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Abstract

The problem of entrainment (capture, synchronization) of

the trajectories of nonlinear oscillatory system driven by

an external periodic signal is reconsidered. The frequency-

domain conditions of capture (global synchronization)are

established extending the previous results (dealing with

the harmonic excitation) to the case when external excita-

tion is a multiharmonic signal, i.e. sum of a �nite number

of harmonics with incommensurate frequencies. Applica-

tions of the results in communications �eld are discussed1.

Copyright c
 1999 ECC.

1 Introduction

The problem of entrainment or capture of the trajecto-

ries of nonlinear oscillatory system driven by an external

harmonic signal is a classical problem of oscillation theory

[1, 2, 3]. The capture phenomenon, also called external

synchronization, has various applications in mechanics,

physics and engineering [4, 5, 6]. Perhaps, the �rst cri-

1The work was supported in part by the Dutch Organization for

Pure Research (NWO), the Russian Foundations for Basic Research

(RFBR, project 99-01-00672), and the RussianFederal Program"In-

tegration" (projects 2.1-326.02, 2.1-589).

terion for global external synchronization by a harmonic

signal was proposed in [7] and then extended by di�er-

ent authors in [8, 9, 10, 11, 12]. Recently, the problem

of synchronization by chaotic signals received signi�cant

attention [13, 14, 15, 16] and is motivated by potential ap-

plications in secure communications [17, 18]. However no

rigorous criteria for global external synchronization were

reported so far.

In this paper frequency-domain conditions are estab-

lished extending the results of [7] to the case when the

external excitation is a multiharmonic signal i.e. sum of a

�nite number of harmonics with incommensurate frequen-

cies of large amplitude can capture all the solutions of the

nonlinear system with an exponential rate.

The paper is organized as follows. In Section 2 the pre-

liminary de�nitions and statements are given. In Section

3 the main result establishing conditions of global syn-

chronization is formulated and proved. Applications of

the results in the secure communications are discussed in

Section 4.

2 Preliminaries

Below some de�nitions and auxiliary results are given. All

the dynamical systems are considered on the positive time

axis [0;1) and limit properties are studied for t! +1.

De�nition 1 [20, 21]. The scalar function f(t) de�ned

on [0;1) is called an oscillatory signal in the sense of

1



Yakubovich (Y-oscillation or OS), if it is bounded and

lim
t!1

f(t) > lim
t!1

f(t) (2.1)

De�nition 2. The scalar function f(t) is called a

strongly oscillatory signal at the level a, if for any " > 0,

L > 0 there exist � > 0, t
�
> 0 such that

meas f� : � 2 [t; t+ L]; jf(� )� aj < �g < "; 8t > t
�
;

(2.2)

where measfSg stands for Lebesgue measure of the set

S. The signal is called strongly oscillatory (SOS), if it is

strongly oscillatory at any level a from the interior of the

range of f(t).

Proposition 1. A function

f(t) =

NX
i=1

fi sin(!it+ �i) + f0 (2.3)

is SOS, if it is not identically zero.

Proof (sketch). To prove Proposition 1 it is su�cient to

consider case a = 0. The proof is based on establishing

uniform boundedness of the number of zeros of f(t) on

any time interval [0; L]; L > 0 with respect to the initial

phases � = f�ig and on the observation that f(t) and

f(t + L) coincide modulo shift of initial phases.

Remark. It follows from the proof that the set

S" of measure less than " from (2.2) can be taken

as a �nite number of open intervals constituting "=nL-

neighborhoods of zeros of f(t) on [0; L].

Consider the linear system

_x = Ax+Bu; y = Cx; (2.4)

where x 2 IRn is the state vector, u; y are scalar input

and output, respectively and matrices A;B;C are of cor-

responding dimensions. The rational function W (�) =

C(�I � A)�1B, is called the transfer function of (2.4).
We denote j =

p
�1, and A� = �I � A; � 2 IC .

Proposition 2. If A is Hurwitz matrix and the input

u(t) of (2.4) is of the form (2.3) then its output y(t) is

SOS, provided that W (j!0)f(i) 6= 0 at least for one i =

1; : : : ; N .

The proof follows from Proposition 1 and the fact that

the steady state mode of the system (2.4) with matrix A

being Hurwitz and input of form (2.3) is of form (2.3) too.

3 Main result

Consider the single input, single output Lur'e system

_x = Ax+B['(y; t) + 
f(t)]; y = Cx; (3.5)

where f(t) has the form (2.3), the matrix A is Hurwitz,

and 
 > 0.

The main result of the paper is formulated as follows.

The o r em 1. Let the following assumptions be valid.
A1. The function '(y; t) is nondecreasing in y in the

regions (�1; y�], [y+;+1) and satis�es a Lipschitz-like
condition with constant �, i.e.

