
FEEDBACK MODEL PREDICTIVE CONTROL BY
RANDOMIZED ALGORITHMS

Ivo Batina∗ Anton A. Stoorvogel∗† Siep Weiland‡

Keywords: predictive control, Monte-Carlo methods, stochas-
tic systems, input constraints

Abstract

In this paper we present a further development of an algorithm
for stochastic disturbance rejection in model predictive control
with input constraints based on randomized algorithms. The
algorithm presented in [1] can solve the problem of stochas-
tic disturbance rejection approximately but with high accuracy
at the expense of a large computational effort. The algorithm
described here uses a predefined controller structure in the opti-
mization and it is significantly less computationally demanding
but with a price of some performance loss. Via an example it
is shown that the algorithm gives considerable reduction in the
computational time and that performance loss is rather small
compared to the algorithm in [1].

1 Introduction

Model Predictive Control (MPC) has gained a wide acceptance
in industry and a lot of attention in the academic community
worldwide [3]. The common feature of these control tech-
niques is a direct use of a model for the prediction of the con-
trolled plant behavior. At each time instant a finite horizon
optimal control problem (possibly subject to some input and
state constrains) is solved, taking the current state of the plant
as the initial condition. Only the first control move in the com-
puted sequence is applied to the plant and the optimization is
repeated in the next time instant.

However, when the optimization ignores the effects of possible
future changes in the disturbance and/or a model mismatch,
closed-loop performance can be poor.

In the case of stochastic disturbances it seems that minimiza-
tion of the expected cost is a natural way of dealing with distur-
bance rejection, analogous to the well known LQ theory. As in
the deterministic case, constraints make an analytical solution
to the optimization problem untractable. In the case that an an-
alytic solution is not possible and that standard computational
methods are too complex, randomized algorithms have been
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applied in control theory mostly in connection with robustness
but recently also in connection with input constraints (see [4]).

In [1] we presented a disturbance rejection scheme for MPC
based on randomized algorithms which minimizes an empiri-
cal mean of the cost function. The optimization at each step
is based on closed loop optimization, therefore it takes into ac-
count the effect of disturbances. Because we do not perform
any a priori parameterization of the feedback laws over the con-
trol horizon, the algorithm is computationally demanding but it
gives a reliable measure of the achievable performance.

In this paper, we present a new algorithm for disturbance rejec-
tion in MPC. In the algorithm we propose here, minimization is
over a class of saturated feedback controllers. A significant re-
duction in the computational effort is achieved by predefining a
controller structure in the closed loop optimization. The result
is an algorithm that is computationally less demanding than the
one in [1] at the expense of some performance loss. Via an ex-
ample, we show that the disturbance rejection performance of
our algorithm is still significantly better when compared with
an algorithm based on obtained standard MPC scheme and that
is very close to the results of the algorithm in [1].

The paper is organized as follows. Overview of the available
approaches to the disturbance rejection in MPC is given in sec-
tion 2. Predictive control based on randomized algorithm is
presented in section 3. Finally, a numerical example is pre-
sented in section 4.

2 Model predictive control and disturbances

Consider a linear time-invariant plant represented with the fol-
lowing state space model:

x(k + 1) = Ax(k) + Bu(k) + Gw(k)

z(k) = Czx(k) + Dzu(k)
(1)

where u(k) ∈ U ⊂ �
m is the control input and U is a com-

pact, convex set which contains an open neighborhood of the
origin, z(k) ∈ �

p is the controlled output and x(k) ∈ �
n is the

state. Finally, w(k) ∈ W ⊆ �
w is a disturbance. Variable k is

supposed to range over the nonnegative integers �+.

It assumed that there is no mismatch between the plant and the
model i.e. that the model describes the plant completely. The
state of the plant is measured.

We assume that the plant, which is subject to amplitude con-
straints on the input, satisfies condition for the global asymp-
totic stabilization via feedback (see [5]), i.e. that all eigenval-
ues of the system matrix A lie on or inside the unit circle.

