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A small gain condition for interconnections of

ISS systems with mixed ISS characterizations

Sergey Dashkovskiy, Michael Kosmykov, Fabian Wirth

Abstract

We consider interconnected nonlinear systems with extémpats, where each of the subsystems
is assumed to be input-to-state stable (I1SS). Sufficientitions of small gain type are provided
guaranteeing that the interconnection is ISS with respethé external input. To this end we extend
recently obtained small gain theorems to a more general ofp@terconnections. The small gain
theorem provided here is applicable to situations wherel®% conditions are formulated differently
for each subsystem and are either given in the maximizatiothe summation sense. Furthermore it
is shown that the conditions are compatible in the senseithatalways possible to transform sum
formulations to maximum formulations without destroyingyi@en small gain condition. An example

shows the advantages of our results in comparison with tlogvkrones.

Index Terms

Control systems, nonlinear systems, large-scale systaatsi)ity criteria, Lyapunov methods.

. INTRODUCTION

Stability of nonlinear systems with inputs can be descrilbedifferent ways as for example
in sense of dissipativity [22], passivity [20], [21], inptd-state stability (ISS)_[17] and others.

In this paper we consider general interconnections of neali systems and assume that each
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subsystem satisfies an ISS property. The main question qiaber is whether an interconnection
of several ISS systems is again ISS. As the ISS property cdefireed in several equivalent ways
we are interested in finding optimal formulations of the dngalin condition that are adapted
to a particular formulation. In particular we are interelste a possibly sharp stability condition
for the case when the ISS characterization of single systmmdifferent. Moreover we will
provide a construction of an ISS Lyapunov function for intemections of such systems.

Starting with the pioneering works [12], [11] stability afterconnections of ISS systems has
been studied by many authors, see for example [15], [1], [[3]]. In particular it is known
that cascades of ISS systems are ISS, while a feedbackantexction of two ISS systems is
in general unstable. The first result of the small gain typs weved in [[12] for a feedback
interconnection of two ISS systems. The Lyapunov versiothisf result is given in[[11]. Here
we would like to note the difference between the small gainddmons in these papers. One of
them states in_[11] that the composition of both gains shbeldess then identity. The second
condition in [12] is similar but it involves the compositiai both gains and further functions
of the form (id + «;). This difference is due to the use of different definitions|®6 in both
papers. Both definitions are equivalent but the gains emter maximum in the first definition,
and a sum of the gains is taken in the second one. The resyli2joéind [11] were generalized
for an interconnection of > 2 systems in[[4],[[6],[[13],[[14]. In[[4],[[B] it was pointed otibat
a difference in the small gain conditions remains, i.e.h& gains of different inputs enter as a
maximum of gains in the ISS definition or a sum of them is takethie definition. Moreover,
it was shown that the auxiliary function$d + «;) are essential in the summation case and
cannot be omitted, [4]. In the pure maximization case thellsgaan condition may also be
expressed as a condition on the cycles in the gain matrixese€19], [4], [16], [13], [14]. A
formulation of ISS in terms of monotone aggregation funwidor the case of many inputs was
introduced in[[16], [[5], [7]. For recent results on the sngdin conditions for a wider class of
interconnections we refer to [13],/[8], [14]. 1n/[9] the aotk consider necessary and sufficient
small gain conditions for interconnections of two ISS systen dissipative form.

In some applications it may happen that the gains of a parysiems of an interconnection
are given in maximization terms while the gains of anothert pae given in a summation
formulation. In this case we speak of mixed ISS formulatione pose the question whether

and where we need the functiofisl + «;) in the small gain condition to assure stability in
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this case. In this paper we consider this case and answequbiion. Namely we consider
interconnected ISS systems, such that in the ISS definiticsome £ < n systems the gains
enter additively. For the remaining systems the definitiathwnaximum is used. Our result
contains the known small gain conditions from [4] as a spe@aek = 0 or k = n, i.e., if only
one type of ISS definition is assumed. An example given inphiser shows the advantages of
our results in comparison with the known ones.

This paper is organized as follows. In Sectidn Il we preskatrtecessary notation and defini-
tions. Sectio Il discusses properties of gain operatothé case of mixed ISS formulations. In
particular we show that the mixed formulation can in prifheiglways be reduced to the maximum
formulation. A new small gain condition adapted to the mik88 formulation ensuring stability
of the considered interconnection is proved in Sedtion I&ct®n[M provides a construction of
ISS Lyapunov functions under mixed small gain conditiong. Méte some concluding remarks
in SectionV].

II. PRELIMINARIES AND PROBLEM STATEMENT
A. Notation

In the following we sefR, := [0,00) and denote the positive orthaRt} := [0,00)". The
transpose of a vectar € R” is denoted by:”. OnRR" we use the standard partial order induced
by the positive orthant given by

T2y ==y, t=1,...,n,

T>Y = x; >, t=1,...,n.
With this notationR” := {z € R : > 0}. We writex 2 y <= Jiec {l,...,n}: z; <y,
For a nonempty index sétC {1,...,n} we denote by/| the number of elements @f We write
yr for the restrictiony; := (y;);c; of vectorsy € R”. Let R; be the anti-projectior]i%.'f| — R7,
defined by

where {e; }=1,..,, denotes the standard basisRfi and/ = {iy, ...}

For a functionv : R, — R™ we define its restriction to the interval,, s,| by
v(t), if t € [s1, s,

Ulsy, s2] (t) = .
0, otherwise.
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A function v : R, — R, is said to be of clas if it is continuous, strictly increasing and
v(0) = 0. It is of classK if, in addition, it is unbounded. Note that for anyc K, its inverse
function o' always exists andv! € K. A function 3 : R, x R, — R, is said to be of
classKL if, for each fixedt, the functiong(-, t) is of classKC and, for each fixed, the function
t — f(s,t) is non-increasing and tends to zero for» co. By id we denote the identity map.

