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Abstract

A novel deep neural network (DNN) architecture is proposed wherein the filtering
and linear transform are realized solely with product quantization (PQ). This re-
sults in a natural implementation via content addressable memory (CAM), which
transcends regular DNN layer operations and requires only simple table lookup.
Two schemes are developed for the end-to-end PQ prototype training, namely,
through angle- and distance-based similarities, which differ in their multiplicative
and additive natures with different complexity-accuracy tradeoffs. Even more, the
distance-based scheme constitutes a truly multiplier-free DNN solution. Exper-
iments confirm the feasibility of such Product-QuantizEd Content Addressable
Memory Network (PECAN), which has strong implication on hardware-efficient
deployments especially for in-memory computing.

1 Introduction

Deep neural networks (DNN5s) have achieved breakthroughs in various applications including classi-
fication [21]], object detection [15]] and semantic segmentation [29]], etc. Nonetheless, the massive
amount of parameters and computation make it difficult for both training and inference on edge
devices with constrained hardware resources. Numerous efforts have been made to reduce the network
complexity while preserving the output accuracy. Among various schemes, some are low-bitwidth
neural networks using binary weights [4, 18, 27], replacing the expensive multiplications with cheaper
sign flip operations during inference. Some approaches substitute multiplications with additions and
bit-wise shifts. AdderNet [2] realizes convolution (in the sense of similarity matching) by [ -distance
between the activation and weights, and maintains competitive output accuracy. ShiftCNN [] is
based on a power-of-two weight representation for converting convolutional neural networks (CNNs)
without retraining. Among works that aim to improve the memory efficiency and performance of
shift neural networks, DeepShift 7] is a framework for training low-bitwidth neural networks from
scratch to replace multiplication with bit-wise shift and sign flip. All these works, despite specific
implementations, still adhere to the traditional DNN architecture.

This work attempts to detach a neural network from its regular filtering operation and replace it with
an associative memory, aka content addressable memory (CAM), whereby the content is derived
from prototypes of product quantization [11]. Such framework, dubbed Product-QuantizEd Content
Addressable Memory Network (PECAN), combines the storage and compute into one place, and
is particularly suitable for the fast-emerging in-memory computing. The codebook/table lookup
during inference also makes PECAN hardware-friendly and positions it as a strong candidate for
edge artificial intelligence (AI). This is also warranted by the readiness in commodity platforms like
FPGAs with CAM support, as well as next-generation memristive microelectronics like resistive
random-access memory (RRAM) wherein a CAM is inherent to an RRAM crossbar [19}[12].

Our proposed PECAN is inspired by the lately proposed MADDNESS [1] that utilizes product
quantization and table lookup to truly omit multipliers in matrix-matrix products. However, the main



contribution of MADDNESS, namely, the hash function for prototype matching, is heuristic and
non-differentiable, thus making it incompatible with a learning framework. In fact, the authors also
remark it will take several more papers to consolidate the framework for DNNs.

PECAN exactly fills this void by its end-to-end learnable PQ-based DNN architecture. The closest
work to ours is differentiable product quantization (DPQ) [3l], but for the first time we demonstrate
its multi-layer feasibility and enrich DPQ prototype matching (viz. a similarity search) with an
l-distance metric. The latter comes from the lately proposed AdderNet [2] wherein the [; metric is
utilized in a different context of CNN filtering, whereas our work is the first to show its feasibility for
training prototypes in the DPQ setting. To our best knowledge, PECAN is a brand new architecture
that transcends regular DNN filtering and uses similarity search and table lookup for inference.
This allows it to be compatible with simple hardware without the need of dedicated neural engines,
especially edge devices where compute and storage resources are limited. Our major contributions
are: 1) A first-of-its-kind, end-to-end learnable CAM-based DNN. PECAN is hardware-generic and
friendly to almost all hardware platforms especially those with built-in CAM support, and represents
a strong candidate for edge Al deployment; 2) Two similarity measures in PECAN, based on angle
and distance, to investigate the trade-offs between computation complexity and accuracy; 3) Joint
fine-tuning and co-optimization of weight matrices and PQ prototypes, which permits PECAN to
train from scratch; 4) A totally multiplier-free DNN via the distance-based PECAN.