Let t ∈ �+ be a fixed time instant representing the current time.



Consider the control horizon It := {t + k|k ∈ T }, T := [0, N]
with length N > 0. The control horizon is defined as time
dependent interval, it recedes with the time.

The main purpose of the control horizon is to provide a re-
ceding time slot over which an optimization, based on the pre-
dicted behavior of the plant, is performed. A prediction is ob-
tained by performing the recursion defined by the model equa-
tions (1) for N + 1 steps with the measured state of the plant,
denoted as xt , as an initial condition.

In the standard MPC setting one defines a control and a dis-
turbance sequence over the control horizon. The (1) is time
invariant and the current time can be set to 0 without loss of
generality. We denote a control sequence as u : T → U and
a disturbance sequence as w : T → W. With xt as an initial
condition i.e. x(0) := xt , the state and the controlled output of
the model (1) subject to the control u and the disturbance w are
denoted as x : T → �

n and z : T → �
p respectively.

The cost function commonly considered in MPC is then given
by:

Jop(xt , u, w) :=
∑
k∈T

‖z(k)‖2 + x(N + 1)′Qx(N + 1) (2)

where (·)′ denotes a matrix transpose and Q = Q ′ ≥ 0 denotes
an end-point penalty. The end-point penalty is described by a
symmetric matrix Q ∈ �

n×n . It is known that if the end-point
penalty is sufficiently large, then the closed loop system will be
stable. For further details about the choice of Q we refer to [7].

The standard MPC optimization with the model (1) amounts
to:

V (xt , w) := inf
u

{Jop(xt , u, w)}. (3)

The optimization (3) is only well posed if the initial state and
the disturbance sequence w are given. In the literature two ap-
proaches have been suggested to deal with with the problem of
an unknown disturbance.

• Assume that the disturbance is either zero or a known con-
stant over the optimization interval.

• Use a worst case approach, [6] where we minimize over
u and maximize over w. In other words consider the fol-
lowing optimization problem:

min
u

max
w

Jop (xt) (4)

where w is restricted to take values in some bounded set
W.

The first approach is in a sense too optimistic and ignores the
effect the disturbance can have on the system. The second ap-
proach is too pessimistic and therefore the results are often very
conservative. A third approach is to optimize:

inf
u
� Jop (xt )

where � denotes the expectation and the disturbance w is as-
sumed to be a white noise stochastic process w taking values at
each time t in the set W with some probability measure. Here
u is optimized in open loop over the control horizon. It is then
not difficult to show that the resulting input u is the same when
we consider the stochastic disturbance w or the deterministic
and constant disturbance �w (i.e. we replace w by its expec-
tation). Hence this approach is basically the same as assuming
the disturbance to be constant over the control horizon.

In the paper [1] we took a fourth approach. We choose u at
some instant k, k ∈ T in the control horizon as a function of
x(k) and, possibly, earlier states. Equivalently, we can choose
u(k) as a function of earlier disturbances.

Formally, we define a feedback control law at k, k ∈ T as a
mapping πk : �n → �. On the control horizon we have a
sequence of mappings π := {πk}N

k=0.

The cost that we consider is given as:

J (xt , π,w) :=
∑
k∈T

‖Cz x(k)+ Dzπk(x(k))‖2 + ‖x(N +1)‖2
Q

(5)
where ‖x(N + 1)‖2

Q := 〈x, Qx〉 and Q = Q ′ ∈ �
n×n is an

end-point penalty.

The optimization problem to be solved is then given by:

V (xt) := inf
π
�w J (xt , π) (6)

where � (·) denotes the conditional expectation with respect to
(·).
The control obtained by solving (6) is implemented accord-
ing to the receding control paradigm. Suppose that π ∗ is the
sequence of feedback laws over the control horizon that mini-
mizes �w J (xt , π). Only the first element of π ∗ is significant in
the receding horizon implementation. It determines the current
input for the plant as a function of the current measurement. In
the next time instant, the control horizon is shifted forward and
optimization problem (6) is solved for the new state measure-
ment.

