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Abstract 

The robust stability of uncertain linear neutral systems 
with time-varying discrete and distributed delays is 
investigated by employing descriptor model transforma-
tion and the decomposition technique of discrete-delay 
term matrix.  The proposed delay-dependent stability 
criteria are formulated in the form of a linear matrix 
inequality.  Numerical examples are given to indicate 
significant improvements over some existing results. 

1 Introduction 

The problem of stability of time-delay systems of neutral 
type has received considerable attention in the last two 
decades; see for example [7].  Current efforts on this topic 
can be divided into two categories, namely delay-
independent stability criteria and delay-dependent stability 
criteria. 
 

For linear neutral systems with constant delays, some 
delay-independent stability conditions were obtained.  
They were formulated in terms of a matrix measure and a 
matrix norm [11] or the existence of a positive definite 
solution to an auxiliary algebraic Riccati matrix equation 
[16, 17].  Although it is easy to check these conditions, the 
conditions required the matrix measure to be negative or 
the parameters to be tuned. 
 

A model transformation technique is often used to 
transform the neutral system with constant discrete delay 
to a neutral system with a constant distributed delay, and 

delay-dependent stability criteria are obtained by 
employing Lyapunov-Krasovskii functionals [8, 9, 10, 13, 
14].  These results are usually less conservative than the 
delay-independent stability ones.  Some of these results are 
still conservative since some model transformations will 
introduce additional dynamics discussed in [5, 6]. 
 

Recently, a new descriptor model transformation and a 
corresponding Lyapunov-Krasovskii functional have been 
introduced for stability analysis of systems with constant 
delays in [1].  The advantage of this transformation is to 
transform the original system to an equivalent descriptor 
form representation and will not introduce additional 
dynamics in the sense defined in [5, 6].  In [2], some 
results in [1] are extended to neutral systems with time-
varying discrete delays.  Although the result in [2] is less 
conservative than some existing ones, it can be improved 
by employing the decomposition technique to get a larger 
bound for time-varying discrete delays.  Furthermore, time-
varying distributed delays and uncertainties are not 
considered in [2]. 
 

In this paper, based on the descriptor model transformation 
and the decomposition technique of discrete-delay term 
matrix, we will investigate the robust stability of uncertain 
neutral systems with time-varying discrete and distributed 
delays by applying an integral inequality that is introduced 
in this paper instead of applying bounding of the cross 
terms introduced in [15].  The robust stability problem of 
considered system will be transformed into the existence of 
some symmetric positive-definite matrices.  The stability 
criteria will be formulated in the form of linear matrix 
inequalities (LMIs).  Numerical examples will show that 
the results obtained in this paper are less conservative than 
some existing ones in the literature. 



2. Problem statement 
 

Consider the following linear neutral system with time-
varying discrete and distributed delays 

            ( ) ( ) ( ) ( ) ( ) ( ( ))x t Cx t A t x t B t x t h t�� � � � �� �

( )
( ) ( )

t

t r t
D t x � �

�

� � d                   (1) 

where  is the state,  is a known 

constant matrix, and , , and 

 are uncertain matrices, not known 
completely, except that they are within a compact set �  
which we will refer to as the uncertainty set 
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distributed delay, which satisfy 
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The initial condition of system (1) is given by 

0( ) (x t � � �� � ) [ max{ , , },  0]M Mh r� �� � �,      (4) 

where �  is a continuous vector valued initial function. ( )�
 

The purpose of this paper is to formulate some practically 
computable criteria to check the robust stability of system 
described by (1)~(4). 

 

3. Main results 
 

Rewrite system (1) in the following equivalent descriptor 
system 

( ) ( )x t y t��                                                     (5a) 
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To derive discrete-delay-dependent stability conditions, 
which include the information of the time-delay h t , one 
usually uses the fact 
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to transform the original system (1) to a system with a 
distributed delay.  This transformation does not provide 
any additional dynamics because we do not expand ( )x t�  
in terms of right hand representation of (1). 
 

In order to improve the bound of discrete-delay , let’s 
decompose the matrix 

( )h t
( )B t  as 

1 2( ) ( )B t B B t� �  

where 1B  is a constant matrix. Then system (5) can be 
represented in the form of descriptor system with discrete 
and distributed delays in the “fast variable” y [1] 

( ) ( )x t y t��                                                                     (6a) 
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Noting that system (6) is equivalent to system (1), in the 
following we will employ system (6) to study the stability 
of system (1). 
 

