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Trajectory Tracking Control with Flat Inputs and a Dynamic
Compensator

Jean-Francois Stumper, Ferdinand Svaricek and Ralphdfenn

Abstract— This paper proposes a tracking controller based Recently, a new approach to solve the problem of a
on the concept of flat inputs and a dynamic compensator. Flat non-flat output has been proposed. The concept of flat
inputs represent a dual approach to flat outputs. In contrastto inputs represents a dual approach to flat outputs [7]. Here,

conventional flatness-based control design, the regulatemlitput th trol | tand i t tor field of th i
may be a non-flat output, or the system may be non-flat. The € control Input and Input vector neld or the system are

method is applicable to observable systems with stable inteal ~ replaced such that the given output becomes the flat output.
dynamics. The performance of the new design is demonstrated The given output can then directly be applied for flathess-

on the variable-length pendulum, a non-flat nonlinear system  pased controller design. A drawback of this approach is that

with a singularity in the relative degree. replacement of the input means that the actuator must be
redesigned. As noted in [7], the idea of such a flat input

I. INTRODUCTION has been applied before, for example in observer design [8],

The concept of differential flatness has been introduced %}"t it has not been placed under the concept of differential
Fliess et al. in [1] and [2]. Since then, it has developed t atness. A_ more r_ecent |g|ea is based_on_ﬂctltlous inputs as
a powerful set of methodologies for the design of trajector? help to find a differential parameterization [9], but these
tracking controllers for nonlinear systems [3]. A so-cdlle nputs are zeroed in the CerO”?r deS|gn. )
flat output is defined, which is a variable that parameterizes N this paper, the flat input is realized by a dynamic

all system variables, namely the system states and Contﬁgmpensator in the form .ofa prefilter, anq the given actuator
inputs. This differential parameterization is the basistfe IS Preserved. The dynamic compensator is designed such that
controller design of flat systems. the input-output behavior of the extended system is equiv-

If the given output of a system is not a flat outputalem to the system with the flat input. The major result is

flatness-based controller design becomes complex. Typicafhat @ differential parameterization of the compensatpuin
the output is redefined to a flat output, which is then appliefXIStS: and that a feedforward or a feedback-linearization
for feedback. For tracking control, this implies that the'acking controller can be designed. A requirement for the

desired output trajectory also needs to be transformedaintc@PPlication of the presented scheme is stability of therirete
flat output trajectory. In some cases output redefinition idynamics, which is a general requirement for exact trajgcto
undesirable, especially when the flat output is parametetlr-"?“:k'ng with bo_un_ded con'Frol mputs [1_0]' The methods in
dependent, what limits the robustness of the controller [4{NiS paper are limited to single-input single-output (S)SO
Output redefinition may also result in imprecise tracking [5 SYSteéms for simplicity and for the reason that flat inputsshav
Furthermore, output redefinition to a flat output is simply©t Peen defined yet for multivariable systems.
impossible if a flat output does not exist [3]. This paper is orga_mzed as follows. _In section I, flgt
Another method is to design a flatness-based controll@HtPuts and the associated controller design are sumrdarize
based on an approximate model whose given output is thedt inputs are defined and the novel control setup introduce
flat output. The neglected effects can then be treated &Section lll, the design procedure is explained along with

disturbances. However, for precise tracking in the tramsietN€ required theoretical background. In section IV, a con-
phase, such approximations are not acceptable. troller is designed for the variable-length pendulum. Rssu

Any output with non-full relative degree is a non-flat®f Numerical simulations are presented and discussed.

output. This happens at the presence of internal dynamics
[6], which are very common in electrical and mechanicall. DIFFERENTIAL FLATNESS AND FLAT INPUTS

systems. ) ) )
This paper deals with smooth nonlinear SISO systems of
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A. Flat outputs A necessary and sufficient condition for the existence of a
A system is said to be differentially flat if there exists arflat inputus and a corresponding input vector figitk) can

output function be given for SISO systems: The system must be observable
. (@) at least locally in a domain of intere®,, meaning the
yr=Au,0,... . u?) (2)  observability matrix
such that all states and the input can be expressed in terms h(x)
of the flat output and its derivatives: 9 | Lixoh®X)

. . QX = — . (@)
x=We(yr. 3t HY), - Ox :

