
ar
X

iv
:2

21
1.

14
92

8v
1

 [
cs

.L
G

]
 2

7
N

ov
 2

02
2

Class-based Quantization for Neural Networks

Wenhao Sun1, Grace Li Zhang2, Huaxi Gu3, Bing Li1, Ulf Schlichtmann1

1Chair of Electronic Design Automation, Technical University of Munich (TUM), Munich, Germany
2Hardware for Artificial Intelligence Group, TU Darmstadt, Darmstadt, Germany
3School of Telecommunications Engineering, Xidian University, Xi’an, China

Email: {wenhao.sun, b.li, ulf.schlichtmann}@tum.de, grace.zhang@tu-darmstadt.de, hxgu@xidian.edu.cn

Abstract—In deep neural networks (DNNs), there are a huge
number of weights and multiply-and-accumulate (MAC) opera-
tions. Accordingly, it is challenging to apply DNNs on resource-
constrained platforms, e.g., mobile phones. Quantization is a
method to reduce the size and the computational complexity of
DNNs. Existing quantization methods either require hardware
overhead to achieve a non-uniform quantization or focus on
model-wise and layer-wise uniform quantization, which are not as
fine-grained as filter-wise quantization. In this paper, we propose
a class-based quantization method to determine the minimum
number of quantization bits for each filter or neuron in DNNs
individually. In the proposed method, the importance score of each
filter or neuron with respect to the number of classes in the dataset
is first evaluated. The larger the score is, the more important the
filter or neuron is and thus the larger the number of quantization
bits should be. Afterwards, a search algorithm is adopted to exploit
the different importance of filters and neurons to determine the
number of quantization bits of each filter or neuron. Experimental
results demonstrate that the proposed method can maintain the
inference accuracy with low bit-width quantization. Given the
same number of quantization bits, the proposed method can also
achieve a better inference accuracy than the existing methods.

I. Introduction

Deep neural networks (DNNs) have shown superb perfor-

mance on tasks such as image classification [1] and object

detection [2]. However, the performance of neural networks

grows along with the size. A large model such as ResNet-

50 [1] has 25.6 million parameters. Since the processors need

to wait for massive weights to be loaded into the cache, the

increasing number of weights not only requires more storage

but also increases the inference time. These large requirements

of computing and memory resources pose challenges to the

deployment of DNNs on resource-constrained devices, such as

mobile phones. Therefore, it is necessary to find a way to reduce

the weight size of DNNs.

To address this problem, many methods, e.g., pruning and

quantization, have been applied to DNNs. Pruning is an efficient

way to remove weights in DNNs to reduce the size, such as [3]–

[5]. In pruning a neural network, the insignificant weights are

masked. Therefore, the storage requirements can be reduced,

and the processors can skip the pruned weights to speed up

the inference. However, pruning is a coarse-grained method,

because it only has the ability to remove weights. It is difficult

to decide whether the weights that are insignificant but still

contribute to the accuracy of the model should be removed,

which makes it hard to balance performance and efficiency.

On the other hand, quantization is a fine-grained method. It

quantizes the weights and activations to a low bit-width, such

as 8-bits or 4-bits. Also, if weights are quantized to 0-bit, it

means those weights are pruned. Therefore, besides removing

useless weights, quantization can provide more flexibility to

reduce the size of insignificant weights by setting the bit-width

of them to a lower number. Accordingly, the model size of the

neural networks and the inference accuracy can be fine-tuned

to achieve a better balance compared with pruning.

There are two kinds of quantization, namely non-uniform

quantization and uniform quantization. Non-uniform quantiza-

tion is a method that quantizes the weights and activations

with unequal quantization intervals, in which the weights and

activations in the same interval share the same quantized value,

such as [6]–[8]. For example, in ResNet-18, the distribution of

weights is concentrated in the near-zero region. Hence, there

should be more quantization intervals in the near-zero region to

make the weights distinguishable [8]. However, the hardware

implementation of non-uniform quantization is difficult [9],

since it is hard to implement arithmetic operations between

values with different quantization intervals. The other kind of

quantization is uniform quantization, in which the quantization

intervals between quantized values are equal. Uniform quan-

tization may introduce more quantization errors, because the

quantization intervals cannot be adjusted to fit the distribution

of weights. However, uniform quantization can be implemented

on existing neural network processors directly or with minor

hardware modifications. Therefore, uniform quantization is

more practical compared with non-uniform quantization when

hardware implementation is taken into account.