Throughout this paper, we assume that  
 

A1. All the eigenvalues of matrix C are inside the unit 
circle. 
 
For robust stability of system (1)~(4), we have the 
following result. 
 

Proposition 1.  Under A1, the system described by (1) 
to (4) is asymptotically stable if there exist real matrices 

2P , 3P  and symmetric positive definite matrices 1P , Q, 
R, S, and W such that the LMI (7), as shown at the 
bottom of the last page of the paper, holds, where  

11 2 1 1 2( ) ( ( ) ) ( ( ) )T T
Mt P A t B A t B P Q r W� � � � � � �  

12 1 2 1 3( ) ( ( ) )T Tt P P A t B P� � � � �  

22 3 3( ) T
Mt P P R h� � � � � � S

)

. 

Choose the Lyapunov-Krasovskii functional candidate for 
system (6) as 
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where 2P , 3P  and symmetric positive definite matrices 1P , 
Q, R, S and W are the solutions of (7).  One can prove 
Proposition 1.  For the detail, see the full version of the 
paper [10]. 
 

To compare with some existing results, now we 
consider the nominal system of system (1) with 
constant discrete and distributed delays, that is 

( ) ( ) ( ) ( ) ( )
t

t r
x t Cx t Ax t Bx t h D x d�

�

� � � � � � �� � � �      (8) 

with the initial condition 

0( ) (x t � � �� � ) [ max{ , , },  0]h r� �� � �,         (9) 

By Proposition 1, we have the following corollary 
 

Corollary 1.  Under A1, the system described by (8) 
and (9) is asymptotically stable if there exist real 
matrices 2P , 3P  and symmetric positive definite 
matrices 1P , Q, R, S, and W such that the following LMI 
holds 
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which recovers (29) in Corollary 2 in [1] for the case of 
,  and .  The LMI above and A1 are 

neutral-delay-independent, discrete-delay-independent and 
distributed-delay-dependent conditions for system (8) with 
(9) to be asymptotically stable. 

1k � 1m � 1 0F �

where 
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Remark 1.  It is clear that condition (10) guarantees that 
system (8) with (9) is of delay-independent stability with 
respect to the neutral delay � . 0�

 

Remark 2.  If , then 2 0B � 1B B� . In this case, (10) 
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which together with A1 is a sufficient condition for delay-
independent stability for system (8) with (9) (without a 
distributed term). 

Remark 6.  From the discussions above, it is clear to see 
that Corollary 1 establishes a “bridge” between discrete-
delay-independent stability and discrete-delay-dependent 
stability for system (8) with (9). 

Remark 7.  The efficiency of Proposition 1 and Corollary 
1 depends on the decomposition of matrix B.  The matrix 
B1
A

 is chosen such that  is "more stable" than matrix 
.  The decomposition idea was firstly introduced by 

Goubet-Batholomeus et al. (1997) [4] for the retarded 
case.  Now we consider how to decompose the matrix B.  
For the sake of simplicity, we take Corollary 1 as an 
example and restrict Q, S, and to a special case of 

.  From (10), one can see that .  

So the matrix 
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 and { ,  ,K diag� X I ,  ,  }I I I .  

Then we multiply (10) by TK  and K, on the left and right, 
respectively.  Using the Shur’s complement to the 
quadratic term in K, and introducing new variables 

, 1R�

�Y 1Z W �

�  and 1 1L B X�  to yield the following 
LMI 
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Then we can conclude that under A1, the system described 
by (8) and (9) is asymptotically stable if there exist real 
matrices 2X , 3X , L , and symmetric positive definite 
matrices 1X ,  and Y Z  such that the LMI (11) holds.  

Furthermore, the matrix 1B  is given by 1
1 1B LX �

� . For 
the general case, the idea is the same.  It is omitted. 

t B� � ( )t D D� � �

  ]a b dE E( )D t�
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For a polytopic uncertainty, it is clearly sufficient that (7) 
only needs to be satisfied at all the vertices.  Now we 
consider the norm bounded uncertainty described by 

( ) ( )A t A A t� � � , ( ) ( )B B t� , ( )D t (12) 

where 

[ ( ) ( ) ] ( )[A t B t LF t E� � �       (13) 

where  is an unknown real and possibly time-
varying matrix with Lebesgue measurable elements 
satisfying 

( ) p qF t �

��

� ( ( ))F t �1                          (14) 

and L , Ea , Eb , and dE  are known real constant matrices 
which characterize how the uncertainty enters the nominal 
matrices A, B, and D. 

