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A LMI Solution to the LQ Problem for Discrete-Time SingubkafPerturbed
Systems

Ivan Malloci, Jamal Daafouzyiember, IEEE, Claude lungMember, IEEE, and Rémi Bonidal

Abstract—In this article, an alternative LMI solution for systems is discussed. In section lll, an alternative LMI
the linear quadratic optimal control design is proposed forthe  splution is presented. In section IV, results are extended t
discrete-time systems in the singular perturbation form. Tis \,ncartain systems. In section V, an example of industrial

approach is particularly adapted for the case of high dimen®on L . . .
systems. Moreover, it can be easily extended to the uncertai application, the robust steering control of hot strip mii,

systems, under some assumptions. An example of practical Presented.

application to the robust steering control of hot strip mill is

presented. II. PROBLEM FORMULATION
Index Terms— Singular perturbation, LQ control design,

LMI, Robust control. Consider the linear discrete-time singularly perturbest sy

tem in the form

. | l. INTROI?UCTION | . r1(k+1) = A1 (k) + Ara22(k) + Bru(k)
Many industrial systems involve dynamics operating on zo(k +1) = eAgyzy (k) +
two or more time scales. In this case, standard control (I, + £ g ) (k) + £ Bou(k) 1)
n2

technics can lead to ill-conditioning controllers. In arde
to avoid such as numerical problems, singular perturbation y(k) = Cra1(k) + Caa(k)
methods can be used, which consist in decomposing theéherees > 0 is a scalar parameteg 1, z; € R™ is the
system into several subsystems, one for each time scadgate vector corresponding to the fast dynamigs,c R"2
Then, a different controller is designed for each subsysterns the state vector corresponding to the slow dynamics,
Singular perturbation technics also allow to reduce the con, ¢ R" is the control signaly € R™ is the output signal
troller order. This propriety can be very useful when theand I,, denotes an identity matrix R”*". The model (1)
system order is too high to implement an effective controllerepresents the sampling of a singularly perturbed contisuo

In the optimal control framework, first contributions to thetime system. Then, results can be extended to the continuous
singular perturbation theory are given in the continuaoet time systems controlled by digital devices. Let define
by [4], [5]. Some extensions to the discrete-time case can

be found in [6], [9]. A survey of the most popular optimal Ale) = [A“ A1z } ,

control strategies for the singularly perturbed systems is ot (In, +ed2)

given in [8]. B(e) = {Bl] (2)
In [10], an alternative LMI solution [1] for the LQ optimal eBa|’

control design is proposed for the continuous-time systems C = [Cl 02] .

This approach has been extended to the singularly perturbed , i _
systems in [3]. In spite of the authors’ knowledge, it does 1h€ Slow subsystem is defined as:

not exist a similar development for the discrete-time case. {xs(k 1) = (In, + eAy)as (k) + e Byus (k)
In this article, a LMI solution for the LQ control design for 2 (3)
the discrete-time singularly perturbed systems is pragose Ys(k) = Cozs(k) + Dyua (k)
The advantage associated to the LMI formulation is theth
existence of several solvers that provide solutions algben Ag = Agg + Ao1(In, — A11) M Arz
case of high dimension problems. Moreover, we show that B, = By 4 Ao (I, — A1) "' By
the reduced controller can directly be extended to uncertai (4)

. . : = I, —A;) A
systems. Experimental results concerning the robustistger C Ca + Ci(In, 71”) 12
control of hot strip mill are given. Dy =Ci(In, — An)” By

The article is organised as follows. In section II, theng (s, — 4,,) invertible; the fast subsystem is defined as:
LQ problem for the linear discrete-time singularly pertedb

()

zp(k+1) = Anzys(k) + Brug(k)
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whereR = R’ » 0 € R"*" is a weighting matrix. Given the whereK; = —(R + B{P;B1) ' B P;Ai1.
optimisation problem
Composite control: From (3) and (5), the composite con-

{mﬁn T(e) (6) trol law is given by :
under (1), o [ (k)
if the pair (A(c), B(c)) is stabilisable and the pait’, A(c)) ue(k) = us(k) +us(k) = K [12(1{)} - (10)

is detectable, there exists a stabilising soluti®f) > 0 for

the algebraic Riccati equation: with K0 = [Ky  (Ks = Ky(In, = Ann) "' (Ai2 + B1K))].