Note that (5) and (6) are time invariant. The receding horizon
controller in the setting described above, is given as:

u(t) = π∗
0 (xt ) ∀ t ∈ �+ (7)

An analytic solution of the optimization problem (6) is very
difficult to obtain. Instead of finding an optimal input in � z

for some z (a finite-dimensional space) we need to find opti-
mal inputs as functions from �

q to �s (an infinite-dimensional
space).

In the paper [1], we find an approximate solution of this prob-
lem by using randomized algorithms. Although computation-
ally very intensive we can approximately compute the opti-
mally achievable performance with high accuracy.

In this paper, we restrict the class of possible feedback map-
pings to one of the form u(k) = σ (Fx(k)), k ∈ T i.e. a linear



feedback type with saturation. The reduction of the compu-
tational load is achieved at the expense of some performance
loss. The algorithm from [1], in this paper named Algorithm
1, can be used to capture the loss of the performance and to
characterize the trade-off between accuracy and computational
effort.

3 Model predictive control by randomized algo-
rithms

If one wants to compute an expectation as in the optimization
criterion (6) for a given input u one can do a computation based
on the distribution of the stochastic disturbance. An analytical
computation of that kind for the case that we consider is ex-
tremely difficult. An alternative methodology is to compute the
empirical mean instead of the conditional expectation in (6).
For computation of the empirical mean we need the cost for a
number of realizations of the stochastic disturbance w. The re-
alizations are chosen randomly, according to the distribution of
w. Because of that, an algorithm in which the empirical mean
is used is called a randomized algorithm.

First, we formally define the empirical mean and an important
related result the so-called Hoeffding’s inequality.

3.1 Empirical mean

Assume a set � and a probability measure P on � are given.
Let f be a scalar-valued function measurable with respect to
P, defined on �

f : � → � (8)

The expectation or mean of f over � can be expressed in terms
of the following integral:

�( f ) =
∫

�

f (θ)d P (9)

The aim is to approximate (9) by drawing m independent, iden-
tically distributed (i.i.d) samples ϑ = {θ1, · · · , θm} from �

according to the probability measure P. This defines the em-
pirical mean:

�̂ ( f, ϑ) := 1

M

M∑
j=1

f (θ j )

We say that we will have confidence δ in this approximation
if the probability that the empirical mean differs from the true
expectation by more than ε is less than δ. Equivalently, we
have confidence δ in our approximation if the probability that
the empirical mean differs less than ε from the true expectation
is larger than 1 − δ.

An upper bound for the confidence δ is given by Hoeffding’s
inequality [8]. For all ε > 0 we have:

Prob
(
|�̂ (s, ϑ) − �( f )| > ε

)
≤ 2e−2mε2

where Prob indicates the probability. In other words, the confi-
dence δ is larger than 1 − 2e−2mε2

.

If we choose the number of samples m to satisfy the following
inequality

m ≥ 1

2ε2
ln

2

1 − δ

then Hoeffding’s inequality tells us that the empirical mean is
within ε of the true mean with confidence δ. An important com-
ment to be made here is that the number of samples needed in
order to get an estimate of the true mean with high confidence
is independent of the dimension of the underlying stochastic
process, i.e. the dimension of the set �.

3.2 Algorithm 1

At some instant s, s ∈ T the state x(s) is a stochastic variable.
However, (1) is a causal system and x(s) does not depend on
the "future" disturbance ws : [s, N] → W. That allows to
express an optimal cost “to go” at each s, s ∈ T as:

Vs(x(s)) = inf
π s

{ �ws Js(x(s), π s)}. (10)

where for all s ∈ T we define:

Js(x(s), π s, ws) =
N∑

k=s

‖y(k)‖2 + x(N + 1)′Qx(N + 1)

with the disturbance ws : [s, N] → W and π s := {πk}N
k=s as a

sequence of feedback mappings πk : �n → U.

The method proposed in [1] amounts to infimizing the empir-
ical mean instead of the conditional expectation in (10). The
empirical mean is computed for a number of the disturbance
samples.

