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Abstract—The design of controllers to enable the application
of Functional Electrical Stimulation as part of a rehabilitation
programme for stroke patients requires an accurate model
of electrically stimulated muscle. In this paper, nonlinear
dynamics of the electrically stimulated muscle under isometric
conditions is investigated, leading to the requirement to identify
a Hammerstein model structure. Here we develop a two-stage
identification method based on a preliminary construction of
the linear part that is used as an initial estimate. Then the
two-stage method is applied to identify the nonlinear part
and optimize the linear part. The separable least squares
optimization algorithm and traditional ramp deconvolution
method are implemented here and compared with the proposed
method using a simulated muscle system that is based on
experimental data from stroke patients. The results show
that the proposed method outperforms two other previously
proposed methods when implemented on the simulated muscle
system with different noise levels.

I. INTRODUCTION

Strokes affect between 174 and 216 people per 100,000
of the population in the UK each year [1] and one of the
most devastating and common consequences of the stroke is
loss of the use of the arm and hand [2]. Currently there is
increasing interest in the application of control schemes as
part of a rehabilitation programme for survivors of a stroke
who are in a position to take part. Here the starting point is
a research programme that has built a robotic workstation
for use by stroke patients in order to regain voluntary
control of their impaired arms [3]. This research is based on
the application of Functional Electrical Stimulation (FES)
to assist a patient’s voluntary attempt to perform repeated
tracking tasks using their impaired arms.
During treatment, FES is applied to the patient’s triceps

and Iterative Learning Control (ILC) is used to update
the stimulation level in order to ensure that the assistance
provided coincides as much as possible with the patient’s vol-
untary intention. In particular, the patients hand is connected
to the robot and they attempt to follow an illuminated track
which represents reaching out for an object. Fig. 1 shows a
stroke participant using the robotic workstation.
As they complete the task, the error between the required

and achieved paths is measured and once they reach the end
the robot returns their arm to the starting position, and in
this resetting time an ILC algorithm is used to update the
stimulation to be applied on the next attempt. This research
has already had patient trials that demonstrate the basic
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Fig. 1. The Robotic Workstation

feasibility of the approach but also highlighted the need for
improved of modeling of the patient’s arm and hence the
motivation for the results given here.
Identification of electrically stimulated muscle is a chal-

lenging problem. The task of modeling requires both de-
termination of a particular model structure and estimation
of the model parameters that relate the model to the elec-
trically stimulated muscle system. Although the muscular
contraction mechanism is generally well known, the model
based on the structure and behavior of the underlying muscle
physiology [5] is still too complicated for most control
applications. In order to achieve the tractability of the muscle
response to electrical stimulation, attention should be focused
on the accuracy of the model rather than on its transparency.
To achieve this, three modeling approaches are applicable
where the first is the nonlinear black box modeling approach
[6]. A discrete-time NARX model is used but selection of
structure, in particular model family (polynomial expansion
or neural network) and the parameters for each structure need
to be estimated. However, depending on the model family
used, structure selection could be a difficult task. Therefore,
in order to obtain an effective model, a long testing time
could be needed which is highly undesirable, especially for
stroke patients.
The second method is the light-grey box modeling ap-

proach where physical insights are included. In [8] and
[9], three factors (activation dynamics, torque-velocity and
torque-angle) are incorporated, which can be treated as
coupled or not and if coupled the value of the coupled
parameters are assumed to be unknown. Actually, these pa-
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rameters are approximately mutually coupled and hence they
are dependent on each other. Consequently identification of
these parameters in such a complex model may be practically
infeasible in a reasonable experiment time period.
The third approach is a block-oriented modeling

technique. One commonly used example here is the
Hammerstein-Wiener model that describes nonlinear dy-
namic systems using one or two static nonlinear blocks in
series with a linear block. In [7], a discrete-time Hammer-
stein model is used to describe the electrically stimulated
muscle under isometric conditions (the muscle is held at a
fixed length when stimulated). Later, this work was extended
to non-isometric muscle [10], [14] and [13], but the key
nonlinear muscle activation is still modeled by a Hammer-
stein structure with one or two more linear blocks in series
[14][13], or parallel [10]. Using such a model to describe
the muscle activation system has the possible advantages of
a well defined structure and the possibility of applying a
separate identification procedure for each block. Therefore,
we use this modeling approach and the model structure
introduced by Durfee and Palmer [10], shown in Fig. 2, is
adopted.
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Fig. 2. Muscle Model Structure