Many methods try to improve the performance of uniform

quantized networks. [10] is a model-level uniform quantization

method, which uses knowledge distillation to improve the

performance of quantized networks. [11] improves the perfor-

mance of model-level uniform quantized networks performed

on accumulators with low bit-width by adjusting the loss

function. [12] uses multiple settings of batch normalization

layer to endow the model-level quantized neural networks

with the ability to change the quantization bit-width after

training, and it also uses knowledge distillation to improve

the inference accuracy. [13] improves the training process of

model-level uniform quantized networks by gradient scaling to

reduce the errors in back propagation. But these approaches

still ignore the flexibility of multi-bit quantization. Multi-bit

quantization is an approach which quantizes the layers or filters

to different bit-widths. The important layers or filters can be

arranged to higher bit-width, and the insignificant layers or

http://arxiv.org/abs/2211.14928v1

filters can be arranged to lower bit-width. In this way, the

size of neural networks can be reduced, while the inference

accuracy can be efficiently maintained. The challenge of multi-

bit quantization is how to find the bit-width for different parts

of the neural network. [14] arranges the bit-width at layer-level

by reinforcement learning. However, compared with filter-level

quantization, layer-level quantization is not sufficiently fine-

grained. Reinforcement learning is also difficult to search the

bit-widths at filter-level, since the search space is significantly

larger than the search space for layer-level quantization. [8]

uses a loss-based iteration method to arrange filter-level bit-

width, but it focuses on non-uniform quantization and needs

multiple back propagation iterations to find the best bit-width

for each filter.

In this work, we propose a class-based quantization (CQ)

method to find the bit-width for each filter or neuron in

uniform quantization according to the user desired average bit-

width. The bit-width criteria of each filter or neuron is the

number of classes to which the filter or neuron is important.

Given a pre-trained model, the importance scores of each filter

or neuron will be collected by one-time back propagation.

Based on the importance scores, the search algorithm will

find the bit-width for each filter or neuron and reduce the

average bit-width below the user desired average bit-width.

After refining with knowledge distillation, the models will have

similar performance as the original models but with much

smaller average bit-width of weights.

The contributions of this work are listed as follows:

• This work proposes an efficient class-based method to find

the bit-width for each filter or neuron in quantization. It

calculates the importance of each filter or neuron to the

classes and keeps a higher bit-width on filters or neurons

with higher importance scores.

• The proposed algorithm only needs one-time back prop-

agation to collect the importance scores of each filter or

neuron. In the search phase, the algorithm uses inference

of validation samples, such as images, instead of back

propagation. Therefore, the algorithm is efficient and easy

to implement.

• Experimental results demonstrate that the proposed class-

based uniform quantization method can achieve similar

inference accuracy of the original models with much lower

average bit-width. Compared with the existing methods,

under the same bit-width setting, this method can achieve

better inference accuracy.

II. Background and Motivation

A. Background

Out of the two kinds of quantization schemes, non-uniform

quantization, and uniform quantization, uniform quantization is

more practical and hardware friendly. Therefore, in this work,

we focus on uniform quantization to determine the number of

quantization bits for weights in filters or neurons.

In uniform quantization, for a full-precision input x of the

quantizer, the quantizer first clips x to the range of [a, b], where

a is the lower bound of input x, and b is the upper bound.

For weights, a is equal to −b, and the upper bound b is the

maximum absolute value of weights in the layer. Since ReLU is

used as the activation function, the activations should always be

positive. Therefore, for activations, a is equal to 0. The upper

Layer-0

(Input Layer)

Layer-1

Layer-2

(Output Layer)
CAT DOG CAT DOG

Pruned

CAT DOG

Important for cat

Important for dog

Important for both

(a) (b) (c)

Fig. 1. An example of the data path and the importance of neurons for different
classes. (a) paths for the class of cats; (b) paths for the class of dogs. (c)
overlapping of the class paths.

bound b of activations is acquired by performing inference, and

it is still the maximum absolute value of activations in the layer

during the inference.

