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Abstract

Given an arbitrary rational matrix G, we are interested
to construct the class of coprime factorizations of G with
J-all pass denominators of McMillan degree as small as
possible. Recently, we have given necessary and sufficient
solvability conditions and a construction of the class of
solutions in the canonical case in which the denomina-
tor has McMillan degree equal to the number of unstable
poles of G. In this paper we extend the theory of co-
prime factorizations with minimal degree denominator to
the noncanonical case.

1 Introduction and Preliminaries

Let G be an arbitrary rational matrix (possible improper)
and let I'y be a given domain of the closed complex plane.
A left coprime factorization (LCF) over I'y of G is a rep-
resentation of the form G = M~'N, with N and M
rational matrices having poles only in I'y and satisfying
MU + NV = T for certain rational matrices U and V
with all poles in I'.

In this paper we are interested in LCFs with denom-
inators M of smallest possible McMillan degree (which
we call minimal degree factorizations). In addition, we
require for the denominator to have a certain symmetry,
i.e., to be J—-all pass either with respect to the imaginary
axis or to the unit circle.

Apparently, the theory of minimal degree coprime fac-
torizations (with or without symmetry) has not been pre-
viously considered as such in the literature, although it
brings important numerical advantages and it is crux to

solving various problems encountered in the theory of lin-
ear systems and networks [15, 6], to canonical and non-
canonical spectral factorizations of unstable rational ma-
trices [2, 6], to several conjugation based approaches to
nonstandard H., control problems [16, 17]. The only no-
ticeable exception is [1], where coprime factorizations are
addressed with another requirement of minimality, namely
the sum of the McMillan degrees of the denominator and
nominator to be as small as possible.

Recently [8], we have started to study coprime factoriza-
tion with minimal degree denominators. We have shown
that the minimal degree of a LCF over I'y(without any re-
quirement for symmetry) is n,, where n;, is the number of
poles of G in I'y, and we have given a description in terms
of realizations of all factors solving the minimal degree
LCF over I';. We developed in [8] also a theory of mini-
mal degree LCF's with the additional requirement that the
denominator has a certain symmetry (with respect to the
imaginary axis or the unit circle). In [8] we have studied
only LCF's with J all-pass denominator of degree n, — the
so—called canonical case. For the canonical case we have
given necessary and sufficient solvability conditions and,
when solutions exist, we have given a parameterized de-
scription of the factors in terms of associated realizations.

This paper is a continuation of [8]. Here we study the
more technical case in which such canonical solutions do
not exist. Precisely, we discuss the solution of noncanomni-
cal LCFs with J all-pass denominators of McMillan degree
as small as possible (> ny). The computation of factors in
the canonical case relies on solving a generalized Lyapunov
equation of order ny. In the noncanonical case, the rank
r of the solution of the same Lyapunov equation allows
to determine the minimal degree of the factorization as
2n, —r. The noncanonical factors can then be constructed
by embedding the solution of this Lyapunov equation of
order n; into a 2n, — r order Lyapunov equation with



nonsingular solution. The noncanonical case has impor-
tant connections with the noncanonical Wiener—Hopf and
J spectral factorizations as discussed in [2] for proper and
invertible rational matrices.

1.1 Basic notation and definitions

For a matrix A we denote by A* its conjugate transpose
and if A is invertible by A™* its conjugated transpose in-
verse, respectively. By €, €, €*, €°, and R we denote
the complex plane, the open left half plane, the open right
half plane, the imaginary axis, and the real axis, respec-
tively, and let € := CU{oo} be the closed complex plane,
and € := € UC"U{cc}, T =ctucu {o0}. Here
“overbar” denotes closure. By ID we denote the open unit
disk and ID® = €\ D stands for the exterior of the closed
unit disk, containing the infinity. By IF' we denote either
R or C.

Consider the disjoint partition of € into a “good” region
I'y and a “bad” region I'y

C=T,UTl,. (1)

A frequent interpretation of I'y in system theory is re-
lated to the standard stability concept, that is, for lin-
ear continuous-time systems I'y = €, while for linear
discrete-time systems I'y = ID™ (or, sometimes, their clo-
sures).