. L™+ h
u:wu(yfayfa"'ay(fn))' f (X)
The set of equation$](3) is denoted as differential paramgn-USt be & regular matrix:
terization of the system variables. A SISO system has full det(Q(x)) #0  Vx & Do. (5)
relative degree = n regarding the flat output. Necessaryrq consruct the flat input vector field, the relationship
and sufficient conditions for the existence of the flat output . T
functionys = A (x,u,0,...,u®) can be given for nonlinear y(x) =a(x)Q ~(x)(0,...,0,1) (6)

SISO systems [3]. A necessary condit_ion is that _the systep applied, wherer (x) # 0 is an arbitrary function. Typically,
must be controllable at least locally in a domaire De. g (x) = def(Q(x)) is chosen to simplify the expressions. With
A further necessary and sufficient condition is that a SISQch an input vector field, which can be constructed for every

system must be linearizable by endogeneous feedback. Ff§servable and sufficiently smooth system, the system
several systems, however, it is impossible to determine

such an output function, therefore controllable but noh-fla
nonlinear systems exist [2].

,1'
(x0)

x= f(X,0) +y(X)us ,
y= h()_() ) (7)
. . is differentially flat with flat outpuy. The states are denoted
B. Controller design with flat outputs asX here as they may differ from the original statesf (1)
Differential flatness is typically applied for input-outpu for an identical outpuy(t). As a result, the relative degree
linearization, system inversion and feedforward con@old s r — n with respect to the given outpyt A differential
for trajectory planning and tracking [3]. These contrallare  parameterization of the system stateand the flat control
designed regarding the flat outpyt as control variable. input us can be given.
If the given OUtpinS non'ﬂat, OUtpUt redefinition towards The prob|em here is that a new design of the actuator
a flat output is necessary. The trajectory or desired stead¥- necessary. This may be inefficient or even physically
state value of the given outpyt(t) needs to be transformed jmpossible, as not every state can be directly actuateda(i.e
into a trajectory for the flat outpyf; (). It can be shown that position). In this paper, a novel approach is presentedtwhic

for systems with stable internal dynamics, it is possible t@pplies the concept of flat inputs [7] for control design, but
find a prefilter {* — y;) transforming the trajectories in real- without designing a new actuator.

time [12]. Therefore, a flatness-based controller for aesyst _ ) _

with a non-flat output consists of two parts, a trajectory: Controller design with flat inputs

conversion prefilter, and a controller for the flat outputas I the controller setup of a control system based on flat
shown in Fig[l. However, as the trajectory is converted in aifiputs, the originally given outpytis applied for feedback.

open loop, tracking of the given outpytmay be imprecise. A flatness-based controller for the system with a flat input
(7) generates a trajectory for the flat inpuyt. A dynamic

compensatony; — u) then transformsi; into the real control

y Y Y y*;‘ controller u plant y input u. This setup is shown in Fif] 2.
L
Y y us u y
——| controller ur —u plant -
Fig. 1. Controller structure with flat outputs T T
C. Flat inputs

Fig. 2. Controller structure with flat inputs
If the output to be controlledy, is not a flat output, the

recently introduced concept of flat inputs [7] can be applied Comparing both setups on the figures, a certain duality
Flat inputs represent a dual approach to flat outputs. Tlean be recognized. However, this duality is not perfect,
given outputy is maintained as output, but the control inputas the compensator in Fifl 2 requires output feedback in
u is omitted by settingi= 0, and replaced by a flat control the nonlinear case. As the outpytis directly applied for
inputus and a flat input vector fielgt(x), such that the given feedback, exact tracking of the outputis possible at the
outputy becomes a flat output. presence of model uncertainties and disturbances.



I1l. DESIGN PROCEDURE WITH FLAT INPUTS As the compensator takes as input andu as output, it is
The novel controller based on flat inputs can be designéjcausal system and can be implemented as a compensator
using the following procedure: of order m. For systems with singularities in the relative
degree, this represents an equation with unsafe order, but
still, a solution can be found in the time-discrete doma, a
. Design of the dynamic compensator is furthgr explained in the appllc.atlo.n example. _
For linear systems, the application of such a dynamic

« Design of an open or closed loop tracking controller :
) _ compensator corresponds to pole-zero cancellation throug
This procedure can be applied to observable and suffi; low-pass filter on the input. It is well-known that this

ciently smooth systems with stable interngl dynamics.. Her§etup is only stable if the system is minimum-phase. As the
observable means that an observer canonical form exists [13,1nensator will render the internal dynamics unobseevabl

which is the case whefi(5) is satisfied, and smooth means thatse myst generally be stable. It has been shown that the
system|[(lL) belongs to differentiability cla€8. Furthermore, internal dynamics of nonlinear flat systems may only be

the system must be controllable, but not necessarily flatiaple for a certain range of the outpuf12], which is an
Therefore, th? proposed approach can also be applied dtended requirement to stable zero-dynamics [6]. It 16 sti
systems not linearizable by endogeneous feedback andd onen question whether stability of the right hand side of
systems with non-affine inputs. () is fully equivalent to stability of the internal dynarsin
A. Computation of the flat input the nonlinear case. But for st:_:\ble application_ of _the dy_ngmi
The computation of the flat input of a SISO system is don(éompensator, stability of the |qternal dynamics is suffitie .