The clipped value xc is defined as

xc =











b x ≥ b

x a < x < b

a x ≤ a

. (1)

Then, the clipped input xc is normalized and quantized to xr

by N levels, which is given by

xr = round

(

(N − 1) ∗
xc − a

b− a

)

∗
1

N − 1
. (2)

Afterwards, the quantized result xq will be given by a rescaling

of xr :

xq = (b− a) ∗ xr + a. (3)

B. Motivation

The drawback of uniform quantization is that it may degrade

the accuracy of the quantized neural network. To find a better

way to mitigate the degradation, we propose a class-based

method, where the class is a group of images or other kinds of

data sharing a same label. The concept is that different neurons

have different contributions to the final outputs of the neural

network, and the contribution may vary in different classes.

Figure 1 provides an example of this concept. It shows a

multilayer perceptron (MLP), which predicts the pictures of

cats and dogs. The neurons which significantly contribute to

cats and dogs are not the same. Some neurons contribute only

to one of the classes of cats or dogs, while some neurons

contribute to both classes. The rightmost neuron in Layer-1

contributes to none of the class, so that it can be pruned.

In quantization, we assume that the neurons which contribute

to many classes are more important than the neurons that con-

tribute to fewer classes. Based on this assumption, every filter

or neuron can be given an importance score, which indicates

the number of classes that the filter or neuron contributes to.

Then, we can use the importance score as a criterion to search

the bit-width arrangement, which is the set of the quantization

bits for each filter or neuron.

III. Approach
In this section, we will introduce the proposed class-based

quantization method in detail. The goal of the quantization is

to reduce the average bit-width of weights to the desired bit-

width B for the neural network. The quantization starts from

the pre-trained full-precision model. After performing one-time

back propagation, we can obtain the importance scores of each

filter or neuron. Then, the search algorithm will find the bit-

width for each filter or neuron. Finally, the model is quantized

according to the bit-width arrangement and refined to recover

the accuracy. In the following, we describe how to calculate

the importance scores of neurons in Section III-A, and how

to calculate the importance scores of filters in Section III-B.

Then, we introduce the search algorithm for finding the bit-

width arrangement in Section III-C. Finally, we describe the

refining of the quantized neural networks in Section III-D.

A. Class-based importance scores for neurons

To efficiently obtain the importance scores, we use a class-

based method. In this method, the importance score of each

neuron for all classes is calculated. Then, the importance score

of each filter is the max score of all neurons related to the filter.

The calculation of the importance scores of each neuron for

each class is based on the critical pathway theory [15]. As

shown in Figure 1, neurons may have different contributions

for different classes. A neuron in the critical pathway means

that if it is removed, the output of the model will be changed

significantly. In other words, the neuron in the critical pathway

contributes significantly to the output of the neural network.

Therefore, we can measure the difference of the output for an

input image xm to obtain the importance score of this image.

m ∈ {1, ...,M} is the index of class, and M is the number

of classes. The definition of the importance score of a neuron

with respect to image xm can be written as

sm(i,j) =
∣

∣Φθ(xm)− Φθ

(

xm; aij ← 0
)
∣

∣ (4)

where sm(i,j) is the importance score of the neuron j ∈
{1, ..., Ni} in the layer i ∈ {1, ..., L} for a single image xm.

L is the number of all layers. Φθ(xm) denotes the output of

the neural network for sample xm, and aij is the activation of

neuron i in the layer j. aij ← 0 in (4) means that the activation

of the neuron j in the layer i is frozen at zero, so that it does

not participate in the computation.