We denote with G™ the adjoint of G, where G™(s) =
G*(—3) in continuous—time and G~(z) = G*(1/2Z) in
discrete-time. In particular, if G has real coefficients we
have G~(s) = GT(—s) and G~(z) = GT(1/z), respec-
tively. Let J be a signature matrix, i.e., a matrix satisfy-
ing J = J* = J~!. We say that the rational matrix G is J
all-pass with respect to the imaginary azis if G~JG = J,
where G~ denotes adjoint in continuous—time. Accord-
ingly, we say that G is J all-pass with respect to the unit
circle if G~¥JG = J, where G~ denotes now adjoint in
discrete—time.

By definition, the McMillan degree of G — denoted 6(G)
— is the sum of the orders of all its poles (finite and infi-
nite). Once a partition (1) is fixed, we have §(G) = ny+ny,
where n, denotes the number of “good” poles in I'y and n,
denotes the number of “bad” zeros in T, (counting multi-
plicities).

1.2 Descriptor realizations of rational
matrices

It is well known (see for example [14, 13]) that any p x m
rational matrix G(\) with coefficients in IF (even improper
or polynomial) has a descriptor realization of the form

G(A)—{A_O)\E ZB;]

where A, E € F**", B ¢ T"*™, C ¢ F?*", D ¢ FP*™,
and the so called pole pencil A — \E is regular, i.e., it is

=C\E—-A)"'B+D, (2

square and det(A — AE) # 0. The dimension n of the
square matrices A and E is called the order of the real-
ization (2). We use A(A — AE) to denote the union of
generalized eigenvalues of the regular pencil A — AE (fi-
nite and infinite, multiplicities counting). The descriptor
realization (2) of G is called minimal if its order is as small
as possible among all realizations of this kind.

The principal drawback of realizations of the form (2)
is that their minimal possible order is greater than the
McMillan degree of G, unless G is proper, and this brings
important technical difficulties in factorization problems
in which the McMillan degree plays a paramount role. A
remedy to this is to use a generalization of (2) in which
either the “B” or the “C” matrix is replaced by a matrix
pencil, as explained further. Any rational matrix G has a
realization

A—)\E | B-\F
R
= C(\E—A)"Y(B-\F)+D,

3)

and for any fixed «, 8 € IF, not both zero, there exists a
realization

- A—\E | Bla—\8)
e = [ c D ] )
.— C(AE—A)"'B(a—\3)+ D,

where A, E €¢ F**", B.F ¢ F"*™, C ¢ F"*", D ¢
IFP*™ and the pole pencil A—\E is regular. A realization
(4) will be called centered (at F; if 3 = 0 we interpret 5 as
00). For details about these type of realisations we refer
to [7].

As a methodological question, throughout the paper we
assume that the rational matrix G to start with is given by
a minimal descriptor realization (4) as this type of realiza-
tion is most frequently used in the literature to represent
arbitrary (possibly improper) rational matrices, while the
solutions N and M to the LCF G = M~!'N will be given
directly by minimal realizations (3) and (4) of order equal
to their respective McMillan degree. Furthermore, once
a partition (1) is fixed, we assume that G is given by a
separated realization with respect to (1), namely

Ay — \E, Abg — )\Ebg By
G()‘) = 0O Ag - )‘Eg Bg (5)
Cy c, | D

where the ny X n; pencil A, — AE}, contains the n; poles
of G(A\) in T'y, and

rank | By Epg | =y, (6)

that is, all infinite nondynamic modes are included in
Ag — M\E,. Starting with an arbitrary minimal realization
(2) it is always possible to arrive to a separated realisa-
tion (6) by performing solely orthogonal transformations.
Furthermore, if the realization to start with has real coef-
ficients, and I'y is symmetric, we can always determine a
separated realization with real coefficients as well.