Let | - | denote some norm iiR", and let in particulafz| = mzax|xi| be the maximum

norm. The essential supremum norm of a measurable fungtioiR, — R™ is denoted by

14|l Lo is the set of measurable functions for which this norm is dinit

B. Problem statement

Consider the system
&= f(r,u), z€R", ueR™" 1)

and assume it is forward complete, i.e., for all initial vedu:(0) € R" and all essentially
bounded measurable inpuissolutionsxz(t) = z(t; x(0), ) exist for all positive times. Assume
also that for any initial value:(0) and inputu the solution is unique.

The following notions of stability are used in the remaindéthe paper.

Definition 2.1: System|[(1) is called

(i) input-to-state stabl€lSS), if there exist functiong € KL and~ € I, such that

[z(t)] < B(x(0)], 1) +v(Julle) . Vz(0) € R" u € Loo (R, R™) ;22 0. (2)
(i) globally stable(GS), if there exist functions, 4 of classkC, such that

[2(B)] < o(|z(0)) +F(Julls),  V(0) € R",u € Loo (R4, R™) £ > 0. ©)

(iii) System [1) has theasymptotic gain(AG) property, if there exists a functiof € K,
such that
limsup [2(t)] <F([ull.), ¥2(0) € R",u € Loo(Ry,R™). @)

t—o0

Remark 2.2:An equivalent definition of ISS is obtained if instead of wsisummation of

terms in [2) the maximum is used as follows:

()] < max{F(|(0)], ), F(|lull.)}- (5)
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Note that for a given system sum and maximum formulations leag to different comparison
functions 3, 5 in (B) than those in[{2). In a similar manner an equivalentnitédn can be
formulated for GS in maximization terms.
Remark 2.3:In [18] it was shown that a systernl (1) is ISS if and only if it iS@nd has the
AG property.
We wish to consider criteria for ISS of interconnected systeThus considet interconnected
control systems given by
1 = fi(x,..., 2., u)
(6)
Tn = folT1, ., Tp,up)
wherez; € RYi, u; € R™ and the functionsf; : R>i=1Yit™ _ RM: are continuous and for
all » € R are locally Lipschitz continuous im = (2,7, . .. ,an)T uniformly in w; for |u;| <.
This regularity condition forf; guarantees the existence and uniqueness of solution faththe
subsystem for a given initial condition and input
The interconnection {6) can be written &$ (1) with= (z7,... 2T, v = (uF, ... )T
and

flz,u) = (fl(xl,...,xn,ul)T,...,fn(xl,...,xn,un)T)T.

If we consider the individual subsystems, we treat the stat¢ # ¢ as an independent input
for the ith subsystem.

We now intend to formulate ISS conditions for the subsystefr§), where some conditions
are in the sum formulation as inl(2) while other are given ertteximum form as iri.{5). Consider
the index set/ := {1,...,n} partitioned into two subsets:, I,,., such thatl,,.. = I\ Is.

The ith subsystem of (6) is ISS, if there exist functiossof classKCL, v;;, v € Ko U {0}
such that for all initial values:;(0) and inputsu € L. (R, ,R™) there exists a unique solution
x;(-) satisfying for allt > 0

i) < Billzi(0), 1) + > vig(lwjoall,) + wlllull), i i€ I, (7
j=1
and
l2:(t)] < max{fi(|wi(0)], ), max{yi; (250l 3, villlulloe)} > 7 € T (8)
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Remark 2.4:Note that without loss of generality we can assume that {1,...,k} and
Inax = {k+1,...,n} wherek := |Iy|. This can be always achieved by a permutation of the
subsystems i (6).

Since ISS implies GS and the AG property, there exist funstio, ¥;;, 7 € K U {0}, such
that for any initial valuer;(0) and inputu € L, (R, R™) there exists a unique solutian(t)
and for allt > 0

=) < oil[z:(0)]) + Zl%-j(llfmo,ﬂ!\m) +%illlull) if icly, 9)
J:
lzi(t)] < max{oy(Jz:(0)]), max{Fy (lzjp.0ll)} Willulle)} 1€ Tnw, (10)
which are the defining inequalities for the GS property of #tle subsystem.
The AG property is defined in the same spirit by assuming thatet exist functionsy,;,

3 € K U {0}, such that for any initial valuer;(0) and inputsz; € L. (R, RY), i #£ j,
u € Lo(R,,R™) there exists a unique solutian(¢) and

lim sup |;(t)] < Zjij(llfcjﬂoo)+7i(||U||oo)7 if icls, (11)
—00 j=

tim sup [2;(#)] < max{max{7; (|2;llo)} Talllullo)b 17 € Tma (12)
—00

We collect the gaing;; € K, U {0} of the ISS conditiond (7)[{8) in a matriX = (v;;)nxn,

with the conventiony; =0, i =1,...,n. The operatofl’ : R} — R” is then defined by
L(s) = (T1(s),..., Tu(s)" (13)

where the functiong’; : R — Ry are given byl';(s) := vii(s1) + -+ + Yin(sn) for i € Iy,
and I';(s) := max{y(s1),--.,Yin(sn)} fOr i € L. In particular, if Iy = {1,...,k} and
Inax ={k+1,...,n} we have

Yi2(82) + -+ + Yin(Sn)

I(s) = Yer(s1) 4+ Yenlsn) . (14)

max{%ﬂ,l(sl)a e 7Vk+1,n(3n)}

max{7n1(51)7 v 77n,n—1(5n—1)}
In [4] small gain conditions were considered for the cdse= I = {1,...,n}, respectively

I..x = 1. In [16], [7] more general formulations of ISS are consider&hich encompass the
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case studied in this paper. In this paper we exploit the apstiucture to obtain more specific
results than available before.