The computation in (4) is intuitive, but it is very time-

consuming, because we need to perform the forward prop-

agation for L ∗ Ni times to calculate the importance scores

for all neurons. To reduce the complexity, we follow [16] to

approximately calculate (4) by Taylor expansion, which is given

by

sm(i,j) =
∣

∣

∣
aij∇ai

j
Φθ(xm)

∣

∣

∣
(5)

where ∇ai
j

is the gradient of the output of the model with

respect to the mask of the neuron j in the layer i. In this way,

we only need to perform the back propagation once to obtain

the importance scores of all the neurons for image xm. After the

importance scores for all neurons are obtained, a threshold ǫ is

used to decide whether the neurons are in the critical pathway.

If sm(i,j) > ǫ, the neuron j in the layer i is in the critical pathway

0

5

10

15

Layer-0

0

5

10

Layer-1

0

5

10

15
Layer-2

0

5

10

15

Layer-3

0 10
0

10

20

30

Layer-4

0 10
0

20

40
Layer-5

0 10
0

50

100
Layer-6

0 10
0

100

200
Layer-7

Importance score

Nu
m

be
r o

f f
ilt

er

Fig. 2. Histograms of the number of filters versus the importance scores in a
floating-point VGG-small [17] network trained on CIFAR10. The x-axis shows
the number of filters, and the y-axis shows the importance scores of filters.

of image xm. Empirically, ǫ should be a number very close to

zero. In this work, we set ǫ to 10−50.

Afterwards, a batch of validation images in class m with size

Ns are fed to the model. By back propagation, we can obtain

the set sij including the scores of all images in the batch. Then,

for neuron j in the layer i, we define the importance score βm
(i,j)

for class m as the percentage of images where the neuron is

in its critical pathway, which is given by

βm
(i,j) =

1

Ns

| {s ∈ s
i
j | s > ǫ} | (6)

where s is the importance score of a single image for neuron j

in the layer i. Then, the importance score of the neuron j in the

layer i for all classes is defined as the sum of the importance

scores of all classes, which is given by

γi
j =

M
∑

m=1

βm
(i,j). (7)

B. Class-based importance scores for filters

To calculate the importance scores of each filter, we use the

max score of all neurons related to the filter as the importance

score of the filter to prevent ignoring the most important

neurons in the filter. The definition of the importance score

of a filter is given by

ϕi
k = max{γ | γ ∈ Γ

i
k} (8)

where ϕi
k is the importance score of the filter k ∈ {1, ..., Ci} in

the layer i. Ci is the number of filters in layer i. Γi
k is the set

of importance scores defined in (7). γ is the importance score

of a neuron in Γ
i
k.

Figure 2 shows the histograms of the number of filters versus

the importance scores of the filter from a VGG-small network

trained on CIFAR10. When a neuron has an importance score

close to 0, it means that the neuron is not important to any

class. When a neuron has an importance score close to 10

corresponding to the number of classes in CIFAR10, it means

that the neuron is important to all classes. We can observe that

different layers have different distributions. For example the

0 100 200 300 400 500
0.0

2.5

5.0

7.5

10.0
(a)

0 100 200 300 400 500

(b)

0 100 200 300 400 500
0.0

2.5

5.0

7.5

10.0
(c)

0 100 200 300 400 500

(d)

Im
po

rta
nc

e
sc

or
e

Filter index

Fig. 3. An example of the search process for VGG-small [17] on CIFAR10.
The x-axis shows the indexes of the filters after sorting, and the y-axis shows
the importance scores of the filters.

distribution of layer-5 is skewed left, which means that most

of the neurons in layer-5 are only important to a few classes.

But layer-2 is skewed right and has more neurons important to

more classes.

C. Searching for the bit-width arrangement

After the calculation of the importance score of each neuron

or filter, the next step is to search for the bit-width arrangement

for the quantization. The goal of this search is to reduce the

current average bit-width bcur of the model to the desired

average bit-width B after the quantization of weights. As the

bit-width of the model decreases, the accuracy of the model

will also drop. Therefore, the challenge is how to balance the

bit-widths for filters or neurons and the inference accuracy of

the neural network.

