Abstract:
Despite significant recent advancements in analog design automation, analog front-end design remains a challenge characterized by its heavy reliance on human designer exp...Show MoreMetadata
Abstract:
Despite significant recent advancements in analog design automation, analog front-end design remains a challenge characterized by its heavy reliance on human designer expertise together with extensive trial-and-error simulations. In this paper, we present a novel data-driven analog circuit synthesizer with automatic topology selection and sizing. We propose a modular approach to build a comprehensive, parameterized circuit topology library. Instead of starting from an exhaustive dataset, which is often not available or too expensive to build, we build an adaptive topology dataset, which can later be enhanced with synthetic data generated using variational autoencoders (VAE), a generative machine learning technique. This integration bolsters our methodology's predictive capabilities, minimizing the risk of inadvertent oversight of viable topologies. To ensure accuracy and robustness, the predicted topology is re-sized for verification and further performance optimization. Our experiments, which involve over 360 OPAMP topologies and over 540K data points demonstrate our framework's capability to identify optimal topology and its sizing within minutes, achieving design quality comparable to that of experienced designers.
Date of Conference: 25-27 March 2024
Date Added to IEEE Xplore: 10 June 2024
ISBN Information: