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Abstract—As the nascent field of quantum computing develops,
an increasing number of quantum hardware modalities, such as
superconducting electronic circuits, semiconducting spins, trapped
ions, and neutral atoms, have become available for performing
quantum computations. These quantum hardware modalities ex-
hibit varying characteristics and implement different universal
quantum gate sets that may e.g. contain several distinct two-qubit
quantum gates. Adapting a quantum circuit from a, possibly
hardware-agnostic, universal quantum gate set to the quantum
gate set of a target hardware modality has a crucial impact on
the fidelity and duration of the intended quantum computation.
However, current quantum circuit adaptation techniques only
apply a specific decomposition or allow only for local improve-
ments to the target quantum circuit potentially resulting in a
quantum computation with less fidelity or more qubit idle time
than necessary. These issues are further aggravated by the multiple
options of hardware-native quantum gates rendering multiple
universal quantum gates sets accessible to a hardware modality. In
this work, we developed a satisfiability modulo theories model that
determines an optimized quantum circuit adaptation given a set
of allowed substitutions and decompositions, a target hardware
modality and the quantum circuit to be adapted. We further
discuss the physics of the semiconducting spins hardware modality,
show possible implementations of distinct two-qubit quantum
gates, and evaluate the developed model on the semiconducting
spins hardware modality. Using the developed quantum circuit
adaptation method on a noisy simulator, we show the Hellinger
fidelity could be improved by up to 40% and the qubit idle time
could be decreased by up to 87% compared to alternative quantum
circuit adaptation techniques.

I. INTRODUCTION

Currently, numerous noisy quantum hardware modalities
for quantum computing satisfy the requirements for universal
quantum computing. However, no as-realized hardware modality
has achieved fault-tolerance. Therefore, while universal, current
quantum modalities are limited in circuit depth by gate fidelity
and ultimately by the qubit coherence times. Therefore circuit
adaptation strategies that reduce gate count, transform operations
into equivalent ones with less incurred error, and reduce qubit
idle time, are highly relevant for quantum advantage on near-
term noisy quantum hardware.

An arbitrary quantum computation may be decomposed into
a set of single- and two-qubit gates [1, 2], however hardware
modalities typically suffer higher infidelity from the two-qubit
gates than single-qubit. Hence quantum circuit adaptation for
hardware modalities that admit multiple two-qubit gates can
be used to improve overall result quality. Here we choose the
modality of spin qubits in semiconductor dots as an example that
admits three two-qubit gates depending on parameter regime and
control to study a satisfiability modulo theories (SMT) model
for quantum circuit adaptation.

In this work, we begin with a discussion of the physics of spin
qubits in semiconducting quantum dots in section II. Depending
on the control applied, each of three two-qubit gates swap,

CPHASE, and CROT can be realized. The latter two of which
are universal together with single-qubit rotations while the swap
operation is useful for limited-connectivity modalities such as
spins.

This is followed by a discussion of the costs associated
with each operation, such as infidelity and duration, that will
inform our SMT model. After an overview of circuit adaptation
techniques in section III, we provide a rigorous description of
our SMT model and an example for illustration in section IV.

II. TWO-QUBIT GATES IN SEMICONDUCTOR SPIN QUBITS

We first demonstrate how to realize two-qubit gates from
an effective Hamiltonian based on the physics of spin qubits.
A summary of the differing fidelities and durations of such
operations follows, preparing the case for our satisfiability
modulo theories model.

In general, quantum dots are formed by isolating electrons
used as qubits from other electrons in the reservoir. In a two-
dimensional electron gas, separation is achieved by applying
voltages to barrier and plunger gates, which deplete charge
carriers in the semiconducting layer. Manipulation of qubits is
also achieved via the barrier and plunger gates [3].

A. Dynamics of Two-qubit Gates
Eigenstates and eigenvalues of an effective Hamiltonian

dictate the dynamics of a two-qubit system. These are depicted
in Fig. 1a and Fig. 1b for different parameter regimes. Here,
the effective Hamiltonian leads to three widely-used two-qubit
gates: the swap gate, controlled phase gate (CPHASE), and
controlled rotation gate (CROT). Note that π-angle rotations for
CPHASE and CROT result in CZ and CNOT gates, respectively.