The control laws (8) and (9) are designed using indepen-
A(e)'P(e)A(e) — A(e)' P(e)B(e) (R + B(e) P()B(e))""  dent gainsK, and K ;. Whene — 0, the composite control

B(e)'P(e)A(e) — P(e) + C'C = 0. law (10) is close to the optimal solution (7). An index of
. L performance degradation is given in [9].
The optimal solution is given by:
[1l. LMI SOLUTION
u(k) = K(e) [ 109 ™ -
xo(k) The LQ problem (6) may be formulated in a convex

, . , form. In this case, the solution can be found solving a
where K (¢) = —(R+ B(e)' P(e)B(e))~ B(e)' P(¢)A(e)- M problem [10]. This approach has been extended for the
Whene — 0, the system has a two-time scale dynamics,qntinyous-time singularly perturbed systems in [3]. Iis th
In this case, standard technics lead to ill-conditioninge ion 4 similar development is proposed for the diserete

contr_ollers. In order t_o avoid such as numerical problem§i_,me singularly perturbed systems. Let define the following
the singular perturbation method may be used : the systemds;.

decomposed into two subsystems and a different controller
is designed for each of them. Hence, also the optimisation yy) — {W(g) =W() = [Wl (5)/ WZ(E)] >0 }7
problem (6) must be decomposed into two subproblems : Wa(e)” Wsle)

(11)
_ , ey = W) SE)
Sow subproblem: For ¢ = 0, consider We = {W(a) = [S(s) Wa(e) =0, W()ew ¢,
P ”}]Sn Jg = % Zzozo(ys(k)/%(k) +us(k) Rsus(k)) with
under (3) S(e) = [51(5) 52(5)] ) (12)
with R, = R, = R+ DD, » 0. If the pair (4, B;) is and
stabilisable and the pa{C;, A,) is detectable, there exists a W(e) e W, : A(e)W (e)A(e)'+
stabilising solutionP, = 0 for the algebraic Riccati equation: 0. = { A(2)S(e)B(e) + B(e)S(e)Ale) + (13)
(As = BsR;'D(Cy) Py + Ps(As — BsR; "D Cs)— B(e)S(e)W(e)"'S(e)B(e) —W(e) <0
P.B,R;'B.P, + C.(I,, — D;R;"D,)C; = 0. and denote
The optimal solution is given by: 0 0
us(k) = Kyxy(k) (8) e—0 Wy Wi
_ - 0 g0 -
whereK; = —R, 1(B;PS_7L D.Cs). The state-feedback law limW (e) = [Ig/o S O] — WO
(8) guarantees the conditid®e{¢(As + B:K;)} < 0, where e—0 Wi

&(X) denotes the spectrum of. This implies asymptotic

; — 0 0] _ g0
stability of the closed-loop system (3) for sufficiently dhxa i%s(s) =[5y s3]=5

An alternative LMI solution to the problem (6) is obtained

Fast subproblem: Consider solving the following optimisation problem [10]:
min J§ = 5 337 o (s (k) 'y (k) + up (k) Rug (k) (P.): min J(e) =Tr ¢'c o0 W(e)
(P2) ' T W(eee N 0 R ’
under (5) :

. . . . Furthermore, ifiv* is optimal, it can be written as:
with R = R’ > 0. If the pair(411, B;) is stabilisable and the () P

pair (Cy, A1) is detectable, there exists a stabilising solution W (e) = W*(e) S*() _
P; = 0 for the algebraic Riccati equation: S*(e)  Wji(e)
Al PpAy, — Ay PrBi(R+ B P;By) " W (e) W*(e)K (e)
plrdu = By DT B [K(E)W*(a) K(e)W*(e)K (o)’

BinAll — Pf + O{Cl =0.
The optimal solution is given by:
up(k) = Kpas (k) (©) limK(e) =K'= §"W

e—0

where K (¢) = S*(e)W* ()~ is the optimal gain and

U (14)



Hence,P. may be reformulated as: 0_ CiCr 0 Wy Sy
! Jp=1r ([ o RS swisy|) @0
c'co0 S(ey '