Let 1 2B B B� � , then 2 2( )t B� � .  Now we 
state the following result. 
 

Proposition 2.  Under A1, the system described by (1), 
(3) and (4), with uncertainty described by (12) to (14) is 
asymptotically stable if there exist real matrices , 3P�  

and symmetric positive definite matrices , , , , 

and W , such that the LMI (15), as shown at the bottom of 
the last page of the paper, holds, where 
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4  Examples 
 

In order to use Proposition 2 to test the stability of the 
system described by (1), (3) and (4), with uncertainty 
described by (12) to (14), a MATLAB m-function is 
written which automatically generates LMI (15), and then 
solves this LMI using LMI Solver FEASP in MATLAB 
LMI toolbox [3].  The inputs to the function are system 
matrices and time-delays.  The function returns whether 
the LMI is feasible. If feasible, it also gives matrices real 
matrices 2P� , 3P�  and symmetric positive definite matrices 

1P� , , Q� R� ,  and W as the outputs. The following 
examples are generated using this MATLAB m-function. 

S� �



Example 1. Consider the following uncertain neutral 
system with time-varying discrete delay 

     
1

2

2 cos( ) 0( ) ( )0 1 sin( )
tx t xt

�

�

� ��
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�  t

For the nominal system, i.e.  and , 
with  (i.e. ) and � , system 
(23) reduces to the system discussed in [13].  Using the 
criterion in this paper, the maximum value of  for the 

nominal system to be asymptotically stable is 
.  By the criteria in [13, 14, 1] the nominal 

system is asymptotically stable for any h satisfying 
, , and , respectively.  This exam-

ple shows that the stability criterion in this paper gives a 
much less conservative result than these in [13, 14, 1]. 
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where 0 1c� �  and � , ,  and �  are unknown 
parameters satisfying 

1 2� 1� 2

1 1.6� � , 2 0.05� � , 1 0.1� � , 2 0.3� �  

For , the maximum value of  for stability of 
system (16) was reported as  and h  
in [12] and [2], respectively.  Now we use the criterion in 
this paper to study the same case.  Let’s decompose the 
matrix 

0dh � Mh
0.2412Mh � 1.0M �

B  as 1 2B B B� � , where 

1
0.47 0
0.01 0.58B �� �� � �� �� �

,  2
0.53 0
0.99 0.42B �� �� � �� �� �

the maximum value of  for the system to be 
asymptotically stable is .  This example 
shows that the stability criterion in this paper gives a much 
less conservative result than these in [12, 2]. 

Mh

Mh �1.1285

 

Example 2.  Consider the following uncertain neutral 
delay-differential system 

� �( ) ( ) ( ) ( )x t Cx t A A t x t�� � � � �� �  
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and  and ( )A t� ( )B t�  are unknown matrices satisfying 
( )A t �� �  and ( ) �� �B t , , . The above 

system is of the form of (12) to (14) with 
0� � t�

L I��  and 
a bE E I� � . 

Decompose matrix B as 1 2B B B� � , where 

1
0.34 0.06
0.02 0.35

B
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,  2

0.76 0.14
0.08 0.75

B
� ��
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For , the following table gives different  for 
different . It is clear that as h increases, the 
corresponding  decreases. 

Mh

d

 0.00 0.05 0.10 

Mh  1.1586 1.0610 0.9557 

dh  0.15 0.20 0.25 

Mh  0.8406 0.7126 0.5658 

 

For , the effect of the uncertainty bound �  on 
the maximum time-delay for stability h  is also 
studied. The following table illustrates the numerical 
results for different � . We can see that as � , the 
stability limit for delay approaches the uncertainty-free 
case. As �  increases,  decreases. 

0.1dh �

M

0�

dh  0.00 0.05 0.10 0.15 

Mh  1.3797 1.2792 1.1750 1.0615 

dh  0.20 0.25 0.30 0.35 

Mh  0.9557 0.8404 0.7213 0.5980 

 

5.  Conclusion 
 

�

A delay-dependent stability criterion for neutral systems 
with time-varying discrete delay has been obtained. The 
criterion has been expressed in the form of a linear matrix 
inequality (LMI). Numerical examples have shown that the 
results derived by criterion in this paper are much less 
conservative than some existing ones in the literature. 
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