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Trajectory Tracking Control with Flat Inputs and a Dynamic
Compensator

Jean-François Stumper, Ferdinand Svaricek and Ralph Kennel

Abstract— This paper proposes a tracking controller based
on the concept of flat inputs and a dynamic compensator. Flat
inputs represent a dual approach to flat outputs. In contrastto
conventional flatness-based control design, the regulatedoutput
may be a non-flat output, or the system may be non-flat. The
method is applicable to observable systems with stable internal
dynamics. The performance of the new design is demonstrated
on the variable-length pendulum, a non-flat nonlinear system
with a singularity in the relative degree.

I. INTRODUCTION

The concept of differential flatness has been introduced by
Fliess et al. in [1] and [2]. Since then, it has developed to
a powerful set of methodologies for the design of trajectory
tracking controllers for nonlinear systems [3]. A so-called
flat output is defined, which is a variable that parameterizes
all system variables, namely the system states and control
inputs. This differential parameterization is the basis for the
controller design of flat systems.

If the given output of a system is not a flat output,
flatness-based controller design becomes complex. Typically
the output is redefined to a flat output, which is then applied
for feedback. For tracking control, this implies that the
desired output trajectory also needs to be transformed intoa
flat output trajectory. In some cases output redefinition is
undesirable, especially when the flat output is parameter-
dependent, what limits the robustness of the controller [4].
Output redefinition may also result in imprecise tracking [5].
Furthermore, output redefinition to a flat output is simply
impossible if a flat output does not exist [3].

Another method is to design a flatness-based controller
based on an approximate model whose given output is the
flat output. The neglected effects can then be treated as
disturbances. However, for precise tracking in the transient
phase, such approximations are not acceptable.

Any output with non-full relative degree is a non-flat
output. This happens at the presence of internal dynamics
[6], which are very common in electrical and mechanical
systems.
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Recently, a new approach to solve the problem of a
non-flat output has been proposed. The concept of flat
inputs represents a dual approach to flat outputs [7]. Here,
the control input and input vector field of the system are
replaced such that the given output becomes the flat output.
The given output can then directly be applied for flatness-
based controller design. A drawback of this approach is that
replacement of the input means that the actuator must be
redesigned. As noted in [7], the idea of such a flat input
has been applied before, for example in observer design [8],
but it has not been placed under the concept of differential
flatness. A more recent idea is based on fictitious inputs as
a help to find a differential parameterization [9], but these
inputs are zeroed in the controller design.

In this paper, the flat input is realized by a dynamic
compensator in the form of a prefilter, and the given actuator
is preserved. The dynamic compensator is designed such that
the input-output behavior of the extended system is equiv-
alent to the system with the flat input. The major result is
that a differential parameterization of the compensator input
exists, and that a feedforward or a feedback-linearization
tracking controller can be designed. A requirement for the
application of the presented scheme is stability of the internal
dynamics, which is a general requirement for exact trajectory
tracking with bounded control inputs [10]. The methods in
this paper are limited to single-input single-output (SISO)
systems for simplicity and for the reason that flat inputs have
not been defined yet for multivariable systems.

This paper is organized as follows. In section II, flat
outputs and the associated controller design are summarized.
Flat inputs are defined and the novel control setup introduced.
In section III, the design procedure is explained along with
the required theoretical background. In section IV, a con-
troller is designed for the variable-length pendulum. Results
of numerical simulations are presented and discussed.

II. DIFFERENTIAL FLATNESS AND FLAT INPUTS

This paper deals with smooth nonlinear SISO systems of
the form

ẋ= f (x,u) ,
y= h(x) .