2 Related Work

For efficient edge deployment, binary neural networks (BNNs) [[10, [18l16] exclusively make use of
the logical XNOR operation that obviates regular multipliers, but in principle they are still doing 1-bit
multiplication. Moreover, though BNNs have gone through major improvements in recent years, their
top-1 accuracies measured on large-scale datasets are still noticeably lower than their full-precision
counterparts. Indeed, most BNN implementations are only partial in the sense that the first and final
layers are still using full-precision weights and activations [27, [25].

Other works replace multiplication with addition [2]] or bit-shift operations [8, 30} [7], or both [28]].
Specifically, AdderNet makes novel use of /;-norm difference and adders to do template matching
required in a CNN. Yet it still employs multipliers for the necessary batch normalization to bring
back signed pre-activations. Progressive kernel based knowledge distillation (PKKD) AdderNet [24]
improves the performance of the vanilla AdderNet. AdderNet with Adaptive Weight Normalization
(AWN) [6] further alleviates the curse of instability of running mean and variance in batch normaliza-
tion layers. Applying bitwise shift on an element is mathematically equivalent to multiplying it by a
power of two, and sign flipping is introduced to represent negative numbers. Although these works
focus on largely multiplier-free DNNGs, they still build on the traditional architectures.

The proposed PECAN is motivated by MADDNESS which realizes multiplier-free matrix-matrix
product using hashing and table lookup rather than multiply-add operations. Although it achieves
orders of speedups compared to existing approximate matrix multiplication (AMM) methods, the
proposed hashing functions are not differentiable and not amenable to DNN training. DPQ [3] is
proposed for end-to-end embedding, but it is only single-layer and targets word embedding, and still
requires full-precision multiplication to obtain distances between the input and matching keys.

3 PECAN

The convolution operation in a CNN is conceptually illustrated as a window sliding across the
¢in-channel input feature (cf. Fig.[I[(a)). Actual implementations often unfold the convolution into a
matrix-matrix product (cf. Fig.[I(b)). Specifically, the im2col command stretches the input entries
covered in each filter stride into a column and concatenates the columns into a matrix X, whereas the
kernel tensors are reshaped into a filter matrix F, such that PQ can be used to approximate /"X . For
an intermediate CNN layer, consider the flattened feature matrix X € Reink?x H outWout where ¢;,,
and k are the number of input channels and the kernel size, H,,; and W,,; are height and width of
the output feature, codebooks C' € Reink” %P are assigned with parameters to construct an embedding
table for the features, where p is the number of choices for each codebook C), j = 1,2,...,D.

C,(ﬂ) € R? are called prototypes, m = 1,2, ..., p (cf. Fig. c)). It is natural to set each prototype
in PQ to be a k2 x 1 subvector (viz. same size as a vectorized kernel), with p prototypes in each
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Figure 1: CNN convolution in its (a) conceptual form; (b) equivalent matrix-matrix-multiply by
flattening the filters and input features via im2col, with mapping of input data sub-columns onto
the closest prototypes in different codebooks; (¢) Precomputing inner products of F'-subvectors and
prototypes to form a lookup table.

of the ¢;,, input channels according to the patterns of flattened matrices. With this setting, there are
two main components in a trained PECAN that require memory storage in each layer, namely, i)
pC;p, prototypes for “quantizing” the input subvectors; ii) c,y¢Cinp inner product values between the
(sub)rows in F' and each prototype.

In short, PECAN is mapping (quantizing) the original input features onto prototype patterns in
compact codebooks, then multiplication between weights (F') and features (X) can be approximated
by lookup table operation during inference. Below we elaborate two content addressing techniques
(i.e. similarity matching) approaches based respectively on angle (dot product) and distance (I;-norm)
which are both end-to-end learnable. Accordingly, these two schemes are dubbed PECAN-A and
PECAN-D, which cover both ends of complexity-accuracy spectrum: The angle-based scheme uses
multiplicative operations and generally leads to higher output accuracy, whereas the distance-based
one uses additive operations and is much more lightweight at the expense of slight accuracy loss.

3.1 PECAN-A: Angle-Based Similarity Measure

A scaled dot-product attention module [23]], widely used in Transformers, computes the dot products
of queries with keys and applies a softmax function to obtain the weights on the values.