Suppose that we take κ samples of the disturbance w(0) at k =
0. With that, there are κ possible states x(1) for the initial
condition xt and the input u(0). For each one of these possible
futures we generate κ samples of the disturbance w(1) which
establishes κ2 possible future states x(2). On this way, by the
persistent sampling of the disturbance up to N − 1 the number
of samples of w is κ N . The number of samples of the restricted
disturbance sequence ws is κN−s . The number of samples of
w grows exponentially with the horizon.

For all s ∈ [0, N] and for each of κ N−s samples of ws denoted
as wi

s , i ∈ [1, κ N−s ] we write the cost function as:

J i (x(s), π s , wi
s) =

N∑
k=s

‖Cz x(k) + Dzπ
s
k (x(k))‖2+

+ ‖x(N + 1)‖2
Q .

The empirical conditional mean of the cost function in x(s)
given a restricted sequence of feedback mappings π s is written
as:

�̂ws J (x(s), π s) := 1

κN−s

κN−s∑
i=1

J i (x(s), π s , wi
s) (11)

and an empirical optimal cost “to go” as:

V̂ (x(s)) := inf
π s
�̂ws J (x(s), π s). (12)



The following result states an important property of (12).

Lemma 1 The empirical optimal cost (12) is a strictly convex
function in x(s) for all s.

Proof: In [1].

The Algorithm 1 is based on a dynamic program:

V̂s(x(s)) := min
u∈U

{‖Cz x(s) + Dzu‖2+ (13)

+ �̂w(s) V̂s+1(x(s + 1))
}

with a terminal condition:

V̂N+1(x(N + 1)) := ‖x(N + 1)‖2
Q

and an initial condition:

x(0) := xt .

The dynamic program (13) has to be solved backwards i.e.
from k = N to k = 0.

At some s ∈ T the number of points for which we evalu-
ate V̂ (x(s)) is determined by all past disturbance realization
w(τ), τ ∈ [0, s − 1]. With disturbances sampled as described
previously, the number of points in the state space in which we
evaluate the empirical cost “to go” (13) is equal to κ s . This
yields an exponential growth on the horizon which makes this
algorithm computationally very intensive but the problem can
be solved with an arbitrary accuracy.

3.3 Algorithm 2

A natural remedy is to sacrifice performance for the benefit of
an increased computational speed. This can be done by impos-
ing a feedback structure on the control horizon instead of an
optimization over a general feedback mapping.

Consider the structure of the form

u(k) = σ (Fx(k)) k ∈ [0, N] (14)

where σ is a saturation function that achieves that σ(u) ∈ U for
all u ∈ �

m and F is a linear feedback control law F : �n →
�

m .

The cost function at s, for all s ∈ T becomes:

J F
s (x(s), F, ws ) =

N∑
k=s

‖Czx(k) + Dzσ (Fx(k)) ‖2+

+ ‖x(N + 1)‖Q

and an optimal cost:

V̂ F (xt )) := inf
F

{�̂ws J F
0 (xt , F)} (15)

Algorithm 2

Step 1 Draw κ samples for w according to the distribution of
w. Set V0 = ∞. Set accuracy parameter ε. Set F = FL Q

where FL Q is the solution of the unconstrained infinite
horizon LQ problem for the system (1):

FL Q = −(DT
z Dz + BT P B)−1 BT P A

where P = PT ≥ 0 is the solution of:

P = AT P A + CT
z Cz − (AT P B + CT

z D)

× (BT P B + DT
z Dz)

−1(BT P A + DT
z Cz)

Step 2 Compute

V̂ F
s := �̂ws J F

s (x(s), F)

for all s ∈ T .

Step 3 If ‖V̂ F
0 − V0‖ < ε stop.

Otherwise: set V0 = V̂ F
0 and update F according to the

numerical algorithm that has been chosen for the numeri-
cal minimization of (15).