(1)

Controllability and observability are well-defined for this
class of systems [11], and necessary and sufficient conditions
for the existence of flat outputs and flat inputs can be given.
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A. Flat outputs

A system is said to be differentially flat if there exists an
output function

yf = λ (x,u, u̇, . . . ,u(α)) , (2)

such that all states and the input can be expressed in terms
of the flat output and its derivatives:

x= Ψx

(

yf , ẏf , . . . ,y
(n−1)
f

)

,

u= Ψu

(

yf , ẏf , . . . ,y
(n)
f

)

.
(3)

The set of equations (3) is denoted as differential parame-
terization of the system variables. A SISO system has full
relative degreer = n regarding the flat output. Necessary
and sufficient conditions for the existence of the flat output
function yf = λ (x,u, u̇, . . . ,u(α)) can be given for nonlinear
SISO systems [3]. A necessary condition is that the system
must be controllable at least locally in a domainx ∈ Dc.
A further necessary and sufficient condition is that a SISO
system must be linearizable by endogeneous feedback. For
several systems, however, it is impossible to determine
such an output function, therefore controllable but non-flat
nonlinear systems exist [2].

B. Controller design with flat outputs

Differential flatness is typically applied for input-output
linearization, system inversion and feedforward control,and
for trajectory planning and tracking [3]. These controllers are
designed regarding the flat outputyf as control variable.

If the given outputy is non-flat, output redefinition towards
a flat output is necessary. The trajectory or desired steady-
state value of the given outputy∗(t) needs to be transformed
into a trajectory for the flat outputy∗f (t). It can be shown that
for systems with stable internal dynamics, it is possible to
find a prefilter (y∗ → y∗f ) transforming the trajectories in real-
time [12]. Therefore, a flatness-based controller for a system
with a non-flat output consists of two parts, a trajectory
conversion prefilter, and a controller for the flat outputyf , as
shown in Fig. 1. However, as the trajectory is converted in an
open loop, tracking of the given outputy may be imprecise.
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Fig. 1. Controller structure with flat outputs

C. Flat inputs

If the output to be controlled,y, is not a flat output, the
recently introduced concept of flat inputs [7] can be applied.
Flat inputs represent a dual approach to flat outputs. The
given outputy is maintained as output, but the control input
u is omitted by settingu= 0, and replaced by a flat control
input uf and a flat input vector fieldγ(x), such that the given
outputy becomes a flat output.

A necessary and sufficient condition for the existence of a
flat inputuf and a corresponding input vector fieldγ(x) can
be given for SISO systems: The system must be observable
at least locally in a domain of interestDo, meaning the
observability matrix

Q(x) =
∂
∂x











h(x)
L f (x,0)h(x)

...
Ln−1

f (x,0)h(x)











(4)

must be a regular matrix:

det(Q(x)) 6= 0 ∀x∈ Do. (5)

To construct the flat input vector field, the relationship

γ(x) = α(x)Q−1(x)(0, . . . ,0,1)T (6)

is applied, whereα(x) 6= 0 is an arbitrary function. Typically,
α(x) = det(Q(x)) is chosen to simplify the expressions. With
such an input vector field, which can be constructed for every
observable and sufficiently smooth system, the system

ẋ= f (x,0)+ γ(x)uf ,
y= h(x) ,

(7)

is differentially flat with flat outputy. The states are denoted
asx here as they may differ from the original statesx of (1)
for an identical outputy(t). As a result, the relative degree
is r = n with respect to the given outputy. A differential
parameterization of the system statesx and the flat control
input uf can be given.

The problem here is that a new design of the actuator
is necessary. This may be inefficient or even physically
impossible, as not every state can be directly actuated (i.e. a
position). In this paper, a novel approach is presented which
applies the concept of flat inputs [7] for control design, but
without designing a new actuator.

D. Controller design with flat inputs

In the controller setup of a control system based on flat
inputs, the originally given outputy is applied for feedback.
A flatness-based controller for the system with a flat input
(7) generates a trajectory for the flat inputuf . A dynamic
compensator (uf → u) then transformsuf into the real control
input u. This setup is shown in Fig. 2.
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Fig. 2. Controller structure with flat inputs

Comparing both setups on the figures, a certain duality
can be recognized. However, this duality is not perfect,
as the compensator in Fig. 2 requires output feedback in
the nonlinear case. As the outputy is directly applied for
feedback, exact tracking of the outputy is possible at the
presence of model uncertainties and disturbances.