Following the proposal in [4], Swap gates can be realized
by harnessing natural spin exchange interaction, which is
most pronounced when the exchange splitting dominates the
magnetic field gradient, i.e. J(ε) � ∆Ez. Energy eigenvalues
of the effective Hamiltonian are shown in Fig. 1a. As detuning
increases, the eigenstates switch from |↑ ↓〉 and |↓ ↑〉 to
|T0〉 = |↑↓〉 + |↓↑〉 and |S〉 = |↑↓〉 – |↓↑〉 (up to normalization),
respectively. At detuning ε0, the exchange splitting J(ε0) between
eigenstates are large enough to induce two-qubit operation within
coherence time. Swap gate consists of three control signals: (1)
increase detuning ε0 diabatically preserves the initial state, for
example |↓↑〉 = |T0〉 – |S〉 in the new eigenbasis, (2) precess the
initial state in a projected two-qubit Bloch sphere defined by |S〉
and |T0〉 for time τop = π/J(ε0) corresponding to a π-rotation in
the z-axis, and (3) decrease detuning diabatically to the initial
configuration.

Common choices for two-qubit entangling gates for spin
qubits are CPHASE, which changes the phase of the target
qubit depending on the state of the control qubit, and CROT,
which rotates the target qubit based on the state of the control
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Figure 1: Eigenenergies in different regimes.(a) J(ε) >> ∆Ez.
Used for swap gate protocol. (b) ∆Ez >> J(ε). Used for
CROT/CPHASE gate protocols.

qubit. Both quantum gates can be realized in quantum dots
when the magnetic field gradient is much larger than exchange
splitting, i.e. ∆Ez � J(ε). In this case, energy eigenvalues of the
effective Hamiltonian either shift or stay the same depending on
eigenstate. When eigenstates are anti-parallel, eigenenergies shift
in energy with increasing ε, while for parallel eigenstates, they
remain the same as shown in Fig. 1b. In all cases, the eigenstates
remain in their initial states. Implementation of CPHASE utilizes
the difference in eigenenergies of anti-parallel states before and
after applying detuning ε. When an adiabatic pulse is applied
to the system (keeping the system in an eigenstate of the
Hamiltonian), anti-parallel states accumulate phases relative
to parallel states, which is equivalent to CPHASE up to single-
qubit gates.

Implementation of CROT takes advantage of phase shifts
of anti-parallel states in a different way. As shown in Fig. 1b,
when the system is adiabatically pulsed with the detuning ε0,
the shifts in eigenenergies of anti-parallel states cause transition
frequencies between |↓↓〉-|↑↓〉 and |↓↑〉-|↑↑〉 to deviate from
each other. As we have different resonant frequencies for each
transition [5], we can separately drive the desired transition.
This equips us with CROT in our native quantum gate set. Note
that the use of adiabaticity in CPHASE and CROT may depend
on the used control schemes and the underlying material.

B. Different Implementations of Two-Qubit Gates
While the introduced two-qubit gates are in principle possible,

there are numerous difficulties in exploiting the potential
of having different two-qubit gates in one platform. First,
preferences of some two-qubit gates for device characteristics
are in contrast with those of other two-qubit gates. Second,
gates require adiabatic pulses to suppress unwanted rotations
caused by residual interactions. Adiabatic control allows the
eigenstates to remain in their original states by the adiabatic
theorem, thereby resulting in high gate fidelities. However,
adiabatic control typically increases the gate operation time.
Hence, the spin-qubit platform can have higher gate fidelity
two-qubit gate realizations with a longer gate time and two-
qubit gate realizations with a lower gate fidelity but also shorter
gate time. As we show, the characteristics of such realizations
could be exploited to increase the overall circuit fidelity. Third,
residual interactions occasionally persist despite the adiabatic
pulse and degrade gate fidelities. For example, if one performs
a swap in the presence of a specific Zeeman energy difference
∆Ez, an unwanted rotation caused by ∆Ez will deteriorate the
performance of the swap operation.