The model input here is the stimulation pulse-width u(t)
(μs), the output T (t) is the torque generated at the elbow
joint, x(t) is the joint angle and ẋ(t) is the joint angular
velocity. The model structure consists of a passive element
and an active element where the former is assumed to be
time-invariant. The output of the passive element, TPE(t), is
the torque generated by the elastic and viscous properties of
the muscle without electrical stimulation. The active torque
TAE(t) is the torque generated by the electrical stimulation
of the triceps muscle and a multiplicative effect of joint
angle and joint angular velocity on the resulting torque. The
Passive Torque-Angle and Torque-Velocity relation h(x, ẋ)
and the Active Torque-Angle and Torque-Velocity relation
g(x, ẋ) represent the relationship between the joint state and
the torque.
A Hammerstein structure is used to model nonlinear

muscle activation in the model. It is composed of a static
nonlinear block in series with linear dynamics. This is a
commonly used structure due to its correspondence with
biophysics. The static nonlinearity f(u) includes the nerve

fiber recruitment properties. This is the so called Isometric
Recruitment Curve (IRC), which is defined as the static gain
relation between stimulus activation level and output torque
when the muscle is held at a fixed length [11]. The linear
dynamic block G(q) corresponds to the dynamic response of
electrically stimulated muscle.
Although models of the response of electrically stimulated

muscle to FES have already been identified [10], it is
necessary to perform a special identification procedure with
stroke patients, who exhibit different properties of torque-
generation parameters under isometric contraction [15]. The
peak torque and time-dependent parameters (time to develop
and reduce torque) are impaired after stroke and are inde-
pendent of each other. Consequently this paper considers
nonlinear muscle activation, under isometric contraction for
the case of stroke patients and, in particular, the identification
and relative performance of the Hammerstein structure.
Next, we develop the two-stage optimized identification

procedure based on a preliminary experiment which is the
main novel feature of this work. Then the separable least
squares optimization algorithm [18] and traditional ramp
deconvolution method [11] are implemented hand compared
with the two-stage method using a simulated muscle system
that is based on experimental data from stroke patient.

II. THE IDENTIFICATION SCHEME

A nonlinear Hammerstein model in discrete-time is shown
in Fig. 3. The stimulation input u(·) is first scaled by the
static nonlinear function f(·) and then passed to a linear
time-invariant system described by a transfer function G(q).
The system input, output and noise are denoted by u(·),
y(·) and v(·) respectively. The internal signal w(·) is not
measurable.
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Fig. 3. Hammerstein structure

The linear system is assumed to be stable and represented
by

G(q) =
B(q)
A(q)

(1)

where

B(q) = b0q
−d + b1q

−(d+1) + · · · + bnq−(n+d) (2)

A(q) = 1 + a1q
−1 + · · · + alq

−l (3)

and B(q) and A(q) are assumed to be coprime, q−1 is the
delay operator, and n, l and d are the number of zeros, poles
and the time delay, respectively. These can be estimated in a
number of ways where, for example, (l, n, d) = (2, 1, 1) has
been used in a related problem by [16].
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The nonlinear function is represented by a basis function
expansion gp(u),

f(u) =
n∑

p=1

αpgp(u) (4)

formed from scaled and translated versions of one “mother
basis function” κ(u), as

gp(u) = κ(βp(u − γp)) (5)

where βp denotes the dilation parameters and γp denotes
the translation parameters [19, Pages 148-154]. A common
choice is the power series

gp(u) = up (6)

but if, for example, deadband and saturation are present, a
high order polynomial is usually required and hence the
possibility of oscillatory behavior. Another method is the
spline function, a piecewise polynomial function which can
overcome this problem. A straightforward choice here would
be a piecewise linear function, but these type of functions
are not smooth, which means that their derivatives are not
continuous at their break points or knots. In order to avoid
these drawbacks, we will use cubic splines to model the
nonlinear block. A cubic spline is a piecewise cubic function
defined by a series of knot points, where between each pair
of knots the spline is defined by a polynomial of order three.
The second derivatives of the spline polynomials are set
equal to zero at the endpoints of the interval [20, pp 49-57].