III. DESIGN PROCEDURE WITH FLAT INPUTS

The novel controller based on flat inputs can be designed
using the following procedure:

• Computation of the flat input
• Derivation of the input-output descriptions
• Design of the dynamic compensator
• Design of an open or closed loop tracking controller

This procedure can be applied to observable and suffi-
ciently smooth systems with stable internal dynamics. Here,
observable means that an observer canonical form exists [13],
which is the case when (5) is satisfied, and smooth means that
system (1) belongs to differentiability classCn. Furthermore,
the system must be controllable, but not necessarily flat.
Therefore, the proposed approach can also be applied to
systems not linearizable by endogeneous feedback and to
systems with non-affine inputs.

A. Computation of the flat input

The computation of the flat input of a SISO system is done
as described in [7] and in subsection II-C.

B. Derivation of the input-output descriptions

The dynamic compensator has to be designed such that the
input-output behavior of a series connection of compensator
and original system (1) is equal to that of system (7) with
a flat input, see Fig. 2. Hence, the compensator has to
transform the flat inputuf into the real inputu of the plant.
The design of the compensator is based on input-output
representations [14].

Input-output representations are higher-order differential
equations in the inputs and outputs, and are equivalent to
state-space system descriptions. If a system is observable
and sufficiently smooth, a higher-order differential equation
describing the input-output behavior by a single equation can
be found [14].

When a system is represented in observer canonical form
[13], the higher-order differential equation is determined
by successive elimination and differentiation of the system
states. For the original system (1), according to [14], this
equation takes the form

y(n) = q
(

y, . . . ,y(n−1)
)

+ p
(

y, . . . ,y(n−1),u, . . . ,u(m)
)

, (8)

wheren is the system order andm= n− r the order of the
internal dynamics. The system with flat input (7) has full
relative degree and so its input-output representation takes
the form

y(n) = q
(

y, . . . ,y(n−1)
)

+ pf

(

y, . . . ,y(n−1)
)

uf , (9)

wherepf (•) 6= 0 if the system is controllable.

C. Design of the dynamic compensator

As the input-output behavior of both systems is to be
imposed equal, the dynamic behavior of the compensator
must satisfy the differential equation

p
(

y, . . . ,y(n−1),u, . . . ,u(m)
)

= pf

(

y, . . . ,y(n−1)
)

uf . (10)

As the compensator takesuf as input andu as output, it is
a causal system and can be implemented as a compensator
of order m. For systems with singularities in the relative
degree, this represents an equation with unsafe order, but
still, a solution can be found in the time-discrete domain, as
is further explained in the application example.

For linear systems, the application of such a dynamic
compensator corresponds to pole-zero cancellation through
a low-pass filter on the input. It is well-known that this
setup is only stable if the system is minimum-phase. As the
compensator will render the internal dynamics unobservable,
these must generally be stable. It has been shown that the
internal dynamics of nonlinear flat systems may only be
stable for a certain range of the outputy [12], which is an
extended requirement to stable zero-dynamics [6]. It is still
an open question whether stability of the right hand side of
(8) is fully equivalent to stability of the internal dynamics in
the nonlinear case. But for stable application of the dynamic
compensator, stability of the internal dynamics is sufficient.

It can be shown that for linear systems, the dynamic
compensator to transform the input trajectory is equivalent
to the prefilter applied for output trajectory conversion inthe
conventional design (Fig. 1). Therefore, it can be stated that
the dual design with flat inputs does not require significantly
more design efforts than the conventional design based on
flat outputs.

The original system (1) extended with a dynamic compen-
sator (10) has the same input-output behavior as the system
with flat input (7). Therefore, by definition of the flat input,
a differential parameterization of the flat inputuf with the
given outputy can be found in the form

uf = Ψuf

(

y, ẏ, . . . ,y(n)
)

, (11)

as well as for the statesx of (7)

x= Ψx

(

y, ẏ, . . . ,y(n−1)
)

. (12)

The statesx of the observable subspace of the system
extended with a compensator can be matched to the plant
statesx and the control inputu by comparison of the observer
canonical forms. Equation (11) can be applied for the design
of a feedforward or of a feedback-linearization tracking
controller, as will be shown in the following paragraphs.

