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Abstract

We present a disturbance rejection mechanism for the for-
mation flying of multiple spacecraft based on a robust con-

trol approach in terms of an Hoo control problem. The

corresponding Hoo control problem is then solved numer-

ically using linear matrix inequalities.

1 Introduction

Formation flying (FF) has been identified as an enabling

technology for many of the NASA's 21 st century missions,
among them, the Deep Space 3 and the'Terrestrial Planet

Finder. Formation flying involves flying a group of space-

craft in a particular pattern while maintaining precise (but
often time varying) relative position, velocity, attitude,

and angular velocity, with respect to each other [2], [6].
Since traditional spacecraft control is often concerned with

measuring and maintaining the same quantities for a sin-

gle spacecraft with respect to an inertial reference frame,
the analogous FF control and estimation problems are of-

ten an order of magnitude more challenging than those
encountered traditionally for a single spacecraft. In or-

der to make the FF control problems at least similar to

the single spacecraft case, an approach based on leader-

following has been proposed by Wang and Hadaegh [7]

(also refer to [8]). The basic idea in leader-following (LF)
is to designate a particular frame (or multiple frames) in
the FF as the reference frame(s) and measure and con-

trol the states of the rest of the formation with respect to
them.

The present paper addresses the problem of designing a
control law for the follower spacecraft in an LF formation
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which is guaranteed to attenuate the effects of environ-

mental disturbances on the performance of the leader fol-

lowing. The results of the paper are in direct relevance to

those reported [4] and [7] for the formation keeping prob-
lem. Building on the basic feedback linearization scheme -

in [7], we propose a control mechanism for the formation

in the presence of disturbance forces and torques based on

the Hoo methodology. The linear matrix inequality (LMI)
[1] formulation of the corresponding H_o problem is then

used to design a candidate controller which is, in the Hoo
sense, optimal.

The organization _of the paper is as follows. In §2 the
assumptions which constitute the framework for the for-

mation keeping problem are listed. In §3 and §4 the basic
facts and the formulation of the problem considered in the

paper are presented, followed by the design techniques
which introduce the Hoo formulation of the disturbance

rejection. A numerical example and the corresponding
simulation result are then presented in §5.

First a few words on the notation. Formation flying con-

sists of flying a group of spacecraft in a particular pattern.
To be able to express the time evolution of the formation

and design the corresponding control laws, it is convenient

that a reference frame is attached to each spacecraft. We

shall always assume that these reference frames are in-

duced from a dextral set of three orthonormal vectors.

Let the formation have n spacecraft labeled as 1, 2, ..., n.
Let 9rt denote the reference frame attached to the i-th

spacecraft; jrl on the other hand shall designate the iner-
tial reference frame. For the inertia and the mass of the

i-th spacecraft we use I t and m i , respectively. The force

and torque acting upon i are denoted by fi and r I ; for

the mass normalized force we used u | := . The time

derivative with respect to ._t shall be denoted by _ti; like-

wise, _ will be used for the time derivative with respect
to 51 . rti denotes the position of the origin of ._ with

respect to 9rj ; r I is the position of the origin of ._ with

respect to 9vx . The desired position of the origin of ._
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Figure 1: Formation Coordinates

with respect to ._'J shall be denoted by _ , and by
when j = I. The velocity of the origin of with respect

to ._'J, the velocity of the origin of ._ with respect to _'!,

the desired velocity of the origin of _ with respect to _J

, and the desired velocity of the origin of _ with respect

to .7"I , shall be denoted by v _t , v ! , v_ , and v_ , respec-

tively. Similar notation is used for the angular velocity of
.Ft with respect to _'J : wU is the angular velocity of _ct

with respect to _J and U_dUis the desired angular velocity

of _ with respect to _J (refer to Figure 1). The cross

product matrix induced by the vector z = [zz z2 z3] T is
the matrix,

I 0 -z3 z2 1
:= 0

-z2 zz 0

2 Assumptions

We consider a group of spacecraft which are to be kept
in a particular formation pattern. The attitude control

of the spacecraft in particular is not considered in the

present study. However, the orientation of the spacecraft

does play a role in the formation keeping problem, since
the angular velocity of the spacecraft effects the measure-

ments of relative distances and velocities. The following
assumptions are explicitly made in the present paper:

1. One spacecraft is designated as the leader in the for-
mation; the rest are referred to as the followers.

2. The leader chooses its control force (to acquire the
desired position, etc.) independent of the followers'
dynamics.

3. The leader communicates its control action to the fol-
lowers at each instant of time.

4. The followerscan measure, for example via the Au-

tonomous Formation Flyingsensor(AFF) [5],relative
distance and velocitiesto the leader.