Instead of directly searching for the bit-width of each filter

or neuron, we first sort all the filters or neurons according

to their importance scores for an efficient heuristic bit-width

determination. In the example shown in Figure 3, a curve

represents the filters sorted according to the importance scores

of a convolutional layer. Then, by determining some thresholds

of the importance scores, the filters or neurons can be divided

into several groups, where the filters or neurons in the same

group share the same bit-width. Assuming that the allowed

highest bit-width is N , we need to find N thresholds, which

are denoted as pk, k ∈ {1, ..., N}. For 1 < k < N , filters

or neurons between the threshold pk and pk−1 are assigned to

k − 1 bits. Filters and neurons whose importance scores are

below p1 are assigned to 0 bits in quantization, which means

that the filters or neurons are pruned. Filters and neurons whose

importance scores are above pN are assigned to N bits in

quantization.

In the search process, the bit-widths of all filters and neurons

are initialized to N . Then, the first threshold to be determined is

p1, which is gradually moved upward from 0 with step D. As p1
increases, some insignificant filters or neurons with importance

scores below p1 will be quantized to 0-bit and pruned, which

means the inference accuracy of the neural network may start to

drop. We set the target inference accuracy Tk, k ∈ {1, ..., N},
to decide where pk should stop and be determined. T1 is a

preset value and less than the accuracy of the original neural

network. For k > 1, the Tk is given by

Tk = Tk−1 ∗R (9)

where Tk and Tk−1 are the target inference accuracy of the

current and previous thresholds, respectively. R ∈ [0, 1], is

a decay factor. Once the current inference accuracy of p1 is

less than the target inference accuracy T1, the threshold p1
is determined. Thereafter, for k > 1, the thresholds pk are

determined as follows: starting from the position of pk−1,

the threshold pk is moved and the accuracy Tk is evaluated

similarly. The threshold search process is repeated until all the

thresholds are determined or the current average bit-width bcur
of the neural network is less than the desired bit-width B.

In case we have a very small desired bit-width B, after the

iterations finish, the current average bit-width bcur may still

be larger than the desired B. In this case, we simply move

the highest bit-width threshold pN upward with step D until

reaching the maximum value of the importance scores, and the

current average bit-width bcur is checked whether it is less

than the target bit-width B. At this stage, changing the bit-

width of filters or neurons from the highest bit-width to the

second highest bit-width, such as from 4-bit to 3-bit, causes less

accuracy drop than changing the bit-width of filters or neurons

from the 1-bit to 0-bit, where 0-bit means that the filters or

neurons are pruned. This process is repeated from pN to p1
until bcur is less than B.

The search process is illustrated in Figure 3. The blue curve

shows the sorted importance scores of the filters in a layer

of VGG-small on CIFAR10. The horizontal solid lines are the

thresholds already determined, and the horizontal dashed lines

are the thresholds currently searching. The target average bit-

width is 2.0. We set the bit-width search range to {0, ..., 4} and

set T1 = 50% and R = 0.8. In Figure 3 (a), the threshold p1
moved upward and stopped at 2.5, at that time the inference

accuracy of the model is below 50%. Then, in Figure 3 (b),

the threshold p2 moved upward and stopped at 4.0, at that time

the inference accuracy of the model is below 40%. The process

repeats until the average bit-width reaches 2.0.

D. Refining quantized neural networks

To help the model achieve a better accuracy in the re-

fining phase, knowledge distillation [18] is applied to the

full-precision model to teach the quantized model. The Loss

function Lkd in the refining phase is defined as

Lkd = α ∗ Lce + (1− α)

M
∑

k=1

Yklog(
Y

fc
k

Yk

) (10)

where α is a factor between 0 and 1 to adjust the priority of

Kullback-Leibler divergence, Lce is the cross-entropy loss of

the original neural network.
∑M

k=1 Yklog(
Y

fc

k

Yk
) is the Kullback-

Leibler divergence [19], where M is the number of classes, Y
fc
k

and Yk are the k-th outputs of the full-precision network and

the quantized network, respectively.

In the training of the quantized neural network with knowl-

edge distillation, it is hard to define the gradient of the quan-

tized weights. To solve this problem, usually straight-through

estimator (STE) [20] is used to update the weights in back

propagation. In this work, we also use STE in the refining phase

to train the quantized neural network to improve its accuracy.

92

93

94

95

92.65

94.52 94.67

92.23

94.36 94.52 94.72
VGG-small CIFAR10

CQ
APN
FP

68

70

72

74

70.75

73.41 73.83

68.32

73.28 73.09 73.27

VGG-small CIFAR100

90

91

92

93

90.6

91.66

92.47

90.57
91.07

90.66

92.54
Resnet-20-x1 CIFAR10

2.0/2.0 3.0/3.0 4.0/4.0 FP
72

74

76

78

74.51 74.99

77

73.53
72.92 73.12

78.24
Resnet-20-x5 CIFAR100

Ac
cu

ra
cy

Bit-width configuration (Weight/Activation)

Fig. 4. Comparison of accuracy between CQ and APN [12] with 2.0/2.0,
3.0/3.0, and 4.0/4.0 bit-width settings and full-precision models. The blue bars
are the proposed method, and the red bars are APN. The green bars are the
full-precision baseline models in [1] and [17].

IV. Experimental Results
To demonstrate the performance of the class-based quanti-

zation (CQ), three neural network configurations, VGG-small

adopted from [21], ResNet-20 [1] with expand-1 (ResNet-20-

x1) and expand-5 (ResNet-20-x5) were applied to two datasets,

CIFAR10 [22] and CIFAR100 [22], respectively. The algorithm

and neural networks were implemented with Pytorch on Nvidia

Quadro RTX 6000 GPUs.

We compared CQ with Any-precision network (APN) [12]

and WrapNet (WN) [11] under equal conditions. The results of

APN were obtained using the source code provided on GitHub

[12], and neural networks of APN were set to individual bit-

width. The results of WN were adopted from [11]. In the

training phase, the learning rate was initialized to 0.1 for

ResNets and 0.02 for VGG-small, and it was divided by 10

at 100th, 150th, and 300th epochs. The momentum was set to

0.9, and the weight decay was set to 0.0001 for ResNets and

0.0005 for VGG-small. The batch size was set to 100 for all

datasets, and training was stopped after 400 epochs.

The bit-width arrangement of weights was set according to

Section III, and activations were directly set to the desired bit-

widths. In the refining phase, all the parameters of the optimizer

were the same as in the training phase. In all networks, the first

layer and the output layer were not quantized as in [11] and

[12]. Because in CQ, the different filters or neurons may be

1.0/3.0 1.0/7.0 2.0/4.0 2.0/7.0
89.0

89.5

90.0

90.5

91.0

91.5

90.12
90.35

91.11 91.2

89.78
90.17

89.56

90.88

Resnet-20-x1 CIFAR10
CQ WN

Ac
cu

ra
cy

Bit-width configuration (Weight/Activation)

Fig. 5. Comparison of accuracy between CQ and WN [11] with 1.0/3.0, 1.0/7.0,
2.0/4.0, and 2.0/7.0 bit-width settings. The blue bars are the proposed method,
and the red bars are WN.

0 50 100
0.0

2.5

5.0

7.5

10.0
Layer-1

0 100 200

Layer-2

0 100 200

Layer-3

0 200 400

Layer-4

0 200 400
0.0

2.5

5.0

7.5

10.0
Layer-5

0 500 1000

Layer-6

0 500 1000

Layer-7
0 bit
1 bit
2 bit
3 bit
4 bitFil

te
r/n

eu
ro

n
im

po
rta

nc
e

sc
or

e

Filter/neuron index

Fig. 6. Sorted filter importance score distribution of VGG-small with 2.0/2.0
bit-width on CIFAR10. The x-axis shows the indexes of the filters after sorting,
and the y-axis shows the importance scores of the filters or neurons.

quantized to different bit-widths, in the following experiments,

the desired bit-width settings of weights are the average of

all quantized weights and denoted as
∑N

i=1
bi

N
, where N is the

total number of weights except for the first layer and the output

layer, and bi is the bit-width of the i-th weight. The knowledge

distillation loss was applied in the refining phase. α in (10) was

set to 0.3.