D. Feedforward controller design with a flat input and a
dynamic compensator

The design task for a feedforward controller is to find a
set of equations to generate a control input trajectoryu∗(t)
such that an arbitrary desired trajectoryy∗(t) is enforced on
the output.

In conventional flatness-based feedforward control, a tra-
jectory conversion prefilter is followed by a feedforward
controller, similar to the setup in Fig. 1. In the dual approach
with flat inputs, a flatness-based feedforward controller first
generates a flat input trajectoryu∗f (t), and finally a prefilter
satisfying (10) transformsu∗f (t) into the control inputu∗(t),
similar to the setup in Fig. 2.



The feedforward controller to generate the flat control
input trajectory follows directly from (11)

u∗f (t) = Ψuf

(

y∗(t), ẏ∗(t), . . . ,y∗(n)(t)
)

, (13)

and the prefilter to generate the control inputu∗(t) from (10)

p
(

y∗, . . . ,y∗(n−1),u∗, . . . ,u∗(m)
)

= pf

(

y∗, . . . ,y∗(n−1)
)

u∗f (t).
(14)

It is generally not a problem to calculate the derivatives of
the trajectoryy∗(t) if the reference is known in advance.

E. Tracking controller design with a flat input and a dynamic
compensator

Equation (11) can also be applied to design a feedback-
linearization tracking controller. The famous definition [10]

v= y(n) (15)

leads, along with the input-output representation of the
system with flat input (9), to the feedback linearization law

uf =
v−q(y, . . . ,y(n−1))

pf (y, . . . ,y(n−1))
, (16)

thus allowing to prescribe linear error dynamics

v= y∗(n)+
n−1

∑
i=0

λi(y
∗(i)− y(i)). (17)

Again, the dynamic compensator (10) with feedback from
the outputy(t) and its derivatives are applied to transform
the flat inputuf (t) into the control inputu(t). The output
derivatives can be replaced by functions ofx andu found in
the observer canonical form.

F. Comparison of conventional and flat input-based design

The major difference between both designs is the system
class they can be applied to. This makes the method of flat
inputs interesting towards the solution of several nonlinear
control problems.

Another advantage is the increased robustness of the pre-
sented setup: It can be shown that if the flat output function
λ (x,u, u̇, . . . ,u(α)) is dependent on uncertain parameters [4],
the relative degreer regarding the flat output is affected by
such parameter uncertainties. Furthermore, the precisionof
the control loop with redefined output is affected by model
uncertainties and disturbances [5]. These effects are avoided
by the presented method as the original output is applied for
feedback.

The method with a flat input realized with a compensator
only allows parametrization of the statesx of the observable
subspace of the extended system, but not a full parame-
terization equivalent to (3). However, for control design,
parametrization of the flat inputuf is sufficient, as has been
demonstrated. It can be shown that the flat output of the
original systemyf , if one exists, is still a flat output for the
system augmented by the compensator.
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Fig. 3. Pendulum with variable length

IV. APPLICATION EXAMPLE

The performance of the introduced flat-input based control
is validated in numerical simulations of the variable-length
pendulum, shown in Fig. 3.

A. Variable length pendulum

The variable-length pendulum is an example for a non-flat
system and can be described by the set of nonlinear equations
[2], [3]:







ẋ1 = x2

ẋ2 =−cosx3+ x1u2

ẋ3 = u ,
(18)

wherey = x1 is the distance from the center of the sliding
ball to the origin around which the rod rotates,x2 is the ball
speed, andx3 is the angle formed by the rod and the vertical
line passing through the origin. The rotational velocity of
the rod ẋ3 = u is the control input. The model is given in
normed units, and the gravity constant is assumedg= 1 to
be consistent with [2], [3].