T

Attention(Q, K, V') = softmax( QK

Vi

where dj, is the dimension of keys, which serves as a scaling factor. Generally, @, K and V are
obtained from three distinct learned projection matrices. However, different from self-attention, we
learn the keys K (viz. prototypes in PQ) directly without the intermediate linear transforms, and
make V' equal to K. For PECAN-A, we compute the approximated matrix X by splitting its rows

W, (M

into D = ¢;,, groups, each with subvectors of dimension d = k2, and get the attention scores K L(] ) to
formulate the combination of prototypes CS,Z):

K = softmax((CV)Tx), XV = DKV, 2)

where: = 1,2, ..., Hyu:Wout. Since the dot product distance function with softmax is differentiable,
mapping features to prototypes can be learned end-to-end. It is worth noting that all intermediate
features are replaced with the combination of learned prototypes after training.
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Figure 2: The proposed PECAN architecture. (a) The training phase is mainly composed of template
matching for each subvector in the flattened feature map matrices after im2col operation. When
approximating subvectors with the closest prototypes, PECAN-A and PECAN-D adopt different
assignment schemes. (b) For PECAN-A, an attention module compares the subvectors with each of
the prototypes in the same group. Subsequently, the resulting scores are subjected to the weighted
sum to produce the approximate feature matrix. (¢) For PECAN-D, the similarity is measured with a
sign flip /;-norm and the approximation is selected with argmax function. (d) Since the argmax is
not differentiable and the gradient of /1-norm is discrete (1, —1, 0), we propose Eq. (@] [5) and (€] to
do the backpropagation. (e) After getting the converged neural network, we calculate the slice-wise
product between convolution filters and prototypes, and store the results in the memory. (f) In the
inference phase, we only need to calculate the distance of feature maps with a small number of
prototypes and look up in the stored memory to get the quantized output.

3.2 PECAN-D: Distance-Based Similarity Measure

Now we attempt to get rid of all multipliers. To achieve this, we make use of only [;-norm difference
for the so-called template matching, namely, finding the closest match through absolute difference
which involves only subtraction. Specifically, in this distance-based framework, /;-norm is applied in
order to discard multiplication:

kY = argmax —[| XY — €1, XY = CDone_hot(k?), 3)
where K, f 7 = one_hot (k(J )) denotes a p-dimensional vector with the k:fj )_th entry as 1 and others 0.
To enable optimization for prototypes with the non-differentiable function argmax, we approximate
it with a differentiable softmax function defined as follows:
w0 __ep(IX7 — /) @

S exp(=| X7 = 1 /7)

where 7 is the temperature to relax the softmax function. Note that Eq. (@) can be considered as

the proportion of Laplacian kernels when 7 # 0 . It relies on the observation that the positive

definite function k(X 07(,{)) = exp(—||Xi(j ) _c¥ IE: /7') here defines an inner product and a

lifting function ¢ such that the inner product (¢(X;’ () ), (b(Cm )) can be computed quickly using the
kernel trick [[17]].

i

Now the approximated index K i(j ) is fully differentiable when 7 # 0. However, this yields the
combination of prototypes for X i(] ) again, while we need 7 — 0 to get discrete indices during the



Table 1: Inference complexities of PECAN-A and PECAN-D.

Method Layer #Add. #Mul.
A CONV i Hout Wourk® Cout Cin Hout Woutk® cout
Baseline
FC CinCout CinCout
PECAN-A CONV PDH 0t Wout (d+ Cout) pDHoutWout(d+ Cout,)
FC pD(d + cout) pD(d + cout)
CONV DH ,yt Wout (2pd ou 0
PECAN-D tWout (2pd + cout)
FC D(de"l‘cout) 0

forward inference. To this end, we follow [3]] and define a new index to solve both non-differentiable
and discrete problems in one go. Specifically, in the forward and backward passes during training,
we adopt

K9 (r #0) = sg (K (r £0) = KD (r = 0)), 5)
where sg is stop gradient, which takes the identity function in the forward pass and drops the gradient

inside it in the backward pass. Based on this, we can now use the argmax function in the forward
pass and softmax function during backpropagation. However, the partial derivative of the distance

dEQ =— ||Xi(j ) C,S{) |l1 with respect to codebook subvector C,(,Z) is a sign function:
L”’." = sgn(X,(j) - C(J)), h = tanh (a(X(J) — C(J))) where a = exp(—e), (6)
acy) L "7 acy) ' " E

where sgn(-) is the sign func-
tion and takes the values of

{+1,0,—1}. Such zero gradi- ore

ent almost everywhere makes it 0.50

impossible to train a neural net- 5 0%

work. In this regard, we adopt the € _Zg:

right term in Eq. () to replace " _oso

the gradient, where e is the cur- -0.75

rent epoch and F the total number T - ; .
of training epochs. Fig. [3|shows X

this epoch-aware approximation  Figure 3: Approximation to the sign gradient for different 5.
to the sign function w.r.t. values

of % as epoch increases during training. In the early stage, the function is smoother for stable training.
As the training progresses, the approximation gradually turns into the sign-like function.

