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Abstract—RRAM crossbars have been studied to construct
in-memory accelerators for neural network applications due
to their in-situ computing capability. However, prior RRAM-
based accelerators show efficiency degradation when executing
the popular attention models. We observed that the frequent
softmax operations arise as the efficiency bottleneck and also
are insensitive to computing precision. Thus, we propose STAR,
which boosts the computing efficiency with an efficient RRAM-
based softmax engine and a fine-grained global pipeline for the
attention models. Specifically, STAR exploits the versatility and
flexibility of RRAM crossbars to trade off the model accuracy
and hardware efficiency. The experimental results evaluated on
several datasets show STAR achieves up to 30.63× and 1.31×
computing efficiency improvements over the GPU and the state-
of-the-art RRAM-based attention accelerators, respectively.

Index Terms—RRAM Crossbar, Attention Model, Softmax,
Processing-in-memory

I. INTRODUCTION

Though some RRAM-based accelerators specialized for at-
tention models have been discussed [1]–[3], they primarily
focus on implementing the matrix multiplications on the RRAM
crossbar. In this work, we observed the execution time of
softmax operation grows quickly in attention models when
the input sequence length increases. The latency of softmax
exceeds that of matrix multiplication when the input sequence
length is 512 in the BERT-base model, which reaches up to
59.20% of the whole execution time. Though our results are
observed on a GPU platform, the softmax latency problem
would be exacerbated on the RRAM-based accelerators because
the matrix multiplication is significantly optimized by being
implemented in RRAM crossbars [4] but the softmax still
runs on the same circuits. Thus, it is of significance to tailor
an efficient softmax engine in RRAM-based accelerators for
attention models. To this end, we propose STAR, which features
an RRAM-based softmax engine by exploring the versatility
and flexibility of RRAM crossbars to balance to the computing
precision and efficiency. Moreover, an enhanced pipeline to
balance the matrix multiplication and softmax operation in
the attention is introduced. The effectiveness of STAR is
verified by the comparison results with the recent RRAM-based
accelerators for attention models [3].

II. RRAM-BASED SOFTMAX ENGINE

STAR is primarily composed of two types of crossbar-based
processing engines: MatMul engine for the VMM-dominated
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Fig. 1. The xi − xmax operation design.

operations and Softmax engine for the softmax operation,
respectively. The MatMul engine follows the design in Re-
Transformer [3]. As for the Softmax engine, different function
units based on RRAM crossbars cooperate with each other to
complete the softmax operation. The Softmax engine has two
distinct stages, xi−xmax and the exponential operation, which
desire crossbars having different functions.

1) xi − xmax: The xi − xmax is achieved by one crossbar
in a time-multiplex manner to complete the finding maximum
and subtraction, respectively. Thus, the crossbar is denoted as
CAM/SUB crossbar.

Fig. 1 shows the workflow of a 4×8 CAM/SUB crossbar
to find out the max value in [x1 · · ·x4]. The crossbar works
as a CAM first. For each xi, all the WLs of the crossbar are
searched in parallel and the matchlines output a one-hot vector
in which ‘1’ denotes the matched line. For example, if the
data stored in the WL3 in Fig. 1 is consistent with x1, the
output vector would be [0,0,1,0]( 2⃝). The outputs of matchlines
cascade the OR gates that merge the search results of all input
xi( 3⃝). Because the data are stored in descending order in the
CAM crossbar, the index of the first ‘1’ in the result vector
corresponds to the row number of CAM storing the xmax. In
the example of Fig. 1, xmax stores at WL2. Next, the crossbar
executes the subtraction xi − xmax. The match vector outputs
will be used as the input voltage vector. Instead, the input for
the xmax row is a negative voltage ( 4⃝). Thus, the output from
the SLs represents the results of xi − xmax( 5⃝).

2) Exponential Operation: The exponential operation is
implemented by CAM crossbar and LUT crossbar. A VMM
crossbar collaborates with them to complete the summation
in the softmax. All possible values of xi − xmax and their
exponential results are preloaded in CAM crossbar and LUT
crossbar, respectively. Since the xi − xmax is always negative,
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Fig. 2. The exponential operation design in our softmax engine.
TABLE I

COMPARISON WITH THE BASELINE CMOS-BASED SOFTMAX

Softmax Design Area Power
Softermax [5] 0.33× 0.12×
Ours (8-bit) 0.06× 0.05×

we remove the sign bit to save the area of CAM crossbar. Each
input enters CAM crossbar and the output from the LUT cross-
bar is its exponential result. At the same time, the match vector
for CAM crossbar is sent to the counter for accumulation. When
all xi complete the exponential computation, the results of the
counter are sent to the VMM crossbar which stores exactly
the same values as LUT crossbar to compute

∑d
j=1 e

xj−xmax .
Then the outputs of LUT crossbar and VMM crossbar enter
the divider to complete the final division in the softmax.

Since the efficiency of the proposed softmax engine relates to
the computing precision determined by the attention model, we
analyzed the data range of all xi across three popular datasets
for the BERT-base model such that balances the computing
precision and hardware efficiency with STAR. To achieve high
model accuracy, the required bitwidth for CNEWS, MRPC, and
CoLA are 8 bits (6-bit integer, 2-bit decimal), 9 bits (6-bit
integer, 3-bit decimal), and 7 bits (5-bit integer, 2-bit decimal),
respectively.

With the proposed RRAM-based Softmax engine, we in-
troduce a vector-grained pipeline to improve the execution
parallelism and efficiency for attention models. Thanks to the
crossbar-based softmax engine, the complete attention mecha-
nism operations could be in parallel in the vector granularity
rather than the operand granularity in previous work.

III. EXPERIMENTAL RESULTS

We compared the proposed RRAM-based Softmax engine
with an optimized COMS-based softmax accelerator, Soft-
ermax [5] and a baselined CMOS-based softmax and com-
pared STAR with a NVIDIA Titan RTX GPU platform and
two ReRAM-based accelerators PipeLayer [6] and ReTrans-
former [3] to verify the collaboration of the proposed pipeline
and Softmax engine.

The simulation of STAR is performed on NeuroSim [7]
(for RRAM crossbar) and Synopsys Design Compiler (for the
CMOS circuit), respectively. In the MatMul engine, the RRAM
crossbar size is 128×128 and the precision of ADC is 5-bit by
referring to [3]. In the proposed Softmax engine, the size of
the CAM/SUB crossbar is 512×18 and the CAM (LUT, VMM)

Fig. 3. Computing efficiency comparison results.

crossbar size is 256×18 to support 9-bit data and computing
precision.

Table I is the comparison results of our Softmax engine
with Softermax and the baseline CMOS-based softmax. Here,
the evaluated model is the BERT-base model on the CNEWS
dataset with a sequence length of 128. Compared to the
baseline and Softermax, our Softmax engine is 0.06× and
0.20× smaller, respectively. As for power, it achieves 0.05×
and 0.44× power efficient than baseline and Softermax, re-
spectively. The results show our proposed Softmax engine
offers a much better area efficiency and power efficiency than
the baseline and Softermax. Fig. 3 compares the computing
efficiency of GPU, Pipelayer [6], ReTransformer [3] and STAR.
Computing efficiency here measures the number of operations
that can be performed by a computing unit every unit time and
every watt of power consumed. STAR achieves the computing
efficiency of 612.66GOPs/s/W. Compared to GPU, Pipelayer
and ReTransformer, STAR improves the computing efficiency
by 30.63×, 4.32× and 1.31×, respectively.
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