These challenges have been tackled by numerous papers [6–8]
to either increase the fidelity or decrease the gate time. Notably,
[6] implemented all two-qubit gates discussed above with high
fidelities and short gate times within a single spin-qubit platform.

Table I: Investigated gate durations and fidelities
SU(2) CZ CZdb CROT SWAPd SWAPc

Fidelity 0.999 0.999 0.99 0.994 0.99 0.999
Duration D0 [ns] 30 152 67 660 19 89
Duration D1 [ns] 30 151 7 660 9 13

The authors used a geometric gate to decrease gate time and
increase gate fidelity. Also, they utilized composite pulses to
further suppress unwanted rotations. As a result, they achieved
gate times D0 in table I. However, a scaled-up spin-qubit
platform may require different materials or driving mechanisms.
We therefore also investigate gate time D1 with the fidelities
depicted in table I, where CZdb is a diabatic CZ gate, SWAPd
is a diabatic swap gate and SWAPc is a swap gate realized by
composite pulses.

III. CIRCUIT ADAPTATION TECHNIQUES

Quantum computing can be realized on different quantum
modalities with distinct hardware limitations. Each quantum
technology has its specific basis gate sets that consist of
entangling gates and single-qubit gates. For example, the basis
gate sets of IBM quantum hardware include a single two-qubit
gate (CNOT), while for spin qubit devices, the target of this
paper, the entangling gates are typically CPHASE or CROT.
However, a quantum circuit is usually generated for an abstract
gate set or may have been generated for a different hardware
modality than the actual target hardware modality. Therefore, it
needs to be adapted to the given quantum hardware containing
only the basis gate sets. Here, we introduce several commonly
used circuit translation techniques.

Direct Basis Translation. This technique translates the
quantum gates from the source basis defined by the input circuit
to the target basis according to a pre-defined equivalence library.
The equivalence library includes various ways of decomposing
a gate to its equivalent implementations. For example, a CNOT
gate can be decomposed equivalently to a set of single-qubit
gates in conjunction with one of the three different two-qubit
basis gates: CZ, iSWAP, or Rzx. If these gates occur in a target
quantum circuit, they can each be replaced by the CNOT basis
gate and single-qubit gates as defined in the equivalence library
and its gate substitution rules.

Template Optimization. This is a circuit optimization tech-
nique, typically used for reducing the error or duration of
quantum operations [9], that consists of three individual steps.
First, the template input to the technique must be constructed.
A template is generally defined to be a quantum circuit that
evaluates the identity operation. The template consists of
two parts that are functionally inverses but typically have
different basis gates, some examples of which are shown in
Figure. 3(a)-(d). In the second step, template matching is
performed, which aims at finding all the maximal matches
of the input templates in the target circuit [10–12]. In a final
step, template substitution is performed. During this step, the
matched part of the original subcircuit is replaced by the inverse
of the unmatched part if the unmatched part of the template has
a lower cost. The cost can be evaluated with various metrics,
such as gate implementation cost, error rate, or gate duration.
As opposed to direct basis substitution, where non-basis gates
are simplified by targeting basis gates through the equivalence
library, template optimization offers the flexibility of converting
between different basis gates and optimizing certain circuit
patterns more effectively.

Unitary Decomposition. This is the process of translating a
given unitary matrix to a sequence of single and two-qubit gates.



This is also known as circuit synthesis. It can be particularly
useful for applications composed of arbitrary unitary gates, such
as quantum volume circuit [13], to convert the unitary matrices
to hardware basis gate sets and generate a synthesized circuit.
Several methods have been proposed to reduce the number
of gates in the synthesized circuit, such as cosine-sine matrix
decomposition (CSD) [14], quantum Shannon decomposition
(QSD) [15], and KAK decomposition [16].

Suitability for Quantum Circuit Adaptation. Various cir-
cuit adaptation techniques introduced in this section are defined
as transpilation passes in a quantum compiler and each of
them works well independently. However, if each technique is
applied separately during the circuit transpilation process, the
performance of the quantum circuit adaptation is limited.