. . ) It can be shown that for linear systems, the dynamic
as described in [7] and in subsection |I-C. ) . . .

compensator to transform the input trajectory is equivalen

B. Derivation of the input-output descriptions to the prefilter applied for output trajectory conversioritie

The dynamic compensator has to be designed such that ventional_ design (F@ 1). Therefore, it can be_sta_lt_ed th
input-output behavior of a series connection of compenmsat8'® dual design with flat inputs does not require signifigant

and original systemi{1) is equal to that of systdm (7) Witrzjgore design efforts than the conventional design based on

a flat input, see Figll2. Hence, the compensator has L outputs. . :
transform the flat inputis into the real inpuu of the plant. The original systeni{1) extended with a dynamic compen-

The design of the compensator is based on input-outpdator [10) has the same input-output behavior as the system
represent%tions [14] P P pwi?th flat input [1). Therefore, by definition of the flat input,
Input-output representations are higher-order difféagnt differential parameterization of the flat input with the

equations in the inputs and outputs, and are equivalent glven outputy can be found in the form

state-sp(_’;\qe system descrlp_tlons. If a system is ob_servable U = Wy, (y,y,...,y<“>), (11)
and sufficiently smooth, a higher-order differential equrat

describing the input-output behavior by a single equatam ¢ as well as for the statesof (7))

be found [14].

When a system is represented in observer canonical form X = Wy (y,)", . 7y(n71)) : 12)
[13], the higher-order differential equation is deterntine
by successive elimination and differentiation of the syste
states. For the original systerl (1), according to [14], thi
equation takes the form

« Computation of the flat input
« Derivation of the input-output descriptions

The statesx of the observable subspace of the system
gxtended with a compensator can be matched to the plant
states< and the control input by comparison of the observer
canonical forms. Equatiof (fL1) can be applied for the design
Y :q(y’_“’y(nfl))+p(yw.’y<nfl)’u,m7u<m))7 (8) of a feedforward or of a feedback-linearization tracking

controller, as will be shown in the following paragraphs.
wheren is the system order angh= n—r the order of the

internal dynamics. The system with flat inpld (7) has fullP- Fee_dforward controller design with a flat input and a
relative degree and so its input-output representatioastakdynamic compensator
the form The design task for a feedforward controller is to find a

(n) _ (n—1) (n—1) set of equations to generate a control input trajectoily)
y g (y, ¥ ) P (y, ¥ ) ur. ) such that an arbitrary desired trajectgfy(t) is enforced on

where p; (o) # 0 if the system is controllable. the output.
_ _ In conventional flatness-based feedforward control, a tra-
C. Design of the dynamic compensator jectory conversion prefilter is followed by a feedforward

As the input-output behavior of both systems is to beontroller, similar to the setup in Figl 1. In the dual apmtoa
imposed equal, the dynamic behavior of the compensatwtith flat inputs, a flatness-based feedforward controllest fir
must satisfy the differential equation generates a flat input trajectouy (t), and finally a prefilter

satisfying [(10) transformsj (t) into the control inputi(t),

p (v Y™ Hu U™ ) = pe (¥ ) ur. (20)  similar to the setup in FigJ2.



The feedforward controller to generate the flat control
input trajectory follows directly from[{11)

GO =W (Y O.7 0y 1), @)
and the prefilter to generate the control inptift) from (10)

p(y“,...y*(”’l),u*,...,u*<m)) — ps (y*,...,y*<"*1>) Ui (t).

) ] (14) Fig. 3. Pendulum with variable length
It is generally not a problem to calculate the derivatives of

the trajectoryy*(t) if the reference is known in advance.