Our main question is whether the interconnectioh (6) is I188nfu to x. To motivate the
approach we briefly recall the small gain conditions for tlsesly = I, resp.l,.. = I,
which imply ISS of the interconnection,|[4]. I, = I, we need to assume that there exists a

D := diag,(id + a), a € K such that
I'oD(s) 2 s, Vs € RY\{0}, (15)
and if I, = I, then the small gain condition
['(s) 2 s, Vs € RT\{0} (16)

is sufficient. In case that both; and /..., are not empty we can use

max {z;} < le <n max {z;} (17)

b b . b b
=1

to pass to the situation witlhy = @ or I,., = 0. But this leads to more conservative gains.
To avoid this conservativeness we are going to obtain a neall grain condition for the case
Is, # I # I.... As we will see there are two essentially equivalent apgreado do this. We

may use the weak triangle inequality
a+b < max{(id+mn)oa,(id+n"")ob}, (18)

which is valid for all functionsa,b,n € K., as discussed in Section Il[tA to pass to a pure
maximum formulation of ISS. However, this method involvies tight choice of a large number
of weights in the weak triangular inequality which can be atnwial problem. Alternatively
tailor-made small gain conditions can be derived. The esgioms in [(1b),[(1I6) prompt us to
consider the following small gain condition. For a givanc K, let the diagonal operator
D, : R} — R"} be defined by

Do(s) == (Di(s1),..., Da(sn))", s€eRL, (19)

where D;(s;) := (id+ «a)(s;) for i € Iy, and D,(s;) := s; for i € I,.. The small gain condition

on the operatof’ corresponding to a partitioh = Iy, U I,,., IS then

JaeKsx : ToDu(s) % s, VseR\{0}. (20)
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We will abbreviate this condition dso D,, # id. In this paper we will prove that this small gain
condition guarantees the ISS property of the interconoedfi) and show how an ISS-Lyapunov
function can be constructed if this condition is satisfiedha case of a Lyapunov formulation
of ISS.

Before developing the theory we discuss an example to lgighthe advantage of the new
small gain condition[(20), cf. Theorelm 4.4. In order not toutl the issue we keep the example
as simple as possible.

Example 2.5:We consider an interconnection of= 3 systems given by
i1 = — 1 + ns(|zs]) + 7 (u)
Ty = — xa + max{ vz (|71]), ves(|z3]) } (21)

3 = — x5 + max{ys2(|22]), 13(u) }
where thev,;; are givenkK., functions. Using the variation of constants method and teakwv

triangle inequality[(IB) we see that the trajectories cardiemated by:
21 ()] < Bi(lz(0)],8) + ns(llzspglles) + 71 ([[ulls)
|22(t)] < max{Bx(|z(0)].¢), (id + 1) o yar ([|[z10,9]0), (id + 1) 0 Y2s(|[30,0] )} (22)

|3(t)] < max{f5(|z(0)],1), (id + n) 0 Va2([|v20,] ). (id + 1) 0 y3([|ull )},
where theg; are appropriatéC L functions andy € K, is arbitrary.

This shows that each subsystem is ISS. In this case we have

0 0 V13
F = ('d + 77) @) Y21 0 (ld —+ T}) (@) Y23
0 (Id —+ 7]) O Y32 0

Then the small gain conditioh (RO) requires that there sxasta € K, such that

Y13(83) S1
max{(id +7) o 791 o (id + ) (s1), (id +7) o Ya3(s3)} | Z | so (23)
(id 4 1) o v32(s2) S3

for all s € R3\{0}. If (23) holds then considering’ (1) := (713 o (id + 1) 0 v32(r), 7, (id 4+ 1) 0

v32(r))T, r > 0 we obtain that the following two inequalities are satisfied
(id4+ ) oz 0 (id 4+ 1) oyzp o (Id 4+ 1) 0 21 (1) < 7, (24)
(id + 1) 0 y23 o (id + 1) 0 ys2(r) <1 (25)

October 31, 2018 DRAFT



It can be shown by contradiction that {24) and](25) imply (23)

To give a simple example assume the that the gains are limehgi@aen by~;3 := 91 :=
Y23 := Y32(r) = 0.97, r > 0. Choosingny = = 1/10 we see that the inequalitids {24) andl(25))
are satisfied. So by Theorem 4.4 we conclude that sydstem (BSslIn this simple example
we also see that a transformation to the pure maximum casé&wawe been equally simple.
An application of the weak triangle inequality for the firstar with = o would have led to
the pure maximization case. In this case the small gain tondmay be expressed as a cycle
condition [19], [4], [16], [13], [14], which just yields theonditions [24) and_(25).

We would like to note that application of the small gain cdiwdi from [4] will not help us to
prove stability for this example, as can be seen from thefolg example.

Example 2.6:In order to apply results fron [4] we could (e.g. by usihgl j1aBtain estimates
of the form

IA

|21(2)] Ba([z(0)[,2) + vis([|z30,4[00) + 11 (llulls)
[zo(t)] < Bal[2(0)], ) + yar([|z10,9]|00) + Y3(l[2300,1] ) (26)

z3(O)] < Bs(2(0)] 1) + sa([|210.]loo) + v3(llull0) -

A

With the gains from the previous example the correspondaig matrix is

0 0 09
=109 0 09,
0 09 0

and in the summation case with linear gains the small gairliton is r(I") < 1, [4]. In our
exampler(I") > 1.19, so that using this criterion we cannot conclude ISS of tlheraonnection.
The previous examples motivate the use of the refined smiallapadition developed in this
paper for the case of different ISS characterizations. énrtéxt section we study properties of
the gain operators and show that mixed ISS formulations oaheory always be transformed

to a maximum formulation without losing information on thaall gain condition.

IIl. GAIN OPERATORS

In this section we prove some auxiliary results for the ofpesasatisfying small gain condition

(20). In particular, it will be shown that a mixed (or pure Sui8S condition can always be
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reformulated as a maximum condition in such a way that thdlsgam property is preserv&i.
The following lemma recalls a fact, that was already notef#n
Lemma 3.1:For anya € K, the small gain conditio®,oI" #* id is equivalenttd’oD,, # id.
Proof: Note thatD,, is a homeomorphism with inverse— D' (v) := (Dy ' (v1), ..., D;l(vn))T.
By monotonicity of D, and D' we haveD, o I'(v) # v if and only if I'(v) # D;'(v). For
anyw € R, definev = D,(w). ThenI' o D,(w) 2 w. This proves the equivalence. [

For convenience let us introduge: R x R} — R’ defined by

ww,v) = (p1(wy,v1), ... ,,un(wn,vn))T,w e R}, veRY, (27)

wherey; : R — R is such thafu,(w;, v;) == w; +v; for i € I, and p1;(w;, v;) := max{w;, v;}
for i € .. The following counterpart of Lemma 13 in![4] provides theim&echnical step in
the proof of the main results.