2 LCF with J all-pass denomina-
tor with respect to the imagi-
nary axis

In this section we give the solution to the minimal degree
LCF with the requirement on the denominator to have
a certain symmetry, namely we consider here the case in
which the denominator is J all-pass with respect to the
imaginary axis. To reflect this symmetry accordingly, we
take throughout this section the partition (1) defined by

Fb = C+ (or Fb = C_) Fg = @\Fb (7)
However, due to the additional requirement on the denom-
inator to be J all-pass it is not always possible to solve the
LCF over I'j with minimal degree n,. When this is possi-
ble, we call the factorization canonical, otherwise we call
it noncanonical. The noncanonical case is considerably
more intricate than the canonical case. The idea in the
noncanonical case is to introduce additional poles and ze-
ros in M (s) such that it could simultaneously be J all-pass
and solve the LCF problem for G(s). At the same time,
we want to keep the McMillan degree of M(s) as small
as possible. It turns out that the additional poles/zeros
can be taken only on the imaginary axis (including infin-
ity) since the pole—zero symmetry featured by a J all-pass
factor implies with necessity that all additional poles will
be reflected into symmetric additional zeros that will be
also zeros of the compound matrix [N (s) M(s)].

Before stating our main result we construct a particular
separated realization of G which facilitates the subsequent
developments. Let G(s) be an arbitrary rational matrix
given by a minimal realization (5) separated with respect
to I'y UT', and satisfying (6), and let ny be the number of
poles of G in T',. Then the generalized Lyapunov equation

AZXEb-i-E;XAb—C;JCb:O (8)

has a unique Hermitic solution X, and let r := rank (X).
Let

(9)

be a spectral decomposition of X where X, is diagonal
and nonsingular and U is unitary. Further, let

* _ E’I‘O
UXU—[O O]

U*EbQ* — |: Ell O :|

10
En B (10)
be a RQ decomposition of U* Ey, where @ is unitary, Fq
and FEy, are lower triangular, square and invertible, and
the partition in (10) corresponds to the partition in (9).
With (9) and (10) it is easy to see that

Uv’k (Ab — SEb)Q* Uv’k (Abg — SEbg) U*Bb
G(s) = 0] A, — sE,
CrQ* Cy

By
| D
(11)

is another realization of G separated with respect to I'y U
Iy which we call balanced with respect to the Lyapunov
equation (8). Thus we may assume from the beginning
that for the separated realization (5) we have Ej lower
triangular and the corresponding Lyapunov equation (8)
has a diagonal solution. We are now ready for our main
existence result.

Theorem 2.1 Given an arbitrary rational matriz G(s)
and a disjoint partition C = Ty UTy, defined by (7), let
ny be the number of poles of G in T'y. Assume (5) is a
minimal descriptor realization of G, separated with respect
to the given partition, and satisfying the condition (6). Let
r = rank (X) where X is the unique Hermitic solution to
the Lyapunov equation
A XEy+ Ey XA, —CpJCy, = 0. (12)
Then there exists a LCF with J all-pass denominator and
the minimal McMillan degree of such a LCF is
2np — 7. (13)
Sketch of proof. Without restricting the generality, we
may assume from the beginning that the realization (5)
is balanced with respect to the Lyapunov equation (12).
Further, as E} is invertible we could, as a first simplify-
ing step in the whole proof, reduce the equation (12) to
a standard Lyapunov equation with E, = I. However,
we prefer not to invert FEj as far as possible as this will
bring benefits in terms of the reliability of the associated
numerical algorithms.
The proof is quite lengthy and we divide it in several
steps: we show first that any solution G = M~'N to the
LCF with J all pass denominator satisfies

(5(M) > 2’1117 -, (14)
and prove further that M ! has exactly n;, poles in T,
(which are the poles of G in T'p) and the rest (additional)

. . —0 .
0(M) — ny poles are with necessity on € . Finally, we
construct a solution of minimal degree 2n, — r with the

additional ny — r poles placed arbitrary on @O.
Proof of §(M) > 2n; —r. Let G(s) = M~1(s)N(s) be
a solution to the LCF with J all pass denominator. As M
cancels in the product N = MG all poles of GG in I', and
M~ is J all-pass, we show that there exists a minimal
realization of M ~! of the form
AM - SEM ‘BM(Oé — Sﬂ) :|

1) —
M~ (s) = Cu | Du

Ab — SEb Aba: - Sbe Bxl(oz - Sﬂ)
= 0] A, — sE, | Byo(a — sf9)
Cb Ca: ‘ DM

(15)
and there exists a Hermitic invertible matrix Xp; such
that

A7\4XME]»1+EX4XMAM—O]T4JCM =0. (16)