For direct basis translation and the unitary decomposition
method, the adaptation is only performed with one two-qubit
basis gate which lacks flexibility when a combination of both
would improve the quantum circuit even further. While it is
possible for template optimization to adapt a quantum circuit
to various two-qubit basis gates, only a local solution can
be determined for one template at a time [17]. The same
result quality as possible with a global optimization relying
on evaluating multiple templates at the same time can not
be reached. A clear method for combining these approaches
in an optimized way remains elusive, and is the subject of
our investigation. Our proposed method incorporates the above
approaches in a circuit adaptation technique such that an adapted
quantum circuit with high fidelity is obtained. The variations
obtained are specifically evaluated for translating a quantum
circuit to a spin-qubit device with multiple two-qubit basis gates.

IV. SAT-BASED QUANTUM CIRCUIT ADAPTATION

The steps of the proposed method for adapting a quantum
circuit from one quantum hardware modality or an abstract
gate set to a target quantum hardware modality are shown in
Fig. 2. First, the quantum circuit is preprocessed to yield a
set of blocks along with their dependencies and their cost in
terms of fidelity and duration. Then, every specified substitution
rule is evaluated on the quantum circuit. The preprocessed
quantum circuit, the specified substitution rules and the defined
objective function are used to construct an SMT model in a third
step. The SMT model is then input to a SMT solver [18] that
computes an assignment to the model variables such that the
objective function is optimized. The assignment is then used to
derive an adapted quantum circuit using a selection of specified
substitution rules.

Figure 2: Workflow of the developed quantum circuit adaptation
method for an arbitrary input quantum circuit with preprocessing
steps (a), substitution rule evaluations (b) as well as SMT model
construction and SMT solving (c).

The following sections describe the applied preprocessing
steps as well as the evaluation of specified adaptations, then show

the construction of the SMT model and give an explicit example
for adapting a quantum circuit designed for IBM quantum
computers [19] to the spin qubit hardware modality specified
in [6, 20].

A. Preprocessing

Preprocessing consists of three steps that are applied suc-
cessively. First, the input quantum circuit is partitioned into
two-qubit blocks that contain gates interacting on the same qubit
pair. The order of the blocks is given by a block dependency
graph that contains each block b as a vertex and an edge
a = (b′, b) if block b′ must be computed before block b.

In a second step, each basis gate of the source quantum hard-
ware modality is substituted by basis gates of the target hardware
modality. The basis gate substitution can be performed using
an equivalence library that can be generated manually [21] or
automatically [22].

Finally, the cost of each block after basis gate substitution
is evaluated in terms of block duration and block fidelity. The
block duration is the length of the critical path in the block, i.e.
the time the target quantum computer needs to execute the block.
The block fidelity is defined as the product of each gate fidelity
in the block. Basis gate translation provides a naive adaptation
that is used as a common reference cost in subsequent steps.

B. Evaluation of Substitution Rules

Each specified substitution rule is evaluated on the input
quantum circuit and then used to define an SMT model in a
subsequent step. During the evaluation of a substitution rule,
the set of substituted gates ps, the set of substitution gates gs,
the affected blocks bs and the cost of the substitution ws are
determined for each substitution s applicable to the quantum
circuit.

A substitution rule can be a gate equivalency, quantum circuit
equivalency or a decomposition method that decomposes a
block to the basis gates of the target hardware modality. The
substitution rules can be defined manually by a domain expert
as a set of quantum circuit or gate equivalencies [17], derived
automatically [22] for the basis gates of the target hardware
modality, or be part of a general decomposition method such
as the KAK decomposition [16].

Quantum circuit or gate equivalency substitution rules can be
evaluated in polynomial runtime [17]. Evaluating substitution
rules based on decomposition requires one to first compute
the unitary matrix of each block and then evaluate the cost
of a decomposition. Determining the unitary matrix of n-qubit
block requires a runtime exponential in the number of qubits n.
However, for small n, in our case n = 2, the runtime overhead
is not significant.

C. SMT Model for Quantum Circuit Adaptation

In this section we describe how the data from the preprocess-
ing steps and the substitution rule evaluation are used to generate
an SMT model that yields a quantum circuit adaptation from a
source hardware modality to a target hardware modality. The
developed SMT model consists of Boolean variables, constraints
and the definition of linear objective functions. An SMT solver
computes an assignment to the variables of the developed SMT
model that is satisfying all constraints and that is optimal with
respect to the defined model assumptions. In this work the Z3
solver software was used as an SMT solver [18].