The comparison between the accuracy of CQ and APN is

shown in Figure 4. The bit-widths are set to 2.0/2.0, 3.0/3.0,

and 4.0/4.0 in the format of weight/activation, because the bit-

width of the weights and activations in APN can only be set to

the same number. The results show that CQ can achieve better

accuracy than APN on every bit-width setting. In VGG-small

of CIFAR10 and CIFAR100 with 3.0/3.0 and 4.0/4.0 settings,

both CQ and APN are close to the full-precision model, but CQ

still achieves better results. Note that VGG-small on CIFAR100

with 3.0/3.0 and 4.0/4.0 settings even outperforms the floating-

point network. This is because of the regularization effect of the

quantization, as pointed out in [8]. In VGG-small on CIFAR10

and CIFAR100 with 2.0/2.0 settings, CQ is better than APN for

0.42% and 2.43%, respectively. In ResNet-20-x1 on CIFAR10,

CQ and APN are close on 2.0/2.0 setting, but CQ is better

than APN on 3.0/3.0 and 4.0/4.0 settings. In ResNet-20-x5 on

CIFAR100, CQ is significantly better than APN on all bit-width

settings.

In figure 5, it shows the accuracy comparison of ResNet-20-

x1 on CIFAR10 between CQ and WN. The bit-width settings

are 1.0/3.0, 1.0/7.0, 2.0/4.0, and 2.0/7.0 as in [11]. The results

show that CQ can achieve better accuracy than WN on all bit-

width settings. Especially in 2.0/4.0 setting, the accuracy of CQ

is 1.5% higher than WN. We can also observe that the accuracy

of CQ is more stable with lower activation bit-width settings.

0.0

0.5

1.0

1e7 VGG-small CIFAR10
0-bit 1-bit 2-bit 3-bit 4-bit 5-bit 6-bit

0.0

0.5

1.0

1e7 VGG-small CIFAR100

2.0/2.0 3.0/3.0 4.0/4.0
0

1

2

1e5 Resnet-20-x1 CIFAR10

2.0/2.0 3.0/3.0 4.0/4.0
0.0

0.5

1.0

1e6 Resnet-20-x5 CIFAR100

W
ei

gh
t n

um
be

r

Bit-width configuration (Weight/Activation)

Fig. 7. Bit-width percentage of all neural networks with 2.0/2.0, 3.0/3.0 and
4.0/4.0 bit-width setting.

As shown in Figure 6, we take VGG-small with 2.0/2.0

setting on CIFAR10 as an example to demonstrate the bit-

widths arrangement. The horizontal lines are the thresholds

of the different bit-width settings. From bottom to top, the

thresholds of 0/1-bit, 1/2-bit, 2/3-bit, and 3/4-bit are 1.9, 2.0,

3.1, and 6.2, respectively. The layers except for layer-2 and

layer-7 have similar distributions, where considerable numbers

of the filters have lower importance scores, meaning they

only contribute to images from a few classes and should be

quantized to lower bit-width. Especially for layer-5 and layer-6,

which are the fully-connected layers, many neurons have been

quantized to 0-bit. Layer-1, layer-3, and layer-4 have smaller

percentage of filters lower than 1-bit. Instead, they have more

filters in 2-bit and 3-bit, which indicates that these layers have

more insignificant filters, but these filters still contribute to the

outputs. On the contrary, layer-2 has more filters with higher

scores. They are important for almost all images and should be

quantized to high bit-width. The layer-7, which is the last layer

before the output layer, has no filter with quantized weights

lower than 2-bit, because it needs more neurons than other

fully-connected layers to represent the output classes.

Figure 7 shows the percentages of all models with all bit-

width settings. We can see that all models have utilized the

flexibility of multi-bit quantization. The VGG-small network

has more filters quantized to 0-bit, most of which are in

the fully-connected layers. ResNet-20-x1 and ResNet-20-x5

should keep more filters in 1 and 2 bits instead of 0 bits,

because pruning in the convolutional layers can cause the

bigger accuracy drop than other bit-width. In 4.0/4.0 settings,

the neural networks can keep more filters in high bit-width.