3.3 Inference Details and Complexity

For the original im2col convolution, the computation complexity is O(¢;n Howt Wout k‘zcout). During
inference, our method includes two stages, the first is to get the indices by computing the distance
between the flattened features and prototypes, while the second is to retrieve the product between
weights and prototypes computed in advance, i.e., a simple table lookup. The inference algorithm for
both PECAN variants is given in Algorithm [I]

Table [T] illustrates the number of multiplication and addition operations in convolution and fully-
connected layers for the traditional CNNs, angle-based and distance-based PECAN during the
inference phase. Note that the fully-connected layer can be regarded as a convolution layer when
k = H,e = Wou: = 1. Instead of using the specialized setting of D = ¢;,, and d = k2, we further
consider the more general case in Table[I| where the group number D and dimension of prototypes
d satisfy Dd = ¢;,, k?. Choosing smaller p and D will reduce the computation complexity for both
PECAN-A and PECAN-D. Specifically, in order to limit multiplication complexity in PECAN-A to
be smaller than the baseline, we need p < min(Acout, (1 — A)d) with A € (0, 1). This constraint is
also taken into consideration in the experiment section. Note that by design, PECAN-D needs no
multiplication during inference, thus making it genuinely totally multiplier-less.



Algorithm 1 Inference Algorithm of PECAN
Input: Codebook C' € Re+*XP 4D learned kernel tensor K € ReeutXcinXkxk ynfolded features
X e Rcinkz X Hout Wout .

Output: The approximated convolution output Y € Reowt X Hout
1: Permute and reshape weights to W; € RP*¢outXd codebooks to Oy € RP*dxp
2: for jin{1,2,--- ,D} do

yU) = Wl(j)Cl(j) € RCout Xp

4: end for

5: for iin {1,2, - | Hpu:Wout} do

6

7

Wout

w

if PECAI\[I) -A then
Y, = 3 Y@softmax(CWT x 7))

j=1
8: endif
9: if PECAN-D then , ]
10 kY = argmax || XY — ||

L _ 80

11: Y, = Zl ka

]: k3
12:  endif
13: end for o _
14: return Concatenate (Y1,Y2, -+, Yy, ., w..,)

4 Experiments

To demonstrate the effectiveness of the proposed PECAN and further benchmark the differences
between its two variants (PECAN-A and PECAN-D), we apply PECAN to the classification tasks,
taking MINST [5]], CIFAR-10 and CIFAR-100 [[13] as datasets. The models employed in this
section include modified LeNetS, VGG-Small [27], ResNet20 and ResNet32 [9]. The experiments
explore two PECAN training strategies, namely, co-optimization on weights and codebooks and
uni-optimization on codebooks. We also compare PECAN with state-of-the-art (SOTA) approaches
that aim to reduce the amount of multiplication operations, namely, XNOR-Net [18]], IR-Net [16],
FDA-BNN [25], ReCU [26], SD-BNN [27]] and AdderNet [2]. Additionally, we investigate how the
dimension and number of groups of the codebook affect the performance of PECAN, validate the
necessity of our training strategies, and provide visual results to confirm the approximation capability
of the prototypes.

Implementation Details. When using the PECAN framework to train the modified LeNet5 with
kernels of size 3 x 3 on MNIST, we employ the uni-optimization strategy that only updates the
prototypes with the trained weights being frozen. The prototypes are trained for 150 epochs. The
learning rate is set to 0.01 initially, decaying every 50 epochs. To implement the PECAN framework
for the CIFAR-10 and CIFAR-100 tasks, we use the co-optimization strategy and set the training
epochs for PECAN-A and PECAN-D as 150 and 300, respectively. The learning rate for PECAN-A
follows the LeNetS scheme, while that of PECAN-D is initialized as 0.001, decaying at epoch 200.
For both datasets, we employ softmax function and set the temperature 7 at 1 and 0.5 for PECAN-A
and PECAN-D, respectively. We set the batch size to 64, and use cross-entropy as the loss function,
which is optimized by Adam. All experiments are run on a machine equipped with four NVIDIA
Tesla V100 GPU with 24GB frame buffer, and all codes are implemented by PyTorch.