0 � '(y1; t)� '(y2; t)

y1 � y2
� � (3.6)

for some y� < 0, y+ > 0, � > 0.
A2. The function '(y; t) satis�es a Lipschitz condition

in y with constant M uniformly in t 2 [0;1):
����'(y1; t)� '(y2; t)

y1 � y2

���� �M (3.7)

A3. The function '(y; t) is bounded: j'(y; t)j < l for
all y 2 IR; t 2 IR+.
A4. The frequency-domain condition holds

ReW (j!) � 1

�0
<

1

�
8! 2 IR: (3.8)

where W (�) = c(�I � A)�1B.
Then there exist 
 > 0, % > 0, C > 0 such that

kx1(t) � x2(t)k � Ckx1(0)� x2(0)ke�%t (3.9)

for any pair of solutions x1(t), x2(t) of (3.5).
C o ro l l a r y. Under the conditions of the Theorem 1

all solutions of (3.5) converge for su�ciently large 
 > 0

to the steady-state solution

x
(t) = 


NX
i=1

ReW (j!1)fie
!it+�i (3.10)

of the auxiliary linear system

_x = Ax+B
f(t) (3.11)

Remark 1. When a margin � > 0 in the frequency-

domain condition (3.8) is known, i.e.

A40: ReW (j! � �) � 1

�0
<

1

�
; 8� 2 IR (3.12)

is valid instead of A4, the conclusion of the theorem reads

as: there exist 

�
> 0, C > 0 such that (3.9) holds for any


 > 

�
, any % : 0 < % < � and any pair of solutions x1(t),

x2(t) of (3.5).

Remark 2. For the special case that f(t) = sin!t the

problem was solved in [7] where also analytical bounds for



�
, % were given.

Remark 3. If the system (3.5) is dissipative in the

sense of Levinson, i.e. its trajectories fall into some

bounded set B � IRn, then the condition A3 can be re-

placed by:

A3'. The function '(y; t) is uniformly bounded in some

neighborhood of B.

In this case the theorem applies to the Van der Pol and

Du�ng system which are Levinson dissipative according

to the results of [22].



Remark 4. Theorem 1 also holds for any bounded

excitation signal f(t), if f(t) is SOS at the zero level after

passing through the linear �lter (3.11).

To prove the theorem we need the following simple re-

sult.

Lemma. Consider the two systems

_x = Ax+ B'(y; t) + g(t); y = Cx (3.13)

_~x = A~x + g(t) (3.14)

where A is Hurwitz matrix, g(t) is measurable bounded
function, '(�) is Lipschitz in y and j'(y; t)j � l.
Then the solutions x(t), ~x(t) of (3.13) and (3.14), re-

spectively, satisfy the condition

lim
t!1

jCx(t)� C~x(t)j � l�; (3.15)

where � =
1R
0

CeAtB dt.

The proof of Lemma 1 is similar to that of Lemma 1 of

[10].

Proof of Theorem 1. Consider two arbitrary solutions

x1(t), x2(t) of (3.5). Their di�erence z(t) = x1(t) � x2(t)

satis�es the equation

_z = Az +B (t); (3.16)

where  (t) = '(x1(t); t) � '(x2(t); t). Consider the

quadratic function

V (z) = zTHz; (3.17)

where H = HT is a symmetric n� n-matrix and evaluate

its derivative along trajectories of (3.16)

_V = 2zTH _z = 2zTH(Ax+B )

= F (z;  )� 2�V �  (� �  =�); (3.18)

where � = Cz is a scalar; � > 0 is chosen so that the

matrix A + �I is Hurwitz, and F (z;  ) is the quadratic

form in z;  :

F (z;  ) = 2zTH(Ax+B ) + 2�zTHz +  (� �  =�)

= 2zTH[(A+ �I) + B ] +  (� �  =�):(3.19)

Since A + �I is Hurwitz, it follows from the Kalman-

Yakubovich lemma that there exists a positive de�nite

matrix H = HT > 0 such that F (z;  ) � 0 for all z 2 IRn,

 2 IR if and only if

~F ((A+ �I)�1j!B ; ) � 0; (3.20)

where ~F is the Hermitean extension of the quadratic form

F . It follows from condition A4 that (3.20) is ful�lled,

since

~F ((A + �I)�1j!B ; ) =

�
ReW (j! � �)� 1

�

�
j j2:

De�ne the set D � IRn � IRn in the state space of two

identical systems (3.5) as

D =
�
(x1; x2) : y1 � y+; y2 � y+

	
S �

(x1; x2) : y1 � y+; y2 � y+
	
;

where y1 = Cx1, y2 = Cx2.