Lemma 3.2:Assume that there exists ane K., such that the operatdr as defined in[(13)
satisfiesI'o D,, # id for a diagonal operatab,, as defined in[(19). Then there existe & K.,
such that for alkw,v € R?,

w < p(T(w),v) (28)

implies [|wl] < o({[v]]).

Proof: Without loss of generality we assumlg = {1,...,k} and I,,., = I\ Iy, see
Remark 2.4, and hendeis as in [(1#). Fix any € R’. Note that forv = 0 there is nothing to
show, as thenw # 0 yields an immediate contradiction to the small gain conditiSo assume
v # 0.

We first show, that for those € R’ satisfying [28) at least some componentsuwohave to
be bounded. To this end lé? : R — R’ be defined by

D(s) := (51 +at(s1),. .., sk +a " (sk), Skt - - .,Sn)T, s e RY

and lets* := D(v). Assume there exists = (w,...,w,)" satisfying [2Z8) and such that
w; > sf, 1 =1,...,n. In particular, fori € Iy, we have

We would like to thank one of the anonymous reviewers for mpshe question whether this is possible.

October 31, 2018 DRAFT



11

and hence from the definition af it follows that
si=v;+ a_l(vi) < vir(wy) 4 - oo+ Yin(wy) + v;.
And sov; < a(yia(wy) + ... + Yin(wy,)). From [29) it follows

w; < ya(wr) + - Yin(wy) + v < (id + ) o (Y1 (wy) + - ..+ Yin(wy)). (30)

Similarly, by the construction ofv and the definition ok* we have fori € I,
v; =85 < w; <max{yi(wi), ..., Yin(wn), v}, (32)

and hence
w; < max{y(w1), ..., Yin(ws)} (32)

From (30), [(32) we getv < D, oI'(w). By Lemmd&3.1 this contradicts the assumptionD,, #
id. Hence some components af are bounded by the respective componentss'of= s*.
Iteratively we will prove that all components af are bounded.

Fix a w satisfying [28). Thenw »# s' and so there exists an index skt C I, possibly
depending onv, such thatw; > s}, i € I; andw; < s}, fori € If = I\ I;. Note that by the

first step/{ is nonempty. We now renumber the coordinates so that

w; > s; and w; < Zn:l%-j(wj) + v, i=1,... ki, (33)
iz

w; > s; and  w; < max{mjaX%j(wj),v,-}, i=ki+1,...,n, (34)

w; < s} and w; < ilvij(wj)jtv,-, , i=n1+1,...,n1+ ko (35)
iz

w; < s; and  w; < max{mjaxvij(wj),v,-}, i=n+ka+1,...,m, (36)

wheren; = |

, k1 + ko = k. Using [35), [(36) in[(3B),[(34) we get

ni n
j=1 j=ni+1

w; < max{ max 7y;(w;), max (), vy, i=ki+1,...,m. (38)
J=1,...,n1 j=ni1+1,...n

Definev! € R} by

n
v = > vii(s)) + i, i=1,...,k,
Jj=ni+1
v; = max{ max Yij(s7),vi}, i=ki+1,...,n.
j=ni+1,...n
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Now (37), [38) take the form:

1

UJZS Z’yij(wj)_‘_vzl? Z.:]-a"-akla (39)
j=1

w; < max{_r?ax Yij(wi),vi}, i=ki+1,...,n. (40)
J=4 ni

U'nn Tnrg

Let us represent = and define the mags;, ;, : R} — RY, Ipype : RET™ —

Urer, Trerg
RY, Trep,  RY — RE™ andlyepe - RET™ — RY™ analogous td'. Let

Dy (s) := ((id 4+ ) (s1), ..., (id + @) (Sk,), Skyt1s v s Smy) " -

FromI' o D,(s) # s for all s # 0, s € R it follows by considerings = (z7,0)” that
I'nn oDy (z) 2 2 forall z#0, z € R}'. Using the same approach as fore R’} it can be
proved that some componentswof = (wy, ... ,wm)T are bounded by the respective components
of 52 := Dy, (v}).
We proceed inductively, defining
i G Ly L ={i €l w > s} (41)
with I¢,, == I'\ I;;, and
s/t i= Di; o (1 (Tryre(s7e), v1,)), (42)
where 51], is defined analogously t®, the mapl';;e : Ri™ — RY acts analogously to
I' on vectors of the corresponding dimensiah, = (s{)ig; is the restriction defined in the
preliminaries andg.’ is appropriately defined similar to the definition of
The nesting[(41)[(42) will end after at mast- 1 steps: there exists a maximak n, such that

I20L2...20L#0
and all components af;, are bounded by the corresponding components of. Let

max{(s*)1, (Rr, (s*)1, -, (R, (s")1}

s = max{s*, Ry, (s%),..., Ry (s"™)} :=
max{(s*)n, (Rp, (s°))n; - -, (Rp(s"1))u}

where R;; denotes the anti-projectidﬁ'fj‘ — R” defined above.
By the definition ofy for all v € R} it holds

0 <o < p(l,id)(v) == p(l'(v), ).
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Let the n-fold composition of a mapl/ : R — R’} of the form A/ o ... o M be denoted by

[M]™. Applying D we have

0< v < D(v) < Do(u(T,id))(v) < -+ < [Dou(T,id)]"(v). (43)

From (42) and[(43) forw satisfying [(28) we haver < s. < [15 o u(T',id)]"(v). The term on
the right-hand side does not depend on any particular clafioesting of the index sets. Hence
T and taking the

every w satisfying [28) also satisfies < [D o u(T,id)]" (|v| ]

max? "’ max>

maximum-norm on both sides vyields| .. < ¢(|v] for some functionp of classi... For

max)

example, can be chosen as

o(r) == max{([D o w(T,id)] (r,....*)1, ..., ([D o w(@,id)] (r,...,r))n}.