Let a set of knots u1, u2, . . . , um be defined which satisfy

umin = u1 < u2 < u3 < · · · < um = umax (7)

Then a cubic spline function is defined as

f(u) =
m−2∑
i=1

βi|u−ui+1|3+βm−1+βmu+βm+1u
2+βm+2u

3

(8)
where [β1, β2, · · · , βm+2] are parameters to be estimated for
the nonlinear block and the model for the whole process is

y(k) = G(q)f(u(k)) +
1

A(q)
v(k) (9)

=
B(q)
A(q)

f(u(k)) +
1

A(q)
v(k) (10)

Our task now is to estimate the parameter vector

θ = [a1, . . . , al, b0, . . . , bn, β1, β2, . . . , βm+2]T (11)

that minimizes the cost function

VN (θ) =
1

2N

N∑
k=1

(y(k) − ŷ(k, θ))2 (12)

where
ŷ(k, θ) = Ĝ(q)f(u(k), β̂) (13)

from collected input output data

[u(1), y(1), u(2), y(2), . . . . . . , u(N), y(N)] (14)

where N denotes the number of samples.

III. IDENTIFICATION PROCEDURE
The aim of the preliminary experiment in the two-stage

method proposed here is to identify the linear part as an
initial estimate. The reason is that the nonlinear muscle
contraction mechanism of a stroke patient is impaired and
varies, see [15], and may also vary between trials. In order to
obtain accurate estimates for each patient at each treatment,
the identification tests need to be performed before each
treatment commences. In order to avoid patient fatigue, the
identification test should be as short as possible. Therefore,
before each treatment, just one test is applied with the patient
and then the two-stage identification procedure is used to
estimate the nonlinear part and optimize the linear part.

A. Preliminary experiment: PRBS test
The Pseudo-Random Binary Signal (PRBS) changes be-

tween two levels and has white-noise-like properties. Al-
though the PRBS signal is inappropriate for nonlinear system
identification because it may not sufficiently excite the un-
known nonlinearity, it is widely used in linear system iden-
tification of electrically stimulated muscle [7], [8], [16] and
[17]. Therefore, PRBS input is adopted in the preliminary
study and Fig. 4 shows a typical muscle response to a PRBS
input.
In this application, we assume the two levels are 0 and

+c (where c > 0) because the input pulse-width can not
be negative. Also we know that f(0) = 0 and hence we
can choose c such that f(+c) = r (where r �= 0) with the
value of r large enough compared to the possible noise level.
Hence for all k

w(k) = f(u(k)) = αu(k) (15)

where α = r/c, and the output of the Hammerstein structure
with PRBS inputs is

y(k) = G(q)f(u(k)) +
v(k)
A(q)

(16)

= αb0q−d+···+αbnq−(n+d)

1+a1q−1+···+alq−l u(k) + 1
1+a1q−1+···+alq−l v(k)

(17)

= b̄0q−d+···+b̄nq−(n+d)

1+a1q−1+···+alq−l u(k) + 1
1+a1q−1+···+alq−l v(k)

(18)

or, with b̄j = αbj j = 0, 1, . . . , n,

y(k) = b̄0u(k − d) + · · · + b̄nu(k − (n + d))
− a1y(k − 1) − · · · − aly(k − l) + v(k) (19)

Define the parameter vector of the linear part as

θl = [b̄0, . . . , b̄n, a1, . . . , al]T (20)

where from (19) we have that k must be larger than both n+d
and l and, without loss of generality, we assume l ≥ n + d
so that k starts from l + 1. Also introduce

Y = [y(l + 1) y(l + 2) · · · y(N)]T (21)
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V = [v(l + 1) v(l + 2) · · · v(N)]T (22)

Φ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(l + 1 − d) · · · u(N − d)
...

...
u(l + 1 − n − d) · · · u(N − n − d)

−y(l) · · · −y(N − 1)
...

...
−y(1) · · · −y(N − l)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(23)

then (19) can be rewritten as

Y = Φθl + V (24)

Hence the first estimate, θ̂1
l , can be obtained using the least

squares method as

[ˆ̄b1
0, . . . ,

ˆ̄b1
n, â1

1, . . . , â
1
l ]

T = θ̂1
l = (ΦT Φ)−1ΦT Y (25)

Using (9), the gains of f(u) and G(q) are not unique. In
order for these to be uniquely identifiable, we normalize the
gains, e.g., set ˆ̄b1

0 = 1. If ˆ̄b1
0 = 0, set the first non-zero ˆ̄b1

j to
be equal to one.