According to the partition of the right—hand side of (15),
X can be written in the partitioned form

X Xp

xu=| g 2 (7)
where it follows that X is the unique solution to (12).
Since X, is invertible and the rank of X is r, it follows
from (17) that rank (X»s) > 2np — r and thus (14) holds.
Location of the poles of M. Let G = M~'N be

a solution to the LCF with J all pass denominator. From

(15) we see that the union of poles of M ~1(s) contains

A(Ab — SEb) C ct (18)

which are also the poles of G in I',. From the pole—
zero symmetry of a J all-pass rational matrix it follows
that the poles of M (s) are the conjugated of the poles of

M~(s). Since M has all poles in 'y we infer that the
poles of M~ arein Iy ;=T U €’ from where we have

A(A, — sE,) CTy. (19)
We show further that

A(A, — sE,) C T, (20)
from where we shall conclude with (19) that

A(A, — sE,) € T (21)

and thus M ~! has exactly ny poles in I', and the addi-
tional (M) — ny poles are on T’ We prove in fact that
the coprimeness of N and M over I'; implies (20).

Construction of a minimal solution. We show now
that the LCF with J all-pass denominator has a solution
G = M~'N such that

§(M) < 2ny—r (22)

from where it will follow with (14) that the minimal de-
gree 2n;, — r can be achieved. To this end, we shall con-
struct M(s), define N(s) = M(s)G(s), and prove that
they both satisfy the required properties. Of course, M
should simultaneously be J all-pass, and M~! should
have the form (15), with the additional poles given by
AA, — sE,) C T .

For the sake of clarity we assume first that the addi-
tional poles/zeros A(A, — sE,) are placed in finite loca-
tions on €°. The case with poles at infinity follows anal-
ogously although the formulas become more intricate.

Placing additional poles/zeros in finite locations
on C°. In this case we can take for M~! a realization
(15) with a =1, 8 =0, i.e.,

“1 Ay —sEy | By
M= (s) Cm Dy ]
Ay —sEy  Apy — 5By | B
= o Ag; - SEw ng
Chy Cy | D

The key idea of the construction is to embed the Lyapunov
equation (12) into a larger Lyapunov equation (16) with
an invertible solution Xj; as in (17) and where the matri-
ces Ay, B, Ay Epz, By1, Beo, C, have to be determined.
We can simply take

Ep =0, E,=1,_, (24)
in case of placing additional poles/zeros at finite locations.

We choose further

0]
X2 = [ I } , X22=0
ny—r
and get
[ >, 0] 0]
Xv = 0 O Iy, |,
0 IL,, O
Ey1 O 0]
Ey = Ly Ea @ ;
0 0 I, (25)
A A An
Ay = Agy Ay Ay |,
0 0 4,
Cu = [C1 C2 C ],

where we have taken into account that the realization (5)
is balanced with respect to (12) and we have partitioned

|

conformably with (9). The matrices A1, Ao, Az, Cy
remain to be determined as to satisfy (16). We use (25)
to write (16) component-wise as

A
Aoy

Aro
Az

A:cl

a | s

},cb[c1 e,

ALY, By + E5 S, Ay — CHJCy =0, (26)
EX Y, Ay — CTJCy =0, (27)

C3JCy =0, (28)

Al + B S, Agt + B Ay — CHIC, =0, (29)
A3y + E3pA, — C3JC, =0, (30)
Afy+ Ay — CEIC, =0, (31)

where the rest of equations are transpose conjugated ver-
sions of the ones above. Equations (26), (27) and (28) are
automatically fulfilled due to (12). Before showing how
the remaining equations can be satisfied, we prove that
the pair (Ca, Aga — sFs3) is observable. It follows from
(30) that we can take the matrix C, such that the poles
of A, = E;,f (—A3, + C3JC,,) are on the imaginary axis
by simply solving an eigenvalue assignment problem for
the controllable pair
(=B Asy, Egy C3J). (32)
Finally, we choose A, as the unique solution of (29)
and Ao as any solution to (31). With all these choices it
results that (16) is satisfied.