It can be shown that the system is controllable in a
sufficiently large domainx ∈ Dc, but as the system is not
linearizable by endogeneous feedback, it is not flat [2].
Therefore a flat outputyf = λ (x,u, u̇, . . . ,u(α)) cannot be
found. Furthermore, the system has a singularity in the
relative degree, which can be seen on the second derivative
of the outputy:

ÿ=−cosx3+ x1u2 . (19)

For x1 6= 0, the relative degree isr = 2. However, atx1 =
0, the relative degree becomesr = 3 when the system is
in the controllable domain. Direct application of a feed-
back linearization tracking controller is not possible [10].
A common solution is state-dependent switching between
different controllers, as presented in [15]. Here, a rather
simple solution based on the previously introduced approach
without switching is presented.

B. Flat input for the variable length pendulum

The observability matrix of system (18)

Q(x) =





1 0 0
0 1 0
0 0 sinx3



 (20)



is regular in the domain of interestDo, namely for 0< x3< π ,
and therefore a flat input vector field [7] can be constructed
following (6):

γ(x) = (0,0,sinx3)
T , (21)

where the free parameterα(x) is set toα(x) = sin2(x3) to
simplify the observer canonical form. The system with flat
input is therefore described by







ẋ1 = x2

ẋ2 =−cosx3

ẋ3 = sinx3 uf .
(22)

The system with flat input can be transformed into observer
canonical form [13] via the diffeomorphismξ = φ(x) :

ξ1 = h(x) = x1

ξ2 = L f h(x) = x2

ξ3 = L2
f h(x) =−cosx3 ,

(23)

and the observer canonical form is






ξ̇1 = ξ2

ξ̇2 = ξ3

ξ̇3 = (1− ξ 2
3)uf .

(24)

The input-output representation can be read from the last
row of (24) asξ̇3 = y(3). The system with flat input is flat
with a well-defined relative degreer = n= 3, and a tracking
controller can be designed using (16) and (17). However,
it is not easy to realize the flat input physically, as the
centrifugal force termx1u2 cannot be omitted and must
be compensated by a second actuator. To circumvent this
problem, in the following step, a dynamic compensator is
designed which renders the input-output behavior of the real
system equivalent to the system with flat input, thus allowing
to apply the advantages of full relative degree for controller
design.

C. Flat input with a dynamic compensator

System (18) is transformed into observer canonical form
with (23):











ξ̇1 = ξ2

ξ̇2 = ξ3+ ξ1u2

ξ̇3 =
√

1− ξ 2
3u .

(25)

The input-output representation is then derived as

y(3) = ẏu2+2yuu̇+
√

1− (ÿ− yu2)2u , (26)

where the first derivative ofu appears. According to (10),
the equation of the dynamic compensator is given by

ẏu2+2yuu̇+
√

1− (ÿ− yu2)2u= (1− ÿ2)uf . (27)

Implementing this compensator as a fix prefilter based on one
integrator by eliminating and integrating ˙u, as described in
the previous section, fails on the singular pointsy= x1 = 0 or
u= 0. The problem with the singularities can be avoided by

a time-discrete approximation of (27), using the first-order
backward differentiationdiscretization rules [16]:

u≈ u[k] , (28)

u̇≈ (u[k]−u[k−1])/∆t , (29)

where ∆t denotes the fixed sampling interval. This corre-
sponds to searching an adequateu such that the differential
equation is satisfied inu and u̇. The control inputu of a
controllable system is multiplied by a nonzero factor, there-
fore the singularity disappears andu[k] can be eliminated. A
further simplification to avoid solving a square equation is

u2 ≈ u[k]u[k−1] . (30)

The discretized compensator equation then becomes

u[k] =
(1− ÿ2)uf +2yu2[k−1]/∆t

ẏu[k−1]+2yu[k−1]/∆t+
√

1− (ÿ− yu2[k−1])2
.