5. The followershave knowledge of theirown absolute

positions,velocities,and angular velocity,and their

attitudewith respectto an inertialframe.

6. A commanded differentialvector with respectto the

leader,expressed in the inertialframe, issupplied to

the followersduring a particularfinitetime interval.

7. Uncertainties,in terms of disturbance forces and

torqueson the followerspacecraftare present.These

disturbancesare causes by solarpressure,gravitygra-
dient,aerodynamic, or magnetic forces.

8. Uncertainties,in the spacecraft dynamics model, as

wellas in the communication channel,are considered

to be negligible.We shallpresent resultspertaining

to some oftheseissuesin the subsequent papers.

Under these assumptions, the followerchooses itscontrol

force and torque based on the knowledge of itsown dy-

namics and the control that was used by the leader to

track a desiredtrajectory.We note that relaxingsome

of these assumptions resultin a significantchange in the

techniques which can be used to address the formation
keeping problem.

3 First, Feedback Linearization

Under the stated assumptions in §2, we consider the sce-

nario where the leader's position, with respect to y-I ,
evolves according to,

dr z dv z fz
d--7= -jf- = = ul.

The control force fz is chosen independent of the followers

according to some mission objectives, optimality criteria,
etc.

Recall that the first and second derivatives of a vector

A in F z and F i are related by the following relation,

dA dA

-_- = _ + w I x A, (3.1)

where caI is the angular velocity of F t with respect to F I.
In particular,

dw i d_ d_i

d---i-= dt---'[+ _i x _i = dti '

stating that the rate of change of the angular velocity is
independent of the frame of reference.

Differentiating both sides of (3.1) with respect to F I we
obtain,

d_ A d_"A dwi dA

dr----_- = _ + _ x m + 2w I x _ + w I × (_l x A).(3.2)

Let,

rid(t) = rZ(t) + hi(t), to < t < tl;



the error is thus,

_'(t) = ,a,(t)_,a(t)
= rli(t) +hi(t), (3.3)

where r 21 is the vector from (the origin of) F ! to (the origin
of)/:,1, i.e., the position of the leader with respect,-to the

i-th follower spacecraft coordinates. We like to obtain an

expression which describes the time evolution of e ! in F t.
From (3.3) one has,

d_el(t) da(_i2)(t ) d_hl(t)

however,

d_(rli)(t) _ d2(rl(t)- rl(t))
dt 2 dt_

= ua(t) - ul(t). (3.4)

In view of (3.2) we have,

_ × el(t) + 2_i(t) x del(t)
dt_ + dtl dt"--'_"

+_'(t) × (_'(t) × el(t)) (3.5)

= (u'(t) - ui(t)) + _-_hl(t)
dt 2 , (3.6)

where u I represents the total normalized force acting on
the/-th spacecraft, i.e.,

uI(t) = ulo(t)+ u_,(t).

The last term on the right hand side of (3.6) can of course
be represented in F l as,

d2hl(t) d_l(t) dhl(t)
dt--'-_ + _ x hi(t) + 2_i(t) x -dtl

-_I(t) × (_'(t) x hi(t)). (3z)

The rate of change of the angular velocity _l with respect

to F 1 or F I is related to the torque applied on the space-
craft via the Eu|er's equation,

d_I(t)
dt_ = (i_)-l(_'(t) -,_'(t) × (_'(t))). (3.8)

Again the term r I represents the total torque on the i-th
spacecraft, i.e.,

_i(t) = _(t) + d(t).

Now, (3.6) represents how the error vector e ! evolves in

F i. We would like to obtain an expression for u_, such
that the origin is the globally asymptotically stable limit

point of the trajectories defined by (3.6) in the presence of

environmental disturbances uld and r1. For this purpose
we let,

del(t)
z_(t) = dt'-'-'_ := zl(t),

z3(t) = _'(t).