This completes the proof of the lemma. [ |
We also introduce the important notion Qfpaths [7]. This concept is useful in the construc-
tion of Lyapunov functions and will also be instrumental iot@ining a better understanding of
the relation between max and sum small gain conditions.
Definition 3.3: A continuous pathy € K7 is called anQ2-path with respect tad" if
(i) for eachi, the functions; ! is locally Lipschitz continuous o0, co);
(i) for every compact seP C (0, 00) there are finite constants< ¢ < C' such that for all

points of differentiability ofo; ' andi = 1,...,n we have
0<c<(o;Y(r)<C, VYreP (44)

(iii) for all » > 0 it holds thatl'(o(r)) < o(r).

By [7, Theorem 8.11] the existence of @xpatho follows from the small gain condition _(16)
provided an irreducibility condition is satisfied. To defities notion we consider the directed
graphG(V, &) corresponding ta" with nodesY = {1,...,n}. A pair (i,j) € V x V is an edge
in the graph ify;; # 0. ThenTI is called irreducible if the graph is strongly connecteds sey.

the appendix in [4] for further discussions on this topic.
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We note that ifl" is reducible, then it may be brought into upper block tridagfiorm by a

permutation of the indices

Tll Tlg R Tld
0 To ... T
I — | 22 ' l2d (45)
0 Ce 0 Tdd

where each blocK';; € (Ko, U{0})%*% j=1,...,d, is either irreducible or 0.

The following is an immediate corollary to [[7, Theorem 8.1%jhere the result is only
implicitly contained.

Corollary 3.4: Assume thaf" defined in [(1B) is irreducible. Theh satisfies the small gain
condition if and only if anQ2-patho exists forD o T'.

Proof: The hard part is the implication that the small gain conditioiarantees the existence
of an-path, seel[7]. For the converse direction assume thé&t-path exists forD o' and that
for a certains € R’}, s # 0 we haveD oI'(s) > s. By continuity and unboundedness @ofwe
may choose & > 0 such thair (1) > s buto(7) # s. Thens < DoI'(s) < Dol'(o(7)) < o(7).

This contradiction proves the statement. [ |

A. From Summation to Maximization

We now use the previous consideration to show that an atteerapproach is possible for the
treatment of the mixed ISS formulation, which consists ahgforming the complete formulation
in a maximum formulation. Using the weak triangle inequya{lt8) iteratively the conditions in
(@) may be transformed into conditions of the form (8) with

()] < Billza)] 1) + > vis(llzsoalle) + vllull.) (46)
j=1
< maX{Bz(\xi(O)\,t)7mjax{%(!\xﬂo,t]|loo)},%(HUHOO)} (47)

for i € Iy. To get a general formulation we let, ..., j, denote the indiceg for which
v:; # 0. Choose auxiliary functions,o, ..., ni, € Ko and definey;o := (id + 1,0) and x; =
Choose a permutation; : {0,1,...,k;+1} — {0,1,...,k; + 1} and define

Bi = Xim(0) © B, Viji = Xim@) ©Vij» L =1, ki, Vi = Ximi(ki+1) © Vi (48)

October 31, 2018 DRAFT



15

and of coursey;; =0, j ¢ {j1,.-.,Jx }- In this manner the inequalities_(46) are valid and a
maximum ISS formulation is obtained. Performing this foesvi € Is; we obtain an operator
I': RS — R} defined by

(Fa(s). ... ms))T , (49)

where the functiong’; : R? — R, are given byl';(s) := max{%;1(s1), ..., Yin(sn)} fOr i € I,
andT;(s) := max{v;1(s1), ..., Vin(sn)} fOF i € L,.x. Here they;;’s are given by[(48), whereas
the +,;’s are the original gains.

As it turns out the permutation is not really necessary anid sufficient to peel off the
summands one after the other. We will now show that given a gperatorl” with a mixed or
pure sum formulation which satisfies the small gain conditivo I' 2 id, it is always possible
to switch to a maximum formulation which also satisfies theegponding small gain condition
T #id. In the following statement; is to be understood as defined just affer (47).

Proposition 3.5: Consider a gain operatdr of the form [13). Then the following two state-
ments are equivalent

(i) the small gain condition (20) is satisfied,
(i) for eachi € Iy there existy; o, ..., n;k+1) € K, such that the corresponding small

gain operatoi satisfies the small gain condition {16).

Remark 3.6:We note that in the case that a systéin (6) satisfies a mixeddB8dton with
operatorI’, then the construction i_(46) shows that the ISS conditalso satisfied in the
maximum sense with the operatbr On the other hand the construction in the proof does not
guarantee that if the ISS condition is satisfied for the dpeta then it will also be satisfied for
the originall".

Proof: “=": We will show the statement under the condition thats irreducible. In the
reducible case we may assume thats in upper block triangular formi_(45). In each of the
diagonal blocks we can perform the transformation desdritbielow and the gains in the off-
diagonal blocks are of no importance for the small gain ciorali

In the irreducible case we may apply Corollary]3.4 to obtagoatinuous maw : [0, co) —

R”, whereo; € K, for every component function af and so that

Dol'oo(r)<o(r), forall 7>0. (50)
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Define the homeomorphisffi: R? — R%, T : s — (01(s1),...,04(sn)). ThenTtoDol'oT %
id and we have by[(50) for = > | ¢;, that

T(re)=0(t) > Dol oo(r)=DoTloT(re),

so that for allt > 0
T'oDoloT(re) < Te. (51)

We will show thatT~! o I o T'(7e) < e for an appropriate choice of the functions. By the
converse direction of Corollafy 3.4 this shows that' oI'o T # id and hencd # id as desired.