We take Djs to be any J unitary matrix and define

Bwl

By = = By X3/ O3 DigJ. (33)
B:CZ

We get that M~ is J all pass. It follows that M has all
its poles in I'y, is J all-pass, has McMillan degree less or
equal to 2n, — r, and a realization is given by

M(S) _ |: AM —SEM —B]\/[WCM ‘ —BMW :|

WCwm ‘ w
Ab - SEb - BmIWCb Ab:p - B$1WCLE _BxIW
—Bl.QWOb A.L — sl — B_LQWC_L —BQL-QW
Wy W, ‘ W
(34)
where W = D}/. We define N(s) := M (s)G(s) and get
Ay — sEy — B WCy,  Apy — B WC,
N(s) = meéWCb A, — 515 B.»2C,
W, wWcC,
Abg - BﬂWCg - SEbg Bb - BﬂchD
—BoWC, —B. WD
Ay — sk, B,
we, \ WD

(35)
We can check successively that N has all poles in I'y, and
that N and M are coprime over I';. Thus N and M define
a solution to the LCF with J all-pass denominator, having
degree less or equal to 2n, — r. This together with (14)
shows that the minimal degree 2n;, — r is attained and
concludes the proof.

Placing additional poles/zeros arbitrary on .
This case can be reduced by an appropriate transforma-
tion to the case of finite poles/zeros. |

The following theorem gives a characterization of the class
of all solutions to the minimal degree LCF with J all-pass
denominator.

Theorem 2.2 Assume the same hypotheses and notation
as for Theorem 2.1. The class of all solutions to the mini-
mal degree LCF with J all-pass denominator G = M~'N,
with M proper, is given by (34) and (35), where C, and
A, follow by solving the eigenvalue assignment problem
for the pair (32) with A, = Ey'(—As, + C5JC,) C €°,
Ago is any solution to (31), Az is the unique solution to
(29), W is any J unitary matriz, and By, and Bga are
given by (33).

The proof is omitted for brevity. The case in which M
is allowed to be improper can be treated analogously al-
though the formulae are more intricate.

3 LCF with J all-pass denomina-
tors with respect to the unit cir-
cle

In this section we sketch the discrete-time version of the
results presented in the previous section. More precisely,
we solve the minimal degree LCF problem with the ad-
ditional requirement on the denominator to have another
type of symmetry, namely to be J all-pass with respect
to the unit circle. Throughout this section we take the
partition (1) defined by

Iy ;= Dor Ty, := D), [y:=C\T}. (36)
Similarly as for the symmetry discussed in the previous
section, it is not always possible to solve the LCF over
I'y with minimal degree ny. Again, when this is possible,
we call the factorization canonical, otherwise we call it
noncanonical.

Theorem 3.1 Let G(z) be a rational matriz and let ny
be the number of poles of G(z) in T'y. Consider a minimal
descriptor realization of G(z) separated with respect to the
partition Ty UT'y, in the form (5) and satisfying (6). Let X
be the unique hermitic solution to the Lyapunov equation
E}XE,— A XA, —CpJCy, =0. (37)

Then the LCF with J all-pass denominator with respect
to the unit circle has a solution of minimal degree
2np, — rank (X). (38)

Proof. The proof is much similar to the proof of Theorem

2.1. The key is to transform first equation (37) into the
equation

(Eb+Ab)*X(Eb—Ab)+(Eb—Ab)*X(Eb+Ab)—20{: JCy, =0

(39)
where Ej, — Ay is invertible. Note that (39) is of the form
(12) and we may use further a similar technique as in the
proof of Theorem 2.1. |

Similarly to Theorem 2.2, we can characterise the class
of all solutions in the discrete—time case. The details are
omitted.

4 Conclusions

We have extended the theory of coprime factorisations
with minimal degree J all pass denominator to the non-
canonical case. The approach taken in this paper puts
ground also for extensions to LCF with denominators sat-
isfying other symmetries, as for example with respect to
the real line, or with respect to a certain countour in the
complex plane. The theory presented is a first step to-
wards developing a comprehensive state—space theory of



J spectral factorizations, either canonical or noncanoni-
cal. The most important application of the results pre-
sented here is in the solution to the optimal (as oposed to
suboptimal) H*® control problem under the most relaxed
poosible assumptions. These results will be presented in
a forthcoming report.
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