The input of the plant at some time t ∈ �+ is then computed
according to (14) and in the next time instant computations in
Algorithm 2 are repeated. It follows from Hoeffding’s inequal-
ity that the required increase in the number of samples which
are needed to preserve a certain confidence with a growing con-
trol horizon is polynomial instead of exponential. However, the
algorithm will converge to a suboptimal solution of the opti-
mization problem. In this case, the accuracy is relative to the
suboptimal solution and there is a performance loss that is in-
herent to the procedure because we restricted our attention to
only one parameterization of all possible parameterizations of
feedback controllers.

We would like to stress the fact that Algorithm 1 computes
the optimum with high accuracy. Therefore, we can evaluate
simplifications of this scheme which reduce the computational
time and show to what extend performance has been compro-
mised.

The parameterization of control laws which we suggest in this
paper is a simple one. If performance loss in this scheme turns
out to be too large for a specific application, we may consider
more elaborate parameterizations of control laws such as an op-
timization over the sequence of saturated linear feedback gains
over the control horizon.

4 Numerical example

In this section we illustrate the approach of this paper by means
of a numerical example. We use the Algorithm 1 as a tool to
compare performance between the standard MPC scheme and
the feedback MPC based on the Algorithm 2. Consider the



system of the form (1) where

A =
[

0.7326 −0.0861
0.1722 0.9909

]
B =

[
0.0609
0.0064

]

G =
[

0.5
0

]
C =


0 0

1 0
0 1


 D =


0.1

0
0




See [1] and [2]. For each time instant t , the stochastic distur-
bance w(t) is assumed to be uniformly distributed on the inter-
val [−α, α] where α varies in various experiments as α = 0.5,
α = 1, α = 1.5, and α = 2.

The aim is to regulate the system towards the origin (distur-
bance rejection) while inputs are constrained to be

−2 ≤ u(t) ≤ 2

for all t . As an indication of the achieved level of disturbance
rejection we consider the variance of the system state. The
control horizon N = 2 and simulations are performed over a
200 sec. time interval.

We compare simulation results for the standard MPC design,
based on the open loop optimization of the form (3), the design
based on the Algorithm 1 and the Algorithm 2 proposed in this
paper. The results are summarized in Table 1 and 2.

α 0.5 1

Algorithm 1 var(x) 0.0242 0.1178

Standard MPC scheme var(x) 0.0243 0.1310
Performance loss 0.5% 11.2%

Algorithm 2 var(x) 0.0243 0.1179
Performance loss 0.5% 0.1%

Table 1: Variance of system state, α = {0.5, 1}
α 1.5 2

Algorithm 1 var(x) 0.3082 0.5932

Standard MPC scheme var(x) 0.3234 0.6020
Performance loss 4.9 % 1.4 %

Algorithm 2 var(x) 0.3095 0.5920
Performance loss 0.5 % -0.2 %

Table 2: Variance of system state, α = {1.5, 2}
The number of disturbance samples κ has been set to 20 for
both algorithms. The simulations reported here have been ob-
tained on the PC (450 MHz processor) running Matlab and
Simulink. The simulations are performed for 200 time steps.
Note that the speed by which computations are performed crit-
ically depends on the simulation software used. The average
computational time for the Algorithm 1 is reduced by factor 8
compared to the Algorithm 2, for the system of the same or-
der and the same number of disturbance samples. On the other

hand, the performance losses of the Algorithm 2 are signifi-
cantly smaller then the losses of the standard MPC scheme.
When the disturbance level is small or very high all algorithms
yield approximately the same performance. In the first case that
is because the disturbances do not influence the system signif-
icantly and in the later case, because of the input constraints,
the performance is the same as for the open-loop control.

5 Conclusion

We described an algorithm to design model predictive con-
trollers which takes into account stochastic disturbances and
constraints on input. The algorithm uses a predefined controller
structure in the optimization and it is significantly less compu-
tationally demanding than algorithm in [1] but with a price of
some performance loss. It is shown, by an example, that this
simplification does reduce computational time needed by the
expense of marginal reduction in performance. Other aspects
currently under investigation are issues of state constraints and
measurement feedback.
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