. ) ) ) ) IV. APPLICATION EXAMPLE
E. Tracking controller design with a flat input and a dynamic
compensator The performance of the introduced flat-input based control
. . . s validated in numerical simulations of the variable-ign
Equation [[(I1L) can also be applied to design a feedbac Vel in humetice simuiat vanl g
. O ! . endulum, shown in Fid.] 3.
linearization tracking controller. The famous definitidkO]

v=y" (15) A. Variable length pendulum

) . . The variable-length pendulum is an example for a non-flat
leads, along with the input-output representation of thgystem and can be described by the set of nonlinear equations
system with flat input[{9), to the feedback linearization Iavs{z], 13[:

_ (n-1) .
Us = \ q(y71y )’ (16) Xp =X

pr(y;...,y"1) %o = —C0SX3+ X U2 (18)
X3 =u,

thus allowing to prescribe linear error dynamics
1 wherey = x; is the distance from the center of the sliding

v=yM 4 Z;Ai(yk(i) —y. (17) ball to the origin around which the rod rotates,is the ball
= speed, ands is the angle formed by the rod and the vertical

. . , line passing through the origin. The rotational velocity of
Again, the dynamic compensatdr {10) with feedback fro the rodx3 = u is the control input. The model is given in

the outputy(t) and its derivatives are applied to transform . . .
the flat inputu¢(t) into the control inputu(t). The output normed units, and the gravity constant is assuedl to

derivatives can be replaced by functionsxandu found in beltcon5|stbent Vr\:'th [Z]t,h[gt]'th " . trollable i
the observer canonical form. can be shown that the system is controllable in a

sufficiently large domairx € D¢, but as the system is not

F. Comparison of conventional and flat input-based desigiinearizable by endogeneous feedback, it is not flat [2].
Therefore a flat outpuys = A(x,u,0,...,ul®) cannot be

The major difference between both designs is the systeggnd. Furthermore, the system has a singularity in the

class they can be applied to. This makes the method of flad|ative degree, which can be seen on the second derivative
inputs interesting towards the solution of several nomline of the outputy:

control problems.
Another advantage is the increased robustness of the pre- Y = — COSXz+ XqU? . (19)
sented setup: It can be shown that if the flat output function . )
A(x,u,0,...,ul®) is dependent on uncertain parameters [4]70" X1 # 0, the relative degree is= 2. However, atq =
the relative degree regarding the flat output is affected by 0. the relative degree becomes=3 when the system is
such parameter uncertainties. Furthermore, the precision in the controllable domain. Direct application of a feed-
the control loop with redefined output is affected by modepack linearization tracking controller is not possible J{10
uncertainties and disturbances [5]. These effects areladoi A common solution is state-dependent switching between
by the presented method as the original output is applied f#fferent controllers, as presented in [15]. Here, a rather
feedback. simple solution based on the previously introduced apgroac
The method with a flat input realized with a compensatofithout switching is presented.
only allows parametrization of the state®f the observable . )
subspace of the extended system, but not a full param@: Flat input for the variable length pendulum
terization equivalent to[{3). However, for control design, The observability matrix of systerfi (1.8)
parametrization of the flat input; is sufficient, as has been
demonstrated. It can be shown that the flat output of the 10 0
original systenys, if one exists, is still a flat output for the Qx)=1{ 0 1 .0 (20)
system augmented by the compensator. 0 0 sing



is regular in the domain of intereBt, namely for 0< x3 < 11,  a time-discrete approximation df (27), using the first-orde
and therefore a flat input vector field [7] can be constructebackward differentiatiordiscretization rules [16]:

following (@)): U~ UK (28)
y(x) = (0,0,sinx3)", (21) U~ (Ul — ulk—1])/At , (29)

where the free parameter(x) is set toa(x) = sir?(xs) to  where At denotes the fixed sampling interval. This corre-
simplify the observer canonical form. The system with flasponds to searching an adequatsuch that the differential

input is therefore described by equation is satisfied i1 and u. The control inputu of a
% —x controllable system is multiplied by a nonzero factor, ger
).(1 B —2c09( 22) fore the singularity disappears anfk] can be eliminated. A
2 o 3 further simplification to avoid solving a square equation is
X3 = SiNXg Us
2
The system with flat input can be transformed into observer u”~ ulkjufk—1] . (30)
canonical form [13] via the diffeomorphisi= @(x) : The discretized compensator equation then becomes
1 =h(x) =x K (1—¥P)ur + 2yPk — 1] /At
& =Lih(x) =x (23) = uk— 1 = ‘
— 1] +2yuk—1]/At+ /1 — (Y— yw¥lk—1])2
and the observer ca_monical form is D. Feedback linearizing tracking controller
&L =& The variable length pendulum extended by the dynamic
& =& (24) compensator (31) has a well-defined relative degree3
& =(1-&)uy . in the observable and controllable dom@gNDc. As the