Consider now a row corresponding foc Iy, and lety, ..., j;, be the indices for which
vi; # 0. For this row [(B1) implies

o(id+ a)o (Z%j (oj(r ><7’, Vr >0, (52)

J#i
or equivalently

(id+ ) o (Z%Joayoa ) ooi(r) <oir), ¥r>0. (53)
J#i
This shows that
(id+a)o <Z%]oajoa ><id, on (0, 00) . (54)
J#i

Note that this implies thaéid — Z#i Yij © 0 © a;1> € K, becauser € K.,. We may therefore

choosey,;; > v;j o000, ", j =ji,...,jr i SUCh a manner that

k;
Y Ay €Kx.
=1

Now define forl =1, ..., k;

NiL 1= (id - Z'%jk> ° %;ll €K -
k<l
It is straightforward to check that
-1
(Id + nzl (Id Z ’ngk> o 72]1 ) (Id + 771;1> = (Id - Z ’?m) © <|d - Zf%yk> .
k<l k<l k<l

With xi = (id +7;") o ... o (id +7;,_,,) o (id + n) it follows that

Xi197j,005,00; " = (id+n;")o. . .o(id+n;;" )o(id+n)ovy,005,00, " =4, ori,005,00; " <id.
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This shows that it is possible to choosg,i € I» such that all the entries ifi—' o LoT are
smaller than the identity. This shows the assertion.

<" To show the converse direction let the small gain condit{@8) be satisfied for the
operatorl'. Consider; € Is.

We consider the following two cases for the permutatiarsed in[(48). Defing := min{x(0), m(k;+
1)}. In the first case{n(0),n(k; + 1)} = {ki,k; + 1}, i.e,, 7(l) < p,V I € {1,... Kk}
Alternatively, the second case# € {1,...,k;} : 7({) > p.

We defineq; € K, by

-1
771';10 Zp%’jlo <;%y> ; if 35 €{1,...,ki} :7(j) > p,

w(l)>

(55)

oy 1=

-1
Mip—1° Vij 1y © <Z %j) , fEvie{l... k) 7() <p.
j

Consider theith row of D o I' and the caselj € {1,...,k;} : 7(j) > p. (Note that for no
le{l,... k} we haver(l) = p).

(id+ai)od vy = DXvy+aiod vy
J J J

-1
= Z%y+7hp © E 7@31 (Z’ng) OZ’Yij
J J

()>p (56)
= > %+ nip ° > Vi

J m(l)>p
= Z Vi, T (Id + 771';;1) © Z Vi -

n(l)<p n(l)>p

Applying the weak triangle inequality (IL8) first to the rigidst sum in the last line of (b6) and

then to the remaining sum we obtain

Z ’ngl Id + nzp Z Yigy

m(l)<p w(l)>p
< Z Yigi + max{(id + 7ip-1) © Viz-1(p-1),
m(l)<p—1
(id +7;,-1) o (id + ) 0 mac {(id 4 )31 00 id 1y 1) © (1A + mir) © 7351}
< ... < mlaX{Xm(l) © Vij, } - (57)
The last expression is the defining equation (s, . . ., s,) = max {Xi=@) ©7i5,(s5) }. Thus

from (58), [57) we obtaid’; > (D o T');.
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Consider now the caseél € {1,...,k} =(I) < p. A similar approach shows that; >

(D oT),;. Following the same steps as in the first case we obtain

Id + al Z ’}/7,] - Z 7’” _|_ 77ip 1 o ,yiyjﬂfl(pfl)

= Z Viji + (id + i p-1) 0% —1(p1)

m(l)<p—1
< Z Yij + max{(ld + niﬁ”_2) © ’Vz'jﬂ,1(p,2)7 (58)
w(l)<p—2
(id + n;;_2) o (id + n; (p—1)) © %',j,rfl(p,l)}
< o < max{Xie © Y} -

Again from [G8)T; > (DoTl),.
Taking o = mino; € Ko, it holds thatl' > D o I. Thus if ' # id, thenD o I" # id. n

V. SMALL GAIN THEOREM

We now turn back to the question of stability. In order to @d8S of [6) we use the same
approach as in_[4]. The main idea is to prove that the intereotion is GS and AG and then
to use the result of [18] by which AG and GS systems are ISS.

So, let us first prove small gain theorems for GS and AG.

Theorem 4.1:Assume that each subsystem [of (6) is GS and a gain matrix gy’ =
(34 )nxn- If there existsD as in [19) such thal’ o D(s) # s for all s # 0,s > 0, then the
system|[(ll) is GS.

Proof: Let us take the supremum overe [0, ¢] on both sides ofi(9)[(10). Fare I we
have

0,41l o < @i(l:(0) +Z%J 15101l ) + Felllulloo) (59)

and fori € I,,,, it follows

0.0l < max{oi(|ai(0)]), max{Fi;([lzj04ll0)}: Filllulloe)}- (60)
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T
Let us denotav = (||z10gll .- -, |Zapgll.) "

pa (o1 (21 (0)]), 3 ([Jull o))

fin (O (|20 (0)]); A ([l )
where we use notatiop and p; defined in [(2V). From[(89)[(60) we obtain < u(T'(w),v).
Then by Lemma 3]2 there existsc K., such that

lzpalle, < @Ulula(z0)]), 4(Nlullo))D
< (o ([=(0)]) + A (llull ) (61)
< o2l (lz(0)DI) + elIAllull 1)
for all ¢ > 0. Hence for every initial condition and essentially boundigout « the solution of
the system[(1) exists for aill > 0 and is uniformly bounded, since the right-hand sidelof (61)
does not depend oh The estimate for GS is then given by (61). [ |
Theorem 4.2:Assume that each subsystem [dof (6) has the AG property anddhations of
system|[(lL) exist for all positive times and are uniformly bded. Let a gain matriX’ be given
by I' = (7;;)nxn- If there exists aD as in [19) such thalf o D(s) # s for all s # 0,5 > 0, then
system|[(ll) satisfies the AG property.
Remark 4.3:The existence of solutions for all times is essential, ot the assertion is
not true. See Example 14 inl[4].