Therefore, they can achieve high inference accuracy which is

very close to the full-precision models. In 2.0/2.0 and 3.0/3.0

settings, more filters are quantized to low bit-width to balance

the filters in high bit-width. The high-precision filters contribute

more to the accuracy, which allows the neural network to keep

its accuracy even in low bit-width settings.

V. Conclusion
In this paper, we have proposed a class-based quantization

scheme for DNNs, which is based on the importance scores of

neurons and filters to determine the bit-widths. Experimental

results demonstrated that with a small average bit-width of

quantization, the inference accuracy can still be maintained

with the proposed method. In addition, under the same bit-

width settings, the proposed method achieved a better inference

accuracy than other existing methods.

References
[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[2] J. Redmon and A. Farhadi, “Yolov3: An incremental improvement,” 2018,
doi: 10.48550/ARXIV.1804.02767.

[3] J. Frankle and M. Carbin, “The lottery ticket hypothesis: Finding sparse,
trainable neural networks,” in International Conference on Learning
Representations (ICLR), 2019.

[4] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in Neural Information
Processing Systems (NIPS), 2015.

[5] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
in International Conference on Learning Representations (ICLR), 2016.

[6] A. Zhou, A. Yao, K. Wang, and Y. Chen, “Explicit loss-error-aware
quantization for low-bit deep neural networks,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2018.

[7] L. Hou and J. T. Kwok, “Loss-aware weight quantization of deep net-
works,” in International Conference on Learning Representations (ICLR),
2018.

[8] S. Zhao, T. Yue, and X. Hu, “Distribution-aware adaptive multi-bit
quantization,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[9] R. Altilio, A. Rosato, and M. Panella, “A nonuniform quantizer for
hardware implementation of neural networks,” in European Conference
on Circuit Theory and Design (ECCTD), 2017.

[10] B. Zhuang, M. Tan, J. Liu et al., “Effective training of convolutional
neural networks with low-bitwidth weights and activations,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10,
pp. 6140–6152, 2022.

[11] R. Ni, H. min Chu, O. Castaneda, P. yeh Chiang, C. Studer, and
T. Goldstein, “WrapNet: Neural net inference with ultra-low-precision
arithmetic,” in International Conference on Learning Representations
(ICLR), 2021.

[12] H. Yu, H. Li, H. Shi, T. S. Huang, and G. Hua, “Any-precision deep neural
networks,” in Association for the Advancement of Artificial Intelligence
(AAAI), 2021, Source code: https://github.com/SHI-Labs/Any-Precision-
DNNs.

[13] J. Lee, D. Kim, and B. Ham, “Network quantization with element-wise
gradient scaling,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2021.

[14] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware
automated quantization with mixed precision,” in IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), 2019.

[15] Y. Wang, H. Su, B. Zhang, and X. Hu, “Interpret neural networks by
identifying critical data routing paths,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[16] A. Khakzar, S. Baselizadeh, S. Khanduja, C. Rupprecht, S. T. Kim, and
N. Navab, “Neural response interpretation through the lens of critical
pathways,” in IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2021.

[17] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, doi: 10.48550/ARXIV.1409.1556.

[18] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” 2015, doi: 10.48550/ARXIV.1503.02531.

[19] J. M. Joyce, Kullback-Leibler Divergence. Springer Berlin Heidelberg,
2011.

[20] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning,” Coursera, video lectures, vol. 264, no. 1, pp. 2146–2153, 2012.

[21] Z. Qu, Z. Zhou, Y. Cheng, and L. Thiele, “Adaptive loss-aware quantiza-
tion for multi-bit networks,” in The IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 2020.

[22] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” Tech Report, 2009.

	I Introduction
	II Background and Motivation
	II-A Background
	II-B Motivation

	III Approach
	III-A Class-based importance scores for neurons
	III-B Class-based importance scores for filters
	III-C Searching for the bit-width arrangement
	III-D Refining quantized neural networks

	IV Experimental Results
	V Conclusion
	References