B. Two-stage Identification method: Triangular ramp test
In order to identify the nonlinear part, a triangular ramp

test is applied to muscle, which is rich enough to excite the
whole nonlinearity. Fig. 4 shows a typical muscle response
to a triangular ramp input.
1) Stage One: Identify the nonlinear part using the linear

parameters θ̂1
l estimated in the preliminary study. Without

loss of generality, we assume ˆ̄b1
0 �= 0 and hence the

intermediate signal w(k) can be obtained using

w(k) = Ĝ(q)−1y(k) (26)

=
1 + â1

1q
−1 + · · · + â1

l q
−l

q−d +
ˆ̄b11
ˆ̄b10

q−(d+1) + · · · + ˆ̄b1n
ˆ̄b10

q−(n+d)

y(k) (27)

The parameter vector of the nonlinear part

θn = [β1, β2, . . . , βm+2]T

can be estimated by fitting a cubic spline function in a least
square sense

θ̂n = arg min
θ̂n

1
N

N∑
k=l+1

(w(k) −
n∑

p=1

gp(u(k), θ̂n))2 (28)

2) Stage Two: Optimize the linear parameters using the
nonlinear parameters θ̂n estimated in Stage One.
Once the nonlinear parameters are available, the interme-

diate signal w(k) can be easily computed using

w(k) = f(u(k)) =
n∑

p=1

gp(u(k), θ̂n) (29)

This is now a general linear system identification problem
and hence can identify G(q) again to optimize the linear
parameters to obtain θ̂2

l .
This two-stage method detailed above can be repeatedly

executed until convergence is achieved. Since the initial value
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Fig. 4. Example of input and output in PRBS test and the Triangular ramp
test. The stimulus frequency is 40Hz. The sample frequency is 1600Hz.
In the PRBS test, the input pulse width switches between 0 and 300μs. In
the Triangular ramp test, the pulse width rising from 0 to 300μs and then
back to 0.

of linear parameters from the preliminary study is already
a good estimate for the true system, we have reason to
believe that just through one iteration, the optimized model
can achieve acceptable accuracy with, crucially for this
application area, short identification time. Next we compare
the performance against two other methods that have been
applied in the same general area.

IV. TWO OTHER IDENTIFICATION METHODS

A. Ramp Deconvolution Method

In this method, the Isometric Recruitment Curve (IRC)
is estimated by deconvolving the response of a muscle to a
ramp input [11] and the Linear Activation Dynamics (LAD)
is represented by a critically damped second-order system
[12]. This method has already been used to identify models
of the arm dynamics of stroke patients in the research pro-
gramme on which this paper is based and it is implemented
as follows. First, a triangular input is applied with 5 seconds
up and 5 seconds down and the elbow torque is recorded.
Second, the elbow torque is deconvolved using the Linear
Activation Dynamics (LAD). When plotted against the ap-
plied pulsewidth, this provides two isometric recruitment
curves, corresponding to the increasing and decreasing ramps
respectively. Then the expression

f(u) = a1 · ea2u − 1
ea2u + a3

(30)

is selected to fit data in a least square sense. Third, h(τ)
is convolved with f(u) to produce the overall nonlinear dy-
namical model. The transfer function of the Linear Activation
Dynamics (LAD) is

h(s) =
1

T 2
ωs2 + 2Tωs + 1

(31)
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and Tω is the time constant. The natural frequency fω = 1
Tω

of the system is chosen, based on evidence in the literature
cited above, as 0.85π.

B. Separable Least Squares (SLS) Optimization Algorithm
The Separable Least Squares (SLS) Optimization Al-

gorithm [18] is another method to identify Hammerstein
Structures. In this method, the linear dynamics is described
by its impulse response (IRF), h(τ), which is assumed to be
of finite length T = 41. The static nonlinearity f(u) is given
by (30), including three nonlinear parameters a 1, a2 and a3.
Thus, the model output is

ẑ(t) =
T−1∑
τ=0

h(τ)f(u(t − τ)). (32)

and it is obvious that this is a linear function of the filter
weights h(τ) and is nonlinear in the parameters a1, a2 and
a3. Thus, a parameter vector θ, including filter weights and
nonlinear parameters is used to represent model output as

θ = [h(0), · · · , h(T − 1), a1, a2, a3]T = [θT
l |θT

n ]T (33)

The SLS method performs the iterative search only for the
nonlinear parameters to find the parameter vector θ, that
minimizes the cost function

VN (θ) =
1

2N

N∑
t=1

ε2(t, θ). (34)

where ε(t, θ) = z(t)− ẑ(t, θ) and is the error between model
output and measured output, andN is the number of samples
of the input and output signals.