4.1 Modified LeNet5 on MNIST

To quickly zoom into the superiority of PECAN, the amount of required addition and multiplication
operations and the detailed codebook information for each layer in the modified LeNet5 are shown
in Appendix Table Focusing on the second and third columns, it is noticeable that PECAN-
A has fewer multiplications and additions compared with the baseline, and PECAN-D needs no
multiplication at all. For the codebook settings, it is seen that the number of prototypes p used in
PECAN-A is much fewer than that of PECAN-D for all five layers. We adopt this setting considering
the gaps between the representation capabilities of PECAN-A and PECAN-D. By adjusting the



weights assigned to prototypes, PECAN-A is expected to better approximate the features with limited
choices, i.e., a smaller p.

The performance and the required number of

Table 2: Experiment results of LeNet on MNIST. addition and multiplication operations of the

Model #Add. #Mul. Acc.(%) whole modified LeNet5 employing PECAN-A
Baseline 248.10K  248.10K 9941 and PECAN-D schemes are summarized in Ta-
PECAN-A  196.88K  196.88K 99.25 ble[2] It is worth noting that LeNet with PECAN-
PECAN-D 2.00M 0 99.01 D is multiplier-free, and maintains the good per-

formance compared with the baseline (99.01%
vs 99.41%). The accuracy of PECAN-A achieves 99.25%, which is merely 0.16% lower than the
original LeNet5. However, PECAN-A performs fewer operations. To this end, the LeNet5 example
demonstrates the effectiveness of the PECAN framework, and shows the advantages of PECAN-A
and PECAN-D from different perspectives.

Table 3: Experiment results on CIFAR10. Table 4: Experiment results on CIFAR100.

Model Method #Add. #Mul.  Accuracy (%) Model Method #Add. #Mul.  Accuracy (%)

Baseline 0.61G 0.61G 91.21 Baseline 0.61G 0.61G 67.84

VGG-Small PECAN-A  0.54G 0.54G 91.82 VGG-Small PECAN-A  0.54G 0.54G 69.21

PECAN-D 0.37G 0 90.19 PECAN-D 0.37G 0 60.43

Baseline  40.55M 40.55M 92.55 Baseline  40.56 M 40.56 M 69.55

ResNet20 PECAN-A 38.12M 38.12M 90.32 ResNet20 PECAN-A 38.12M 38.12M 63.15

PECAN-D 211.71M 0 87.88 PECAN-D 211.71M 0 58.01

Baseline 68.86M 68.86 M 92.85 Baseline 68.86M 68.86 M 70.57

ResNet32 PECAN-A 64.20M 64.20M 90.53 ResNet32 PECAN-A 64.20M 64.20M 64.13

PECAN-D 353.26 M 0 88.46 PECAN-D 353.27M 0 58.26

4.2 VGG and ResNet on CIFAR-10/100

After the proof-of-concept on LeNet5, we proceed to VGG-Small and ResNet20/32 on CIFAR-10 and
CIFAR-100. VGG-Small is a simplified VGGNet [20] with only one fully-connected layer. The size
of the output feature maps and the corresponding codebook information for each layer are provided
in Appendix Table We remark that the bottom row of each block in the table represents the
FC layer, while the rows above represent the CONV layers. The number of required addition and
multiplication operations and the accuracy of the models are summarized in Table 3] where it can
seen that the VGG-Small baseline has 0.61G multiplication and addition operations with 91.21%
accuracy. Since batch normalization can be folded into convolution layers in the inference stage, we
do not count FLOPs for both baseline and PECAN. We find that PECAN-A only performs 0.54G
multiplications while reaching 91.82% accuracy on CIFAR-10, which is even higher than the baseline,
similar performance can be obtained on CIFAR-100 in Table[d] A possible reason is that PECAN
experiences less information loss for shallower CNNs, and bigger input channels allow more groups
of prototypes to improve the representation capability. This assumption is also validated by the
experiments on ResNet20/32 that are deeper than VGG-Small but with smaller input channels.