(31)

D. Feedback linearizing tracking controller

The variable length pendulum extended by the dynamic
compensator (31) has a well-defined relative degreer = 3
in the observable and controllable domainDo∩Dc. As the
input-output behavior is equal to that of the system with flat
input (22), a tracking controller based on that model can be
designed. Feedback linearization is applied by setting

uf =
v

1− ÿ2 , (32)

as defined in (16), with a linear controller for the error
dynamics as defined in (17):

v= y∗(3)+λ0(y
∗− y)+λ1(ẏ

∗− ẏ)+λ2(ÿ
∗− ÿ) , (33)

where the constantsλi are the eigenvalues of the linear error
dynamics and chosen such that (33) is hurwitz stable:λ0 = 2,
λ1 = 6, λ2 = 4. Derivation of the outputy is avoided through
the application of full state feedback, as follows from the
observer canonical form (25):

ẏ= x2 , (34)

ÿ=−cosx3+ yu2 . (35)

E. Results

The time resolution of the numerical simulation is 10
ms with a Runge-Kutta integration algorithm. In order to
visualize the effects of the discrete controller, the sampling
rate of the controller is set to∆t = 100 ms.

The results on tracking are shown in Fig. 4, and the results
on offsets in initial conditions are presented in Fig. 5. Therod
anglex3 is initialized at the equilibrium positionx3 =

π
2 in

each case. It can be seen that the controller acts well in a wide
range near and away from the singularityx1 = 0, therefore
the singularity in the relative degree is not a problem for
the presented control scheme. The results are comparable
to these of switched feedback-linearization controllers in
[15], however, implementation is much easier as switching
between different controllers is avoided.
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Fig. 4. Simulation results: Tracking control with flat inputs and a dynamic
compensator of the variable length pendulum
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Fig. 5. Simulation results: Initial error in the control with flat inputs and
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V. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper the concept of flat inputs, which represents
a dual approach to flat outputs, is further developed. A
controller design method is introduced that does not require
the output to be flat, nor the system to be flat, in a
sense that it must be linearizable by endogeneous feedback.
Tracking controller design for this class of nonlinear systems
is generally difficult. Furthermore, the proposed method
represents an interesting alternative to output redefinition,
as only feedback of the given output can guarantee exact
tracking.

The performance of the proposed setup was demonstrated
on numerical simulations of the variable length pendulum, a

famous example for a non-flat system with a singularity in
the relative degree. In the past, several complex controllers
have been designed for this plant, whereas this paper presents
a rather simple solution.

B. Future Works

In several previous research activities, controllers for ob-
servable non-minimum phase systems with cascaded com-
pensator dynamics have been proposed [17]. Major limitation
of these works was that a parametrization of the desired states
in terms of the desired output was hard to find. Flat inputs
are a possibility to find such a parameterization.

Generally, other ways to link the flat-input-based system
variables to the real system variables should be figured out.
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[17] A. Tornambè, Output feedback stabilization of a classof non-minimum
phase nonlinear systems,Systems & Control Letters, Vol. 19, pp. 193–
204, 1992.


	I INTRODUCTION
	II DIFFERENTIAL FLATNESS AND FLAT INPUTS
	II-A Flat outputs
	II-B Controller design with flat outputs
	II-C Flat inputs 
	II-D Controller design with flat inputs

	III DESIGN PROCEDURE WITH FLAT INPUTS
	III-A Computation of the flat input
	III-B Derivation of the input-output descriptions
	III-C Design of the dynamic compensator
	III-D Feedforward controller design with a flat input and a dynamic compensator
	III-E Tracking controller design with a flat input and a dynamic compensator
	III-F Comparison of conventional and flat input-based design

	IV APPLICATION EXAMPLE
	IV-A Variable length pendulum
	IV-B Flat input for the variable length pendulum
	IV-C Flat input with a dynamic compensator
	IV-D Feedback linearizing tracking controller
	IV-E Results

	V CONCLUSIONS AND FUTURE WORKS
	V-A Conclusions
	V-B Future Works

	VI ACKNOWLEDGMENTS
	References