W@?%TS@FTG 0 R} {vg((;)) S(E)W(g)—lg(gyj)- with
15)

When ¢ is small, numerical difficulties to minimise the
criterion J(¢) of P. arise. This problem is due to the Jo
ill-conditioning of the constraint (13). It can be avoided/
decomposing the original problef. into two well-behaved
subproblems, as in the LQ case. The criterion can be decom- "Sow subproblem:
posed as follows:

JO=J)+J3. (21)

In terms of variables/? depends oV, and S, whereas
depends onW; and S;. Hence, two independent
optimisation subproblems can be defined:

%1 el e, P guin e ([ LGP ] ).
J(e)=Tr : R [S1(¢) fs*z 5)}><3 ~with ) W
e, ] [ e [0 )

and
Given ®(¢) = Wy (e) — Wa(e)Ws3(e) 1 Wa(e)’, we obtain:

Qs = {W, e Wy : AW, + W, A, + BSs + S.B., < 0} .
J(e) =Js(e) + J;(e) =

Fast subproblem:

Cy Cy+ C1Wa(e)Ws(e) ] CiCy 0
Tr| [®() 0 ' + ©min Tr 1 '
) Ws(s)] [*] P gie ! <[ 0 R] Wf)’

0
Si(e) — Sa(e)Ws(e) "' Wale)' Sa(e)] x\  with
_ Wy S
) el 7))
with and
Js(e) =Tr((Co + C1Wa(e) Ws(e) ") Wale) o _{erwf;AfoA;+Afs’fB}+ }
(Co+ CiWa() Wale) ™) + RS:()Wa(e) ' Sale)). | BrSeAy + ByS;Wi S8y — Wy <0

Ji(e) =Tr((Cr (Wi (e) — Wa(e)Ws(e) " Wa(e) )Cl+ that, using the Schur complement, becomes
B (€) = Sale)Wa(e)” Wale)) Qf—{WfGWf*[AWWfBS (V*V)/]H) }
(Wi(e) — Wa(e)Wa(e) " Wa(e)) ! Wi+ BySy Wy
(S1(e) — Sa(e)Wa(e) ' Wa(e)')). The next theorem gives a solution for the probl&n- P;.
Let define Theorem 1: Assume that problem$, and P; admit,
W = (I,, — A1) (AW + B, SY), (16) respectively, solutions
W, = W2, S, = 59, 17 v W S o [y S
§ g (17) ., [Ssvs,wf v
Wy =W - wWowdH'wY, .
f 01 . 2(0 31) , 2 (18) Then: i
Sp =51 =5(W5) Wy . i) The solution ¥ (¢) of the problempP. satisfies
Then: wo g _
lim W =w°
lim Cy + CLWa()Wa(e) ™! = Ca + Ci(L, — An) ' Aua+ tin ) = g0 )
Ci(In, — A1) 'BiSW; = Cys + D SW, gll?% Je)=J0=J0+J} =
lim Jg(e) = JO =Tr(C,W,Cl 4+ C,S'. D’ 4+ D,S,C" c'c o] [wo gv
50 s s ss s Tr 0 SO WO
D S W, 1S! D! + RS, W 1S, . 4
with

. _ 70 _ ! —1 g/

gﬁ%Jf(E) = Jy =Tr(CW;yCy + RSyW %), — {Wf+W2OW Wy wy
The last two equations can be written in the form: W; W
70— Tr ({cfc C'D ] [WS S, D SO =[Sy + SWWY Sy, (23)

DICy DDA R||S Sw-is 1
(19) W = SOWo g (24)

| e



i) There existssy > 0 such that the problerf?. admits conditions HY < 0 and HY < 0 imply that there

the approximate solution exists a scalary > 0 such that
o — {vgoo 5;)0} H? — cG(HD + <L) "G’ <0,
4
Ve e (0,e] is verifiedVe € (0,g0]. Then, using the Schur com-
i) For ¢ € (0,e0), the controller gain (14) is given by plement, also (36) is verified e & (0, o).
KO — gopp0—t iii) Consider
Proof:

_ us(k) = Kexs(k) = SW, g (k)
i) From (11), denote

L[S 9@ and
o= o0 1) 29 ug k) = Ko (k) = SyWy s (b)
with The composite controller is given by
B(e) = (Wi(e) — Wa(e)Ws(e) " Wale)) ™
Q(e) = —S(e)Wa(e)Ws(e) ™! 6 uc(k) = us(k) + ug(k) = Ksxs(k) + Kpap(k).