Although PECAN-D has an accuracy drop compared with the baseline, it eliminates all multiplications
during inference. For VGG-Small, the number of additions reduces to 0.37G while accuracy drops
only around 1% compared with the baseline on CIFAR10. To boost the performance, we use smaller
size for subvectors in PECAN-D as shown in the last column of Appendix Table[A3] at the expense
of more computation.

4.3 Comparison with AdderNet

We compare PECAN-D with AdderNet on VGG-Small in Table[5] It should be emphasized that batch
normalization is not taken into consideration in this table, it can not be folded into AdderNet layer so
multiplication is indispensable. For VGG-Small, the memory cost is so high that even four NVIDIA
Tesla V100 GPUs are not able to train successfully. As shown in the table, the proposed PECAN-D
with only 0.37G additions achieves a 90.19% accuracy on VGG-Small. Here we showcase the
efficacy of PECAN on larger models from a hardware perspective. In the Intel VIA Nano 2000 CPU
(used in the AdderNet paper), the latency cycles of float multiplication and addition are 4 and 2,
respectively. PECAN-D of VGG-Small model will incur ~720M(cycles) while that of a CNN is



~3660M. The power consumption ratio of 32bit multiplication and addition units is 4:1. Power-wise
and latency-wise, PECAN-D network is more efficient than both AdderNet and regular CNN.

Table 5: Comparison with AdderNet.

Model Method # Mul. # Add. Accuracy (%)  Normalized Power  Latency(cycles)
CNN 0.61G  0.61G 93.80 8.24 3.66G
VGG-Small ~ AdderNet 0 1.22G N.A. 3.30 2.44G
PECAN-D 0 0.37G 90.19 1 0.72G

4.4 Ablation Study

4.4.1 Prototypes Dimension

To investigate the effect of the prototype di-
mension on the performance of both PECAN-A [ cosetine QN ¢ [ ] [ G
and PECAN-D, we conduct comparative exper-
iments on ResNet20 (on CIFAR-10 dataset) by
reducing the dimension from &2 to k, and then
increasing up to ¢;,,. Subsequently, the number
of groups changes from c;,, to kc;,, and k2 corre-
spondingly. Except for the prototype dimension,
we keep other settings (e.g., number of proto-
types p in each layer, and learning rate decay 70
scheme) the same as the experiments in Table [3]
The results are visualized in Fig. d] wherein the
prototype dimension increases from left to right
for each set of bar charts. It is observed that
the performances of PECAN-A and PECAN-D
have different trends when the prototype dimension increases. Compared with PECAN-D, the angle-
based PECAN-A is more robust, and its accuracy does not change sharply under the three cases. It
achieves the best performance when the prototype dimension is k2, while still maintaining decent
accuracy when the dimension changes to k and c¢;,,. On the contrary, the performance of PECAN-D
is more sensitive, which is inversely proportional to the prototype dimension. It is intuitive since
approximation in the fine-scale (viz. larger groups with smaller dimensions) is expected to be more
accurate. We remark that PECAN-A, which has weighted prototypes, trades for robustness at all
scales by the higher computational complexity compared with PECAN-D.

@ [+ © ©
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Accuracy(%)

~
(3]

PECAN-A PECAN-D

Figure 4: Accuracy of ResNet20 on CIFAR10 us-
ing different dimensions of subvectors including &,
k? and C;,, for both PECAN-A and PECAN-D.

4.4.2 Freezing Weights during Training

For both angle- and distance-based measures, we freeze the pretrained weights and only train the
matched codebooks in the MNIST example, but when moving to a larger dataset, both weights and
prototypes are not frozen but are updated during training from scratch. To further clarify the reason
of this choice, we also train VGG-Small which has the same setting as in Table|3| on CIFAR10.

However, different from training from scratch,
we only unfreeze prototypes and start from the
pretrained mature CNN. Specifically, we initial-

Model  From Scratch Freeze Weights  Accuracy(%) ize all convolution filters with the preFrained

Baseline % x o121 model and qnly learn those prototypes in each
PECAN-A/D % X 91.82/90.19 layer. Experimental results are shown in Table[6}
PECAN-A/D X v/ 91.76/87.43 As seen from the table, updating prototypes only
still has accuracy gap especially for PECAN-D
compared with the one learning both weights and prototypes from scratch. A possible reason is that
the convolution weights in the pretrained model are not well-matching with the templates.