Proof: Let 7 be an arbitrary initial time. From the definition of the AG pesty we have

fori € Iy
hmsup EAQIIS Z%J (217,001l ) + Fs (Nl o) (62)
7j=1
and fori € I«
lin sup [2i(8)] < max{max{7y; (|l2jtroclloo) 1 Vil o0) - (63)

Since all solutions of[(6) are bounded we obtain by [4, Lemthat
limsup |@;(t)| = Hmsup(||zifro0)lloo) =2 li(w), i =1,...,n.
t—o00 T—00

By this property from[(6R),[(683) and [18, Lemma II.1] it folls that

(i <Zw ) +7illull)
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for i € Iy, and
i) < max{max{i;(;(25))}, Villlull )}

for i € I,,.«. Using Lemmd_3J2 we conclude

lim sup ()] < ¢(]lull) (64)
for some¢ of class/C, which is the desired AG property. [ |

Theorem 4.4:Assume that each subsystem|[df (6) is ISS and'Ibe defined by[(113). If there
exists aD as in [19) such thal' o D(s) # s for all s # 0,s > 0, then system[(1) is ISS.

Proof: Since each subsystem is ISS it follows in particular thag &5 with gaingy,;; < ;.
By Theorem[ 4.l the whole interconnectidn (1) is then GS. Timiglies that solutions of[ (1)
exists for all times.

Another consequence of ISS property of each subsystem tsetitdn of them has the AG
property with gainsy,; < ~;;. Applying Theoreni 412 the whole systel (1) has the AG prgpert
This implies that[(ll) is ISS by Theorem 1 in [18]. [ ]
Remark 4.5:Note that applying Theorem 1 in [18] we lose information abihe gains. As
we will see in the second main result in Sectioh V gains candrestcucted in the framework

of Lyapunov theory.

Remark 4.6:A more general formulation of ISS conditions for intercocteel systems can be
given in terms of so-callechonotone aggregation functioif®AFs, introduced in[[16],[[7]). In
this general setting small gain conditions also involveaisg operatorD. Since our construction
relies on Lemm&_3l2 a generalization of the results in thgepa&ould be obtained if sums are
replaced by general MAFs and maximization is retained. Weeeithat the assertion of the
Theorem 4.4 remains valid in the more general case, at lett® MAFs are subadditive.

The following section gives a Lyapunov type counterpartef $mall gain theorem obtained in
this section and shows an explicit construction of an ISSouyv function for interconnections

of ISS systems.

V. CONSTRUCTION OFISS LYAPUNOV FUNCTIONS

Again we consider an interconnection ofsubsystems in form of [6) where each subsystem
is assumed to be ISS and hence there is a smooth ISS Lyapunctiofu for each subsystem.

We will impose a small gain condition on the Lyapunov gainptove the ISS property of the
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whole system[(1) and we will look for an explicit constructiof an ISS Lyapunov function
for it. For our purpose it is sufficient to work with not necasly smooth Lyapunov functions
defined as follows.

A continuous functiorv : R, — R, wherea(r) = 0 if and only if » = 0, is called positive
definite.

A functionV : R” — R, is calledproper and positive definité there arey,, ¢, € K., such
that

Ui(llz]) < V(z) < go(llzl)), Vo eR™

Definition 5.1: A continuous function/ : R™ — R, is called anlSS Lyapunov function for
the systen{l) if

1) it is proper, positive definite and locally Lipschitz contous onR™\{0}

2) there existgy € K, and a positive definite function such that in all points of differentia-

bility of V' we have
Viz) = y(lul) = VV(2)f(z,u) < —a(llz]). (65)

Note that we do not require an ISS Lyapunov function to be smodowever as a locally
Lipschitz continuous function it is differentiable almasterywhere.

Remark 5.2:In Theorem 2.3 in[[7] it was proved that the systém (1) is IS&nidl only if it
admits an (not necessarily smooth) ISS Lyapunov function.

ISS Lyapunov function for subsystems can be defined in tHewialg way.

Definition 5.3: A continuous functionV; : R — R__is called anISS Lyapunov function for
the subsystemin (©) if

1) it is proper and positive definite and locally Lipschitataouous onR™:\ {0}

2) there existy;; € Ko U{0}, i =1,...,n,i# j, v, € K and a positive definite function;
such that in all points of differentiability of; we have

for i € Ix,
Vi(zi) 2 v (Vi(@1)) + o4 in (V@) +vi([ul]) =

VVi(z:) fi(z,u) < —ai([|z:]]) (66)
and fori € I«
Vi(zi) = max{yi1(Vi(z1)), ... Yin(Va(@n)), vill[ull) } =
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VVi(zs) fi(r,u) < —ai([|2:]]). (67)

Let the matrixI" be obtained from matriX’ by adding external gains; as the last column
and let the mad : R — R” be defined by:

[(s,7):={Ti(s,7),...,Tu(s,7)} (68)

for s € R? andr € R, whereT; : R — R, is given byl (s, 7) := v (s1) + - -+ Yin(sn) +
vi(r) for i € Iy, and byT;(s,7) := max{v;1(s1), ..., Vin(5n),7i(r)} for i € Is.

Before we proceed to the main result of this section let ualrer related result from [7]
adapted to our situation:

Theorem 5.4:Consider the interconnection given iy (6) where each stbsyshas an ISS
Lyapunov functionV; with the corresponding Lyapunov gaing, v;, i,j = 1,...,n as in [66)
and [67). Letl’ be defined as in_(68). Assume that there istapath o with respect tol' and
a function¢ € K, such that

T(o(r),¢(r)) <o(r), ¥r>0. (69)

Then an ISS Lyapunov function for the overall system is gilagn

We note that this theorem is a special case df [7, TheorentaBjvas stated for a more general
T than here. Moreover it was shown that @rpath needed for the above construction always
exists if I' is irreducible andl™ # id in R”.. The pure case$s = I and I,,,, = I are already
treated in [[7], where the existence ofthat makes Theorem 5.4 applicable was shown under
the conditionD o I" % id for the casely, = I andI" # id for the casel,,., = I.