1) SMT Model Variables: The developed SMT model for a
quantum circuit with S substitutions, B blocks and a dependency
graph G = (V , A) with vertices V and edges A consists of
variables:
• C = {c1, ..., c|S|}: the set of chosen substitutions for the

quantum circuit adaptation, i.e. the resulting quantum
circuit adaptations only contain a substitution s if cs
evaluates to true.

• E = {e1, ..., e|B|}: the set of block starting times, i.e. the
time at which the computation of a block is started on the
target hardware modality.

• D = {d1, ..., d|B|}: the set of block duration times
• F = {f1, ..., f|B|}: the set of block fidelity
2) SMT Model Constraints: The assignment to sets C, E and

D must be constrained to yield a valid and optimized quantum
circuit adaptation. First, a substitution may only be chosen in a
quantum circuit adaptation, if it does not substitute the same
gates as another chosen substitution:

¬cs ∨ ¬cs′ ∀s, s′ ∈ S : ps ∩ ps′ 6= ∅, (1)

where ps and ps′ are the sets of quantum gates that will
be substituted by substitutions s and s′, respectively. The
symbol ¬ refers to the logic negation while the symbol ∧ (∨)
corresponds to the logic conjunction (disjunction). In addition,
the computation of a block in a quantum circuit must obey the
dependency defined in graph G. Thus, the computation of a
block b on a target quantum computer may only start if the
computation of any preceding block b′ has been concluded:

eb ≥ eb′ + db′ ∀b, b′ ∈ B : ab′,b ∈ A, (2)

where ab′,b is an edge in the block dependency graph G, eb′

is the time step at which the computation of block b′ and
db′ is the duration of computing block b′. Finally, the block
duration time and block fidelity must be set depending on the
chosen substitutions in the quantum circuit adaptation. The
block duration time db of a block b is set by:

db := D(b) +
∑
s∈S′

D(s) ∧ cs, (3)

where D(·) returns the duration of a block or quantum gate, and
D(·) gives the reduction in duration incurred by a substitution.
The duration reduction is defined by

D(s) =
∑
g∈gs

D(g) –
∑
p∈ps

D(p), (4)

where gs is the set of substitution quantum gates and ps is the
set of substituted quantum gates of substitution s. Likewise, the
fidelity fb of a block b is determined by:

fb := log(F(b)) +
∑
s∈S

F(s) ∧ cs (5)

where F(·) returns the fidelity of a quantum gate or of a
block given by the reference adaptation determined during
preprocessing steps, and F(·) gives the improvement in fidelity
incurred by a substitution. The improvement in fidelity is defined
by:

F(s) =
∑
g∈gs

log(F(g)) –
∑
p∈ps

log(F(p)), (6)

where gs are the substitution quantum gates and ps are the
substituted quantum gates of substitution s.

Note that the developed model does not contain functions D(·)
and log(F(·)). Instead, the function value of every substitution
s, quantum gate g and block b in the reference adaptation is
computed before the SMT model is constructed. Furthermore,
the developed model only registers one duration and start
time for a two-qubit block. This introduces single-qubit gate
ambiguities when minimizing the qubit idle time or quantum
circuit duration if the duration (a single-qubit gates) on one
qubit is different to the other in a template or block.

3) Objective Functions: Lastly, we describe the objective
functions investigated in this work. The objective function
provided to the SMT solver is crucial for improving the quantum
circuit adaptation, i.e. improving the probability of computing
the correct result on a noisy, near-term hardware modality. We
investigated objective functions that improve the fidelity of the
adapted quantum circuit, qubit idle time of the adapted quantum
circuit and a combination of both. The qubit idle time has been
observed to be a source of error [23] that should be minimized
in a quantum circuit. We assume the state of a qubit to decay
during idle time, i.e. the state of a qubit is unaffected by the
idle time with probability:

e–d/T , (7)

where d is the duration during which a qubit is idle and T is
the coherence time of the target hardware modality. The fidelity
objective of the adapted quantum circuit is defined by:

max
∑

b

fb, (8)

where fb is defined as in Eq. 5. The qubit idle time in the
adapted quantum circuit is optimized by:

max –
Q · D –

∑
b db

T
, (9)

where Q is the number of qubits and D is the total circuit
duration. We also combine these objectives as a product:

max
∑

b

log(fb) –
Q · D –

∑
b db

T
. (10)