Table 6: Effects of training strategies on PECAN
accuracy.

4.4.3 Visualization of Prototypes

To visually inspect the effectiveness of PECAN-D in CNNs, we take the intermediate convolution
layers of VGG-Small and plot the patterns of the feature maps before and after replacement. In Fig. 5]



Figure 5: The flattened features and codebooks for five different layers in VGG-Small, (a)-(e) for
convl-conv5. For each subfigure, the upper image is the input feature after im2col operation, the
second image shows the approximation matrix after substitution with PECAN-D which is composed
of the corresponding codebook shown in the third row. The y-axis is the dimension of each subvector
k2. The z-axis represents the size of output feature maps H,, W, for the first two rows, and
denotes the number of prototypes for the third row.

we select the first channel of the flattened feature maps and visualize the matrices. The dimension of
all subvectors is set as k2 = 9. As can be seen, though the number of prototypes is limited for each
convolution layer, the quantized feature maps can still preserve the basic patterns after training.

5 Discussion

To boost the performance for PECAN, we can 106
choose small size of prototypes in our experi- 6
ments which might incur a challenge for mem- = = A - .

ory footprint. Reducing the number of proto- T 4

types and increasing the subvector lengths can
lower the memory cost, but this may harm the
model accuracy. To this end, We propose fur- o 1w ;w4 s e
ther means to save memory: For PECAN-A we

can exploit the projectors inherent to attention  pjoyre 6: Call frequencies of 64 prototypes in the
to shrink dimensions of query and key (corre-  iqdle 18 CNN layers @ ResNet20. The z-axis
sponding to weights & prototypes in PECAN-  yonreqents the indices of prototypes and the y-axis

A). Even more interesting, for PECAN-D, take  jq the order of the 18 layers. White grid cells denote
the 2nd CONV layer of ResNet20 on CIFARIO () times of usage.

as an example, only 26 out of 64 prototypes are

used in the inference stage, meaning all other prototypes and lookup entries can be pruned without
affecting accuracy. Fig. [f]illustrates the sparse usage count of each prototype in the first group of
codebooks for 18 intermediate CNN layers. We will report these exciting results in the follow-up
work of PECAN, as these are beyond the central theme of this paper.
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6 Conclusion

A brand new DNN architecture called PECAN is proposed which transcends the regular DNN linear
transform, and replaces it by product quantization and table lookup. Both angle- and distance-based
measures are developed for similarity matching of prototypes in product quantization for different
complexity-accuracy tradeoffs. The distance-based PECAN, to our knowledge, is the first neural
network that is multiplier-less and uses only adders all over. PECAN is end-to-end trainable and infers
only through a content addressable memory (CAM)-like, similarity search protocol. It facilitates
a lightweight and hardware-generic solution favorable for edge Al, and fits perfectly into the in-
memory-computing regime. Experiments have shown that PECAN exhibits accuracies on par with
multi-bit networks even without using multipliers. We expect more advancement on top of this
interesting PECAN framework will follow after this debut.
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A Computation Complexity of PECAN

In this section, we analyze the complexity of PECAN-A and PECAN-D during the inference stage,
which is shown in Tablem For both PECAN-A and PECAN-D, there are two stages of calculation:
1) computing the distance between the flattened features and prototypes, and 2) a simple table lookup
to retrieve the product between weights and prototypes computed in advance.

Specifically, the first stage requires H ¢ W+ subvectors in each group to compare with p prototypes.
Therefore, PECAN-A needs H,,: W, Dp - d multiplications and additions, respectively, while
PECAN-D has H,,; W+ Dp - 2d additions. During the second stage, a lookup table of c,,; X Dp is
available to address the quantized product. It takes the weighted sum for PECAN-A or summation for
PECAN-D in D groups. We can get H s Wyt Dpcoy additions and multiplications for PECAN-A
and H,yt Wyt Doyt for PECAN-D.

Since the FC layer can be regarded as a CONV layer when k = H,,; = W, = 1, the computation
complexity of an FC layer can be obtained accordingly.