V. SIMULATION RESULTS
In order to investigate the relative performance of the three

identification methods, we first apply them on data from a
simulated muscle system and choose different noise levels.
The simulated muscle system is defined as follows:
1) The nonlinearity f(·), shown in Fig. 5, is a sigmoid
function:

f(u) = a1 · ea2u − 1
ea2u + a3

(35)

where a1 = 6.8994, a2 = 0.0410 and a3 = 2.3897 ×
103.

2) The linear dynamics G(q) is an underdamped second
order system with Tω = 0.5284, ζ = 0.6369 and unit
gain.

3) The noise levels considered are:
• e(t) = 0 — no noise.
• e(t) — normally distributed random process with
zero mean and standard deviation λ ranging over
the values 0.02, 0.04, 0.06, 0.08, 0.10.

This is the model corresponding to one of the stroke
participants taking part in clinical trials, and has been
used in the stimulation controller applied during their treat-
ment. Analysis of the extensive experimental data collected
throughout the intervention (consisting of upto 25 sessions
of 1 hour duration) reveals it to be accurate. During tests the
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Fig. 5. Simulated Muscle System

application of FES using this model in conjunction with a
simple structure ILC algorithm [3] generally led to a mean
tracking error of less than 15mm, and in some cases less
than 5mm. Comparison with the models corresponding to the
remaining stroke participants taking part in the clinical trial
also reveals that it is representative of all the participants
tested. The accuracy of the model is illustrated in Fig. 6
which shows the response of the simulated muscle system
in comparison with experimental data from a stroke patient’s
muscle. The responses can be seen to be in close agreement.
The model will therefore be adopted as representative of

the muscle of stroke patients, and will be used to compare
the efficacy of the identification methods that have been
described. For each noise level, 100 independent trials have
been performed and the mean and standard deviations of
the best fit rates have been calculated, see Table I. In
the noise-free case, the two-stage method can be observed
to almost reconstruct the simulated system, although the
variance is larger than Ramp Deconvolution and SLS, it is
still comparably small enough not to significantly influence
performance. It can be seen from Fig. 7 that under different
noise levels, the three methods degrade but the method
developed here is superior to the other two.
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Fig. 6. Comparison of the responses of the simulated muscle system and
the real muscle of a stroke patient to a triangular ramp test

VI. CONCLUSIONS AND FUTURE WORK

In this paper a two-stage identification method was de-
veloped to identify the nonlinear dynamics of electrically
stimulated muscle under isometric conditions. This method
needs a preliminary experiment comprising a PRBS test and
then a triangular ramp test before treatment. The proposed
method is shown to outperform the Ramp Deconvolution
method and Separable Least Square method on a simulated
muscle system with different noise levels.
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TABLE I
BEST FIT (%) FOR DIFFERENT NOISE LEVELS

Two-Stage Ramp Deconv SLS
noise-free 99.98 91.24 92.06
λ = 0.02 99.07 ± 0.07 91.19 ± 0.00 92.01 ± 0.01
λ = 0.04 98.14 ± 0.02 91.07 ± 0.00 91.87 ± 0.00
λ = 0.06 97.27 ± 0.03 90.86 ± 0.00 91.64 ± 0.00
λ = 0.08 96.31 ± 0.15 90.58 ± 0.00 91.32 ± 0.01
λ = 0.10 95.33 ± 0.22 90.24 ± 0.00 90.94 ± 0.00
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Fig. 7. Simulation results for different noise levels

Future work includes experiments on the stroke patients.
The workstation and its peripheral systems for the experi-
ments are given in [4]. Experiments will enroll more stroke
patients and tests and trials will be carried out on them. All
these methods will be applied on the experimental data to
determine the most promising method, balancing between
efficiency and accuracy.
Future work also includes extension to non-isometric con-

dition where Passive Torque-Angle and Torque-Velocity re-
lation h(x, ẋ) and Active Torque-Angle and Torque-Velocity
relation g(x, ẋ), in Fig. 2, will be introduced. Separate
experiments will be designed and an identification procedure
will be implemented in line with [10].
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