4) Determining the SMT Quantum Circuit Adaptation: After
an SMT solver computed an assignment to the SMT model
variables, a substitution S is applied to the target quantum
circuit if cs is set by the SMT solver. A substitution s is applied
to a quantum circuit by substituting quantum gates ps in the
quantum circuit with gs. A quantum gate in the original quantum
circuit is substituted by the basis translation performed in the
preprocessing step if the quantum gate is not part of any chosen
substitution.

Example: Adapting a Quantum Circuit from IBM Backends to
Spin Qubits

In this section we describe the adaptation of a quantum
circuit given in the basis of an IBM quantum computer
based on superconducting qubits [19] to a quantum circuit
suitable for computation on a spin-qubit quantum computer [6].
Figure 4 shows the quantum circuit and table I (D0) shows the
characteristics of the quantum gates supported by the spin-qubit
quantum computer used in this example [6]. The corresponding
spin-qubit quantum computer supports arbitrary single-qubit
gates in SU(2), a two-qubit controlled-Z (CZ) gate that is also
used for KAK decompositions, two-qubit conditional rotation
gates along an arbitrary axis and two native realizations of swap



gates (swapd and swapc). We do not consider the diabatic CZ
gate in this example. The swap gate realization swapd requires
less time than the swap gate swapc but also has a lower gate
fidelity than swapc. Depending on the structure of the quantum
circuit, the swap gate swapd or the swap gate swapc may be
preferable in a quantum circuit adaptation, e.g. for reducing
qubit idle time.

(a) (diabatic) Conditional-Z (b) Conditional-Rotation (CR)

(c) Direct swap gate (d) Composite swap gate

(e) KAK decomposition using CZ and single-qubit gates

Figure 3: Substitution rules for adapting quantum circuits
generated for IBM backends [19] to spin-based systems [24]

The results of the quantum circuit adaptation steps are shown
in figure 4. First, the target quantum circuit is partitioned into
blocks and the basis gate translation (see figure 3a) is performed
to determine a reference cost for each block. The substitution
rules described in figure 3 are evaluated on the target quantum
circuit in the next step. This yields ten substitution matches,

Figure 4: Quantum circuit adaptation for an example quantum
circuit given in the IBM backend basis. Continuous lines indicate
quantum gates substituted by the same substitution rule. An
orange line corresponds to a KAK decomposition, a blue line to
conditional rotation gates, and violet and black lines to different
swap gate realizations.

where the KAK decomposition (orange line) could be applied
once to each block, the conditional-rotation (blue line) could be
applied in block 1 and block 3 once, and swapd (violet line) as
well as swapc (black line) could each be applied once in block
1 and block 2. The duration of block 1 is set in our example
by:

d1 = 965 + (573 – 965)∧ c0 + (660 – 422)∧ c1 + (19 – 543)∧ c2

+ (67 – 543) ∧ c3, (11)

where 965ns is the reference block duration given by the
basis translation, c0, c1, c2, c3 corresponds to whether the KAK
decomposition (c0), the conditional-rotation substitution (c1),
the direct swap substitution swapd (c2) or the composite swap
substitution swapc (c3) is applied. Characteristics of the other
blocks are computed in an analogous way and input to the SMT
model construction (see section IV). Depending on the chosen
objective function different substitutions may be applied during
the quantum circuit adaptation. In this example we assume that
the quantum circuit duration should be minimized. Using a

KAK decomposition, the duration of block 1 would be reduced
by 392ns, the conditional-rotation quantum gate would increase
the duration by 238ns, swapd reduces the duration by 524 and
swapc reduces the duration by 476ns. Substitutions s0, s2 and
s3 as well as substitutions s0 and s1 are incompatible since they
substitute the same set of quantum gates. Thus, applying KAK
substitution s0 reduces the duration of block 1 the most.

