more compared to the ones with high
movement and, therefore, CHRIS would achieve even better
results, resorting to offloading only in rare cases.

V. CONCLUSIONS

An efficient and accurate prediction of a subject’s HR
using wearables is key for many personal care applications.
In this work, we introduced CHRIS, a new inference system
that exploits the synergy between two connected platforms, a
smartwatch and a smartphone, to explore the trade-off between
energy consumption and HR tracking error. Based on the
connection status, a user-defined error and/or energy constraint,
and an estimate of the input difficulty, CHRIS combines two
HR prediction algorithms, executed on the smartwatch or on the
phone, achieving up to 2.03x energy reduction on the former

with respect to a single-model & single-device solution, with
no impact on the tracking accuracy.

REFERENCES

[1] M. Risso et al., “Robust and energy-efficient ppg-based heart-rate moni-
toring,” in Proc. IEEE ISCAS 2021, pp. 1–5.

[2] R. M. Al-Eidan et al., “A review of wrist-worn wearable: Sensors, models,
and challenges,” Journal of Sensors, vol. 2018, 2018.

[3] B. W. Nelson et al., “Guidelines for wrist-worn consumer wearable
assessment of heart rate in biobehavioral research,” NPJ Digital Medicine,
vol. 3, no. 1, pp. 1–9, 2020.

[4] Z. Zhang et al., “Troika: A general framework for heart rate monitoring
using wrist-type photoplethysmographic signals during intensive physical
exercise,” IEEE Trans. Biomed. Eng., vol. 62, no. 2, pp. 522–531, 2014.

[5] S. Salehizadeh et al., “A novel time-varying spectral filtering algorithm
for reconstruction of motion artifact corrupted heart rate signals during
intense physical activities using a wearable photoplethysmogram sensor,”
Sensors, vol. 16, no. 1, p. 10, 2016.

[6] A. Reiss et al., “Deep ppg: large-scale heart rate estimation with convo-
lutional neural networks,” Sensors, vol. 19, no. 14, p. 3079, 2019.

[7] A. Burrello et al., “Q-ppg: Energy-efficient ppg-based heart rate moni-
toring on wearable devices,” IEEE Trans. Biomed. Circuits Syst., vol. 15,
no. 6, pp. 1196–1209, 2021.

[8] D. Biswas et al., “Heart rate estimation from wrist-worn photoplethys-
mography: A review,” IEEE Sensors Journal, vol. 19, no. 16, pp. 6560–
6570, 2019.

[9] T. Polonelli et al., “H-watch: An open, connected platform for ai-
enhanced covid19 infection symptoms monitoring and contact tracing,”
in Proc. IEEE ISCAS 2021, pp. 1–5.

[10] T. Tamura et al., “Wearable photoplethysmographic sensors—past and
present,” Electronics, vol. 3, no. 2, pp. 282–302, 2014.

[11] Y. Kang et al., “Neurosurgeon: Collaborative Intelligence Between the
Cloud and Mobile Edge,” in Proc. ASPLOS 2017, pp. 615–629.

[12] E. Cuervo et al., “MAUI: Making Smartphones Last Longer with Code
Offload,” in Proc. MobiSys 2010, pp. 49–62.

[13] D. Jahier Pagliari et al., “CRIME: Input-Dependent Collaborative Infer-
ence for Recurrent Neural Networks,” IEEE Trans. Comput., vol. 70,
no. 10, pp. 1626–1639, 2020.

[14] N. Shlezinger et al., “Collaborative inference via ensembles on the edge,”
in Proc. IEEE ICASSP 2021, pp. 8478–8482.

[15] D. Biswas et al., “Cornet: Deep learning framework for ppg-based heart
rate estimation and biometric identification in ambulant environment,”
EEE Trans. Biomed. Circuits Syst., vol. 13, no. 2, pp. 282–291, 2019.

[16] A. Shyam et al., “Ppgnet: Deep network for device independent heart
rate estimation from photoplethysmogram,” in Proc. IEEE EMBC 2019,
pp. 1899–1902.

[17] H. Chung et al., “Deep learning for heart rate estimation from reflectance
photoplethysmography with acceleration power spectrum and acceleration
intensity,” IEEE Access, vol. 8, pp. 63 390–63 402, 2020.

[18] L. G. Rocha et al., “Binary cornet: accelerator for hr estimation from
wrist-ppg,” EEE Trans. Biomed. Circuits Syst., vol. 14, no. 4, pp. 715–
726, 2020.

[19] A. Burrello et al., “Embedding temporal convolutional networks for
energy-efficient ppg-based heart rate monitoring,” ACM Trans. Comput.
Healthcare, vol. 3, no. 2, mar 2022.

[20] H. S. Shin et al., “Adaptive threshold method for the peak detection of
photoplethysmographic waveform,” Computers in biology and medicine,
vol. 39, no. 12, pp. 1145–1152, 2009.

[21] S. Microelectornics. (2017) X-cube-ai. [Online]. Available: https:
//www.st.com/en/embedded-software/x-cube-ai.html

https://www.st.com/en/embedded-software/x-cube-ai.html
https://www.st.com/en/embedded-software/x-cube-ai.html

	Introduction
	Background & Related Work
	Photopletismographic signal
	Collaborative Inference
	The HWatch Platform
	Related Work

	Collaborative Heart Rate Inference System
	CHRIS Configurations
	CHRIS Decision Engine
	Constraints-dependent configuration selection
	Input-dependent model selection

	Benchmark HR tracking and activity recognition models

	Experimental Results
	Platforms
	Dataset

	Individual Models Deployment
	CHRIS Exploration of MAE vs. Energy

	Conclusions
	References