The dynamics ofthe i-thspacecraftcan thus be expre_med
as,

xt(t)= _2(t), (3.9)
}_(t)= -2_3(I)×_(t)- (t')-'(_,'(t)+ _d'(t)

-- za(t) x lira(t)) × xt(t) - za(t) x (za(t) × zl(t))

+ (u'(t) - u_,(t) - u_(t)) + dahI(t)
dt 2 , (3.10)

z3(t) = (II)-1(r_(t)+ r_(t)- z3(t)x fizz(t)). (3.11)

The differentialequations (3.9)-(3.11)describe a nonlin-

ear dynamical system whose state representsthe evolu-

tion of the positionerror,positionrate error,and the an-

gular velocityof the followerspacecraft,in the follower's

coordinate system. In general, one would liketo choose

the controlaction such that the error terms go to zero,

while certainoptimalityconditions,and stateand control

constraints are satisfied. Since designing non-conservative

optimal nonlinear controllers in their full generality is a
formidable task, one often restores to less ambitious ob-
jectives, via for example feedback linearization.

We notice that the parameters available for the control

purposes are control force u_ and torque r i. However, the
control torque might be independently used to obtain a

desired orientation during the maneuver, in which case,

one would merely focus on obtaining an expression for u_.
Suppose that the control force and torque are repre-

sented as,

u_(t)= _,_(t)- u_,(t),

,-',(t)= _I(t)+ T_,(t),

where,

ullt(t) :- 2xa(t) × z2(t) + 2:3(t) × (z3(t) × xz(t))

_ul(t) d2h|(t)
dt _ (/I)-leei(t) x zl(t),

_,(t) = _(t) × zI_(t).

The subscript 'fl' above is used to denote the 'feedback

linearization' term. The dynamics is thus simplified to,

_(t) = _2(t),

_:(t) = -_'o(t) - u_(t) - (i')-_(t) × _(t),
;_(t) = (l')-_(_(t) + ,-d_(t)).

Let T = -(Ii)-_[r_]. From the statistics of eai we con-
struct the set

f_C_ax3 such that T_f_

with a probabilitywhich can be chosen to be arbitrary
closeto one; now consider the convex hullof f2. For the

purpose of the presentdiscussion we shall assume that

the convex hullisa polytope in _×_. Thus, there exists
matrices Tt, ..., Tt,such that

T_ Co(T_ .... ,T_},



where Co denotes the operation of taking the convex hull
of a set.

The dynamics of the leader followingcan thus be rep-
resented as,

Denote by,

[0,0ji. t ]z2(t) = T 0 0 z2(t)
i3(t) 0 0 0 z3(t)

[0 j_!(t)
+ -I _(ll)-i (3.12)

o (:)-1 _(t)

I°0j ju_(t)
+ -I _(1t)-I r_(t) " (3.13)o (:)-1

hi :'-

[o ojB. = -z -(:)-_ ,
o (:)-_

and let,

d z°Ti 0 0 , i=l .... ,I,
0 0 0

i0 01B,,, := _r _(:)-i ,
o (.:)-_

u(t) := [ U'ri_:l]' and w(t):-furi_:_] '

The dynamical equations which describethe evolutionof

the followerspacecraftcan thereforebe summarized as the

followinglineardifferentialinclusion[I],[3],

i_(t) = Az(t) + Bu u % B= w(t), (3.14)

where,

A E Co{AI,...,At}.

The output equation can generically be represented as,

z(t) = C. z(t) + D.,, u(t) + D,,,w(t). (3.15)

In the subsequent section, we shall build on the lineariza-

tion and the embedding procedure described above to pro-
pose a state feedback linear controller for the formation

keeping problem which attenuates the effects of the dis-

turbance vector on the state of the follower space-

craft.

4 RMS Gain and State Feedback

Synthesis

[ u_(t) ]We model the disturbance vector w(t) := r_(t) , as a

stationary stochastic process having a finite RMS norm,
defined to be,

Z
r

Figure 2: The open loop block diagram for the follower

spacecraft (the plant P represents one of the Gi's).

It is known that for an ergodic wide-sense stationary
stochastic signal, the RMS norm can be expressed in terms

of the power spectral density function S(_),

ll°°IIw(t)llrtMs= Trace _ Sw (w) dw.
Oo

Now consider the follower spacecraft dynamics after the

feedback linearization, as represented by (3.13) (Figure 2).
For each T/ one as a linear time invariant system; let the

corresponding transfer matrix be denoted by Gi(s). The
RMS gain of a transfer matrix Gi or its Hc_ norm is the

largest ratio of the RMS norm of the noise signal w to the
RMS norm of the output signal z, i.e.,

IIz(t)IIRMSIIG,(s)llo_ := sup
Ilto(t)IIRMS;eO Ilw(t)llR_s"

Itcan alsobe shown that,

IIC,(s)ll_o := sup Um=(Gi(jw)),
_d

where O'max(Gi(jw)) denotes the maximum singular value
of the (complex)matrix Gi(jw) [1].