The values and equations for the block duration and depen-
dency are entered as an SMT model into an SMT solver whose
result informs the quantum circuit adaptation.

V. RESULTS

In this section, we evaluate the developed SMT model on the
introduced semiconducting spin hardware modality. We investi-
gated the increase in circuit and Hellinger fidelity, and decrease
in qubit idle for quantum volume circuits [13] and random
circuits containing gates from the templates in Fig. 3 with up
to 4 qubits and a quantum circuit depth of up to 160. Two
gate characteristics D0, D1 as given in table I were evaluated.
The developed SMT model is compared to employing a KAK
decomposition using CZ and diabatic CZ gates, template
optimization with two objectives targeting the quantum circuit
fidelity and qubit idle time, and a direct basis translation that
replaces each non-supported two-qubit quantum gate in the
quantum circuit with a CZ gate. The SMT solver was invoked
with the fidelity objective SAT F given in Eq. 8, the idle time
objective SAT R given in Eq. 9, and the combined objective
SAT P as given in Eq. 10. The quantum circuit determined by
direct basis translation is chosen as a baseline for comparison
in the following results. Before employing the quantum circuit
adaptation technique, Qiskit [21] was used to transpile the target
quantum circuit into one compliant with the hardware topology.

A. Circuit Fidelity Increase and Qubit Idle Time Decrease
In this section, we evaluated the impact of quantum circuit

adaptation on the decrease in qubit idle time, and the change in
quantum circuit fidelity as given by the product of individual
gate fidelities. The fidelity and idle time of the quantum circuit
as determined by direct basis translation is chosen as a baseline
for comparison in the following results. As depicted in Fig. 5 the
SMT approach yields the largest improvement in quantum circuit
fidelity of up to 15% over all quantum circuits. Performing
quantum circuit adaptation by only using KAK decompositions
based on (diabatic) CZ gates decreases the overall quantum
circuit fidelity since the KAK decomposition may introduce
additional single-qubit gates compared to template optimization.
In addition, the diabatic CZ gate has a lower gate fidelity
as the baseline basis translation using CZ gates (see table I).
In figure 6 the decrease in qubit idle time of the respective
quantum circuits is depicted for the studied quantum circuit
adaptation techniques. The SMT based approaches yield the
highest decrease in qubit idle time for all but the smallest
quantum circuit.

B. Hellinger Fidelity and Qubit Idle Time
Here, we investigate the impact of the developed approach

on the qubit idle time and the Hellinger fidelity obtained by
performing quantum circuit simulation subject to errors incurred
by a depolarization channel that corresponds to the individual
gate fidelities and thermal relaxation that corresponds to the
qubit idle time [21]. In accordance to [6], we assumed T2 = 2900
ns and a T1 time that is three orders of magnitudes larger for
thermal relaxation errors. Figure 5 shows the decrease in qubit
idle time on the y-axis and the change in Hellinger fidelity



Figure 5: Change in quantum circuit fidelity as given by the
product of gate fidelities.

Figure 6: Decrease in qubit idle time yielded by the analyzed
quantum circuit adaptation techniques.

on the x-axis. The developed SMT approaches yield adapted
quantum circuits with the highest decrease in qubit idle time and
the largest increase in Hellinger fidelity. The evaluated quantum
circuit adaptation techniques based on the KAK decomposition
and template optimization occasionally yield good results but
lead to worse results than the developed SMT approaches in
most cases.

VI. CONCLUSION

In this work, we demonstrated the capability of semiconduct-
ing spins to support multiple two-qubit gates, yielding multiple
universal quantum gate sets that can be used during quantum
circuit adaptation to yield quantum circuits with a higher circuit
fidelity or smaller qubit idle time.

The developed SMT approach is particularly well suited to
deal with multiple two-qubit gates and yields a decrease in qubit

Figure 7: Change in Hellinger fidelity and qubit idle time for
the studied quantum circuit adaptation techniques.

idle time of up to 87% and an increase in Hellinger fidelity of
up to 40% compared to direct basis translation. Future research
could include the development of suitable heuristics and the
consideration of n-qubit gates.
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