First, assume that (x1; x2) 2 D. In this case A1 yields

0 �  =� � � which is equivalent to the inequality  (� �
 =�) � 0. Taking into account F (z;  ) � 0 we obtain

from (3.16) the inequality

_V � �2�V: (3.21)

In case (x1; x2) 62 D we employ A2 and the inequality

 � � 0 which follows from A2. Then (3.16) yields

_V � �2�V �  (� �  =�) � �2�V + j j2=�
� �2�V +M2j�j2=�:

Since the matrixH is positive de�nite, it follows that H >

�1
M2

�
CCT or V (z) � �1(M�)2=� for some �1 > 0, which

gives
_V � (�2�+ 1=�1)V: (3.22)

Denote Vt = V (x(t) � x
(t)), where x
(t) is de�ned in

(3.10). We show that for any L > 0 there exist 
 > 0,

t
�
> 0:

Vt+L � e�2%LVt 8t � t
�

(3.23)

for 0 < % < �.

Indeed, choose L > 0 and let " = 2�1L(� � %). By

Proposition 2, the output Cx
(t) of the linear system

(3.11) is SOS. Hence, there exists 
 > 0 such that

jCx
 (t)j > maxfy+; y�g+ l� + 1

for � 2 R"(t), where R"(t) = [t; t + L]nS"(t) and S"(t)

is a set of measure less than ". (E.g. we may take


 > (maxfy+; y�g + l� + 1)=�, where � > 0 comes from

the de�nition of SOS. Further, by Lemma 1, there ex-

ists t
�
> 0 such that jCx(t) � Cx
(t)j � l� + 1 for all

t > t
�
. Therefore, for t > t

�
and � 2 R"(t) the inequality

jCx(t)j > maxfy+; y�g holds, i.e. (x(� ); x
 (� )) 2 D and

(3.21) is valid. Apparently, for � 2 S"(t) = [o; L]nR" the

inequality (3.22) is valid.

In view of the remark after the Proposition 1, the set

S"(t) consists of a �nite number of intervals (t0k; t
00

k), k =

1; � � � ; nL, such that

t � t0
1
< t00

1
< t0

2
< t00

2
< � � � < t0nL < t00nL � t+ L

Integration of (3.22) over the intervals (t0k; t
00

k) � S"(t)

yields

Vt00
k

� e�2�+1=�1)(t
00

k
�t0

k
)Vt0

k

; (3.24)

while integration of (3.21) over the remaining intervals

from R"(t) yields

Vt0
k+1

� e�2�(t
0

k+1�t
00

k
)V 00tk; (3.25)



where k = 1; � � � ; nL and t00
0
= t, tnL+1 = t + L. It-

erating the inequalities (3.24), (3.25) and taking into

account that measS"(t) < " we arrive at the inequal-

ity Vt+L � e�2�L+"=�1Vt which obviously coincides with

(3.23) for the above chosen ".

To end the proof of the theorem pick up some L > 0,

e.g. L = 1. Then iterating (3.23) immediately yields the

exponential bound (3.9) for integer t � t
�
(since 
; " can

be chosen independently of t). To establish (3.9) for non-

integer t we integrate (3.22) over the interval [[t]; t], where

[t] stands for the integer part of t: Vt � e1=�1V[t]. There-

fore (3.9) for all t > t
�
follows by appropriately increasing

the value of C.

4 Application to signal transmis-

sion

During recent years di�erent schemes for secure commu-

nications have been studied based on the synchronization

of two nonlinear systems, usually called the transmitter

and the receiver. To encode the message a change of the

transmitter parameters (\parameter modulation") is used,

while to ensure privacy the message is hidden by some

masking signal generated by the transmitter itself. How-

ever, a multiharmonic signal containing a large number of

incommensurate frequencies looks quite similar to chaotic

one.

Apart from considering message encoding issues we dis-

cuss only the �rst stage of the communication scheme de-

sign, aimed at the choice of transmitter and receiver struc-

tures allowing synchronization of transmitter and receiver

under \ideal" conditions. Particularly, the goal is the re-

construction of the transmitter state vector, i.e. solving

the observer problem, see [23].

In order to apply our main result assume that transmit-

ter is described as

_x = Ax+ B['(y) + 
f(t)]; y = Cx; (4.26)

where y(t) is the transmitted signal. The receiver is de-

signed as an observer, [23] described by

_̂x = Ax̂+ B['(y) � '(y � ŷ)]; ŷ = Cx̂; (4.27)

Then the error equation is

_e = Ae+ B['(ye) + 
f(t)]; ye = Ce; (4.28)

where e = x� x̂.

It follows from Theorem 1 that e(t)�x
(t)! 0 for large


 > 0, where x
 (t) is the steady-state trajectory (3.10) of

(4.28).

Therefore, for reconstruction of the transmitter state

the simple relations can be used

x = x̂+ e (4.29)

or

x = x̂+ x
 (4.30)
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