B Details of PECAN on MNIST

Table A1: Detail structure of LeNet used in PECAN.

kernel size Output Flattened Weights

LeNq

eRet k Xk [cout7 Hout, Wout] [Cout7 kzcin]
CONV1 3x3 (8, 26, 26] [8,9]
ReLU1 (8, 26, 26] —
MaxPoolingl 2 X 2 (8,13, 13] -
CONV2 3x3 [16,11,11] [16,72]
ReLU2 (16,11, 11] —
MaxPooling2 2 X 2 (16,5, 5] -
FC1 1x1 [128,1,1] [128, 400]
ReLU3 [128,1,1] —
FC2 1x1 [64,1,1] [64, 128]
ReLU4 [64,1,1] —
FC3 1x1 [10,1,1] [10, 64]

Table A2: PECAN settings of LeNet on MNIST.

Layer #Add. #Mul. p D d
CONV1 48.67TK 48.67TK - - -
CONVI1(PECAN-A) 45.97TK 45.97K 4 1 9
CONVI1(PECAN-D) 784.16 K 0 64 1 9
CONV2 139.39K 139.39K - - -
CONV2(PECAN-A) 116.16 K 116.16 K 8 3 24
CONV2(PECAN-D) 1.13M 0 64 8 9
FC1 51.2K 51.2K - - -
FC1(PECAN-A) 28.8K 28.8K 8 25 16
FCI1(PECAN-D) 57.60K 0 64 50 8
FC2 8.19K 8. 19K - - -
FC2(PECAN-A) 512K 512K 8 8 16
FC2(PECAN-D) 17.41K 0 64 16 8
FC3 0.64K 0.64K - - -
FC3(PECAN-A) 0.83K 0.83K 8 4 16
FC3(PECAN-D) 8.27TK 0 64 8 8

C Details of PECAN on CIFAR10

For PECAN, specialized settings are employed for different models. Table[A3]describes detailed
information for each layer in VGG-Small and ResNet20/32.



Table A3: The settings of prototype numbers and dimensions for each layer in different models for
PECAN on CIFARI10.

Model #Layers Output map size p/d (PECAN-A) p/d (PECAN-D)

2 32 x 32 16/9 32/3

2 16 x 16 16/32 32/3

VGG-Small 8 x 8 16/32 32/3
1 1x1 16/16 32/16

1 32 x 32 8/9 128/3

, 6 32 x 32 8/9 64/3
ResNet20 ¢ 16 x 16 8/16 64/3
6 8 x 8 8/16 64/3

1 1x1 8/16 64/4

1 32 x 32 8/9 128/3

10 32 x 32 8/9 64/3

ResNet32 16 x 16 8/16 64/3
10 8 x 8 8/16 64/3

1 1x1 8/16 64/4

Table A4: Experiment results on TinyImageNet.

Model Method #Add. #Mul. Accuracy (%)
Baseline 3.36G 3.36G 56.76
Modified ConvMixer PECAN-A 2.36G 2.36G 59.42
PECAN-D 0.98G 0 50.48

D Additional Experiments on Tiny-ImageNet

Due to space limitations, we put the experimental results on a larger dataset TinyImageNet [14] here.
Different from the main paper, we choose ConvMixer [22]] replacing all pointwise and depthwise
convolution layers with conventional convolution layers. Besides, we keep the first convolution layer
and the last fully-connected layer uncompressed. The depth of ConvMixer is 8 and kernel sizes in
all blocks are k£ = 5. We set p = 16, d = 25 for PECAN-A and p = 32, d = 25 for PECAN-D. As
shown in Table PECAN-A achieves 59.42% accuracy which is much higher than the baseline
when reducing around 1G multiplications and additions.

E Codes Instruction

In order to make it easier to verify the experimental results, we provide codes and the running
commands for readers to reproduce the results in the tables.

For dataset MNIST, CIFAR-10 and CIFAR-100, we train our models using the following commands.

python train.py \
—log_dir [directory of the saved logs and models] \

—data_dir [directory to training data] \
—dataset [MNIST/CIFAR10/CIFAR100] \
—arch [resnet20_pecan_a/resnet20_pecan_d] \
—batch_size [training batch] \

—epochs [training epochs] \

—learning_rate [training learning rate] \
—Ir_decay_step [learning rate decay step] \
—query_metric [dot/adder] \

—gpu [index of the GPU that will be used]
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