We now focus on proposing a state feedback control law

which has as its goal, the minimization of the RMS gain of

the resulting family of closed loop feedback systems which
represent the follower spacecraft dynamics.

4.1 State Feedback Synthesis

In this section we present a state feedback control which

aims to minimize the RMS gain of the family of closed
loop systems which represent the dynamics of follower

spacecraft. The follower dynamics with the controller in

the feedback loop can thus be represented as in Figure
2, where K is considered to be a constant state feedback
gain.

For simplicity of the present discussion, we shall assume

that D,,# = 0, i.e., that the noise does not directly affect

the output signal :. Let u(t) = Kz(t) in (3.14)-(3.15);
thus,

z(t) = (A + BuK)z(t) + B_w(t),

A E Co {At .... ,At},

:(t) = (c, + D:_ :_)_(t).

In order to minimized the RMS gain from w to z, con-

sider the Lyapunov function V(z, t) = z(t)_Px(t), where
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Figure 3: The block diagram for the follower spacecraft

with the state feedback controller (the plant P represents
one of the Gi's).

the matrix P is positive definite. Suppose that P is cho-

sen such that there exists a. n_onnegative number 7 satis-
fying[1],

Figure 4: Simulation results for a representative scenario

d
t) + z(t)' z(t) - _<o.

Thereby,

(4.10

lim 1 f0 TT--*oo "T z(t)' z(t) dt

- lira 72w(t)'w(t)dt < O,
T_oo T

since V(z(T)) > O. Thus one can deduce that,

IIz(t)llrtMS
[Iw(t)ll MS < %

i.e., one can bound the RMS gain of the closed loop sys-
tem by A by an appropriate selection K which admits a

quadratic Lyapunov function with the desired properties.
Expanding the condition (4.16) for the family of transfer

matrices Gi's (i = 1,..., l), one obtains,

(Az(t) + Bu u(t) + Bw w(t))'Pz(t)

+=(t)'P(Az(t) + Bu u(t) + Bw w(t))

-(C, z(t) + D,u u(t) + D, ww(t))'(C, z(t)

+D,, u(t) + D,_,w(t)) - 72w(t)'w(t) < O, (4.17)

for all A 6 Co{A1, ._..Ai} and all z 6 _.

After some simplifications, and setting Q := p-1 and
Y = KQ (4.17) can be written as,

[Xu X,/]X,;, X3, < 0

(i = 1.... ,1),

where,

Thus, in order to find a controller which aims to minimize

the RMS gain of the family of closed loop systems rep-
resenting the follower spacecraft dynamics, we are led to
solve the following semi-definite program,

min.r,Y,q 3'

Q>0,

[ AiQ + QA_ + BuY + Y'Bu' + B,.B,_'(C.Q + D.,,)Y

(i = 1,...,l),

(C.Q + D.uY)' ]_72i

and then let K = yQ-l

5 An Example

In this section we provide an example and the correspond-
ing simulation result for the proposed state feedback syn-

thesis procedure discussed above. For this purpose, given
the matrices At, ..., At, B,,, and B,., as in (3.14), we choee
the following matrices for the simulation purposes,

C. =I and D.. =0.

The LMItool, an optimization package developed by E1
Ghaoui, Nikoukhah, and Delebercque based on the SP

code of Boyd and Vandenberghe, implementing the pri-
mal/dual interior point method for solving semi-definite

programs, was used to solve the SDP (4.18)-(4.18). The
disturbance force and torque was modeled as a band lim-

ited white noise. The simulation result is depicted in Fig-
ure 3.

6 Conclusion

Xt, = AiQ + QA_ + BuY + Y'B,,' + B,.B,.',

X=i = (C.Q + D.uY)',

Xal = -'f21.

We proposed a disturbance rejection mechanism for the

formation keeping problem. The disturbance rejection
problem is first formulated in terms of a family of Hoo
optimization problems. We then proceeded to solve these



H_ problem using their LMI formulations via the recently

proposed interior point methods. A numerical example

was provided to demonstrate the usefulness of the pro-
posed approach for formation flying in the presence of

RMS bounded disturbance forces and torques.
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