input-output behavior is equal to that of the system with flat

The input-output rerzg)esentation can Iqe read_ from. the la; ut (22), a tracking controller based on that model can be
row of (22) as..fg =Y ..The system with flat input is .flat designed. Feedback linearization is applied by setting
with a well-defined relative degree=n= 3, and a tracking v

controller can be designed using(16) afd] (17). However, Uf = —— ,
it is not easy to realize the flat input physically, as the 1-y
centrifugal force termx;u? cannot be omitted and mustas defined in[{16), with a linear controller for the error
be compensated by a second actuator. To circumvent thignamics as defined i (117):

problem, in the following step, a dynamic compensator is 3) o .

designed which renders the input-output behavior of the rea V= Y Ay —y) A =) F AV -9) . (33)
system equivalent to the system with flat input, thus allgwinyyhere the constanty are the eigenvalues of the linear error
to apply the advantages of full relative degree for congroll gynamics and chosen such tHatl(33) is hurwitz stakje: 2,
design. A1 =6, A, = 4. Derivation of the outpuy is avoided through
the application of full state feedback, as follows from the

observer canonical forni (25):
System [(IB) is transformed into observer canonical form

(32)

C. Flat input with a dynamic compensator

with (23): y=>X2, (34)
. Y= —CcoXzg+ YU . (35)
&L= &
= &+&P (25) E. Results
53: ,/l—Eszu . The time resolution of the numerical simulation is 10
_ o ) ms with a Runge-Kutta integration algorithm. In order to
The input-output representation is then derived as visualize the effects of the discrete controller, the samgpl
@ _ 2 . - 5 rate of the controller is set tht = 100 ms.
Yo =y 2yuit/1- (- y#)u (26) The results on tracking are shown in Higy. 4, and the results

on offsets in initial conditions are presented in Fig. 5. T
anglexs is initialized at the equilibrium positions = 7 in
each case. It can be seen that the controller acts well ine wid

VWP + 2yui+ /1— (Y— yU2)2u = (1—y2)uf _ (27) range near and_ away from the singulqrjdjy: 0, therefore

the singularity in the relative degree is not a problem for

Implementing this compensator as a fix prefilter based on otige presented control scheme. The results are comparable
integrator by eliminating and integrating as described in to these of switched feedback-linearization controllers i
the previous section, fails on the singular poiytsx; =0 or  [15], however, implementation is much easier as switching
u=0. The problem with the singularities can be avoided bpetween different controllers is avoided.

where the first derivative ofi appears. According td_(10),
the equation of the dynamic compensator is given by



famous example for a non-flat system with a singularity in
the relative degree. In the past, several complex contsolle

have been designed for this plant, whereas this paper gsesen
a rather simple solution.

B. Future Works

In several previous research activities, controllers for o
servable non-minimum phase systems with cascaded com-
pensator dynamics have been proposed [17]. Major limitatio
of these works was that a parametrization of the desiredsstat
in terms of the desired output was hard to find. Flat inputs
are a possibility to find such a parameterization.

Generally, other ways to link the flat-input-based system
variables to the real system variables should be figured out.

o5 = = = Trajectory y

Output y

Output y', y

Control input u

Flat input U

05 : N 1

Inputs u, u,

2 4 6 8 10 12
Time t[s]

(1]

Fig. 4. Simulation results: Tracking control with flat inpuand a dynamic
compensator of the variable length pendulum

(2]

(3]
(4]

(5]
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(7]
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Time t [s] [10]
Fig. 5. Simulation results: Initial error in the control wiflat inputs and  [11]
a dynamic compensator of the variable length pendulum
[12]
V. CONCLUSIONS AND FUTURE WORKS
[13]

A. Conclusions

In this paper the concept of flat inputs, which represen{s4]
a dual approach to flat outputs, is further developed. A
controller design method is introduced that does not requif,
the output to be flat, nor the system to be flat, in a
sense that it must be linearizable by endogeneous feedba[(ilg3
Tracking controller design for this class of nonlinear eyss$
is generally difficult. Furthermore, the proposed method
represents an interesting alternative to output redefmiti
as only feedback of the given output can guarantee exa{(lzz]
tracking.

The performance of the proposed setup was demonstrated
on numerical simulations of the variable length pendulum, a

]
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