The next result gives a counterpart df [7, Corollaries 5.8 &r6] specified for the situation
where both/y, and I,,,,, can be nonempty.

Theorem 5.5:Assume that each subsystem lof (6) has an ISS Lyapunov fanttiand the
corresponding gain matrix is given by (68).IIfis irreducible and if there exist®,, as in [19)
such thatl’ o D, (s) # s for all s # 0,s > 0 is satisfied, then the system (1) is ISS and an ISS
Lyapunov function is given by

V(r) = max o7 (Vi(a), (70)
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whereo € K is an arbitraryQ2-path with respect td o I'.

Proof: From the structure oD, it follows that

o > ([d+a)oly(o), ie€ly,

o > Ti(o), 1 € Inax-
The irreducibility of I' ensures thal’(¢) is unbounded in all components. Lete K. be
such that for allr > 0 the inequalitya/(I';(o(r))) >  max vi(¢(r)) holds fori: € Iy and

----- n

Li(o(r)) > max vi(p(r)) for i € .. Note that such @ always exists and can be chosen

as follows. For anyy; € K we choosey; € K., such thaty; > ~;. Then¢ can be taken as
o(r) == %min{ie{rr;%?ejﬁfl(a(Fi(a(r)))), iefﬂif,ljef 3 1(Ly(o(r)))}. Note thatg is a K, function
since the minimum ovek,, functions is again of clask ... Then we have for alt > 0, € Iy,

that

0i(r) > DioLi(o(r)) =Ti(a(r)) + a(l's(o(r)) = Ti(a(r)) + 7i(s(r)) = Li(o(r), ¢(r))

and for allr > 0,7 € I ax

0i(r) > Di o Li(o(r)) = Ti(o(r)) = max{Ty(a(r)),%i(¢(r)} = Ti(o(r), ¢(r)).

Thuso(r) > T'(o(r), ¢(r)) and the assertion follows from Theorém]5.4. u

The irreducibility assumption oft means in particular that the graph representing the inter-
connection structure of the whole system is strongly cotatkeclo treat the reducible case we
consider an approach using the irreducible componenis &f a matrix is reducible it can be
transformed to an upper block triangular form via a permomtaof the indices,[[2].

The following result is based onl[7, Corollaries 6.3 and 6.4]

Theorem 5.6:Assume that each subsystem lof (6) has an ISS Lyapunov fanttiand the
corresponding gain matrix is given dy (68). If there exiBtsas in [19) such thaf o D, (s) # s
for all s # 0,s > 0 is satisfied, then the systein (1) is ISS, moreover thereseaisf)-path o
and ¢ € K., satisfyingT'(o(r), ¢(r)) < o(r),¥ r > 0 and an ISS Lyapunov function for the
whole system[{|1) is given by

V() = max o (Vi)

i=1,...n
Proof: After a renumbering of subsystems we can assumelthatof the form [45). Let

D be the corresponding diagonal operator that contains id erd on the diagonal depending
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on the new enumeration of the subsystems. Let the state partitioned into;; € R% whered;
is the size of theth diagonal blockY;;, : = 1,...,d. And consider the subsysterms of the
whole system[{1) with these states

— (T T T \T
zj 1= (Tgq1 Tgyp2s - -+ Ty )

Y

whereg; = Z{;ll d;, with the convention thaf; = 0. So the subsystens; correspond exactly to
the strongly connected components of the interconnectiapig Note that eaclf;;,j = 1,...,d
satisfies a small gain condition of the forff;; o D; # id where D; : R% — R% is the
corresponding part oD,,.

For eachX; with the gain operatofl;;,; = 1,...,d and external inputs;,,...,2q,u
Theorem[5b implies that there is an ISS Lyapunov funcfith = i:qjﬂ%.)qu+1 o (Vi(xy))
for ©;, where(G,,+1,...,0,,,)" is an arbitrary)-path with respect ta';; o D;. We will show
by induction over the number of blocks that an ISS Lyapunacfion for the whole systenil(1)

of the formV (x) = max o' (Vi(x;)) exists, for an appropriate.

-----

.....

Consider now the first: blocks with state(z_i, z;.), wherez,_; := (z1,...,2,_1)%. Then we

have the implication
Vet (Bre1) > Ve—1.6(We(2k)) + Ye—ru(|ul]) =
Vvk—1(5k—1)ﬁ—1(3k—17Zk,U) < =1 (||Zk-11]) ,

whereyj_1 x, Yk—1,. are the corresponding gainﬁ_l, ay_1 are the right hand side and dissi-
pation rate of the first — 1 blocks.

The gain matrix corresponding to the blokkhen has the form

= 0 Tyyk’—l,k :y/k—l,u

B
|

0 0 Vku

For T, by [7, Lemma 6.1] there exist a-pathc* = (F,55)" € K2, and¢ € K, such that
I'w(c*, ¢) < &* holds. Applying Theoremh 514 an ISS Lyapunov function for tigole system

exists and is given by

Ve = max{(d)"(Vi1). (35) 7 (W)}
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A simple inductive argument shows that the final Lyapunowcfiom is of the formV (z) =

kr—and(U’?(Wk(zk))’ where fork = 1,...,d — 1 we have (settingr{ = id)
—1 _ (~d—1\"1 ~k\—1 ~k—1\—1
oy =(617") oro(6y) o(57)

ando, = &3‘1. This completes the proof. [ |

VI. CONCLUSION

We have considered large-scale interconnections of IS®regs The mutual influence of the
subsystems on each other may either be expressed in termsnofagion or maximization of
the corresponding gains. We have shown that such a forranlatiay always be reduced to a
pure maximization formulation, however the presented @doce requires the knowledge of an
Q-path of the gain matrix, which amounts to having solved thebjgm. Also an equivalent
small gain condition has been derived which is adapted toptrécular problem. A simple
example shows the effectiveness and advantage of thistemmdi comparison to known results.
Furthermore, the Lyapunov version of the small gain theopeavides an explicit construction

of ISS Lyapunov function for the interconnection.
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