To derive the slow model, we assumed thatk) =
Ws(e) ' Wa(e) B(e)Wa(e)Wa(e) . xo(k) whenxy (k+1) ~ x1(k), i.e. when the transient
I . - behaviour is finished. Moreover, to derive the fast

Then, substituting (2), (11) and (25) in (13), we obtain: model we assumed thaty (k) — @1 (k) — (In, —
Mi(e)  Ha(e) | 27) An) N Aas (k) + Brus(k) = a1(k) — (In, —
HQ(E)/ 5H3(5‘) All)il(Alg—i-Ble)ZCs(k) When.CCQ(k+1) ZCCQ(]{Z),

. ] ) ) i.e. during the fast transient). Then, we have
with Hy(g), Ha(e) and Hs(e) defined in equations
(28)-(30). Whens — 0, using (26) we obtain (31)- ue(k) :SfW,?lSn(k) + S W as (k) —

(33). -1 -1
Equation (16) verifies (32). Furthermore, substituting SyWy (I = An) =%
(16) and (18) in (31), we obtain (34) and, substituting (A12 + BiSW, o (k) =
(4), (16) and (17) in (33), we obtain (35). 0 {ml(k)]
Finally, (34) and (35) represent the constraints of the xo(k)|’
problemsP; and P, respectively. Equations (28)-(35)
are defined in the next page. which corresponds to (10). In order to prove tht =
i) Replacing in (27) the wunknown values of SOWO' the formula of the inverse of partitioned
Wi(e), Wale), Ws(e), Si(e), Sa(e) with WP, Wo, matrix can be applied to (22). We find
w9, 89, 59, we obtain
0 U I 1

fGl, E(Hgi R (36) e [—Wslwg’wf—l W, ’

with HY and HY defined in (34) and (35), with W, = W1 + W;1W§’Wf‘1W§W;1. Then

G =AWPAY, + AW AL + Ay WY A+
A WOAL, + Ay SV B, + A1,89 By +
B1S%AL, + B1SYAL, + By (S9505Y +
590°'8%" + 590059 4 597059V B,

KO — SiWit SWt = SyW (I, — Ain) 7t
(A12 =+ BlSSW;1)

which concludes the proof.

[}
and Remark 1: Let Ky = Sy, ' = 0. We obtain the reduced
L =An W Ay, + AWy Ay, + As Wi A+ control law
AgyWOAL, + A1 SV BY + A3, 89 B+ up(k) = [0 K] [i;ﬁiﬂ , (37)
B2Sg 5 + stg o + 32(51020510/4-
SSQO/Sf/ + SfQOSS/ + SSTOSS/)BQ. where K, = S,W ! is the optimal controller gain of the

slow subsystem. IfA;; is Schur, the closed-loop system is
0, Q% and Y are obtained replacing still asymptotically stablese € (0,e0]. An upper bound of
Wi(e), Wal(e), Ws(e), Si(e), S2(e) in (26). The the performance degradation is given in [9].



Hi(e) =AW (e) AL + AraWa(e) Ay, + AnWa(e) ALy + A1aWi(e) Ay + A1 Si(e) B, + A12Sa(c) B+
B1S1(e)A), + B1Sa(e)Aly + B1(S1(e)2(e)S1(e) + S2(£)Q(e)'S1(e) + S1(e)2(e)Sa(e) + (28)
S2()Y(e)S2(e)") By — Wa(e),

Hy(e) =A11Wi(e)AYe + A1aWa(e)' Abe + AniWal(e)(In, +eAon) + A1aWs(e) (I, +cAan) +
A1151(e) Bhe + A1252(e) Bye + B1S1(e)e Ay + B1S2(e)(In, +£As2)" + B1(S1(2)X(e)S1(e)'+ (29)
So(e)2(e) S1(e) + S1()2(e)S2(g) + Sa2(e)Y (€)S2(g)") Bhe — Wa(e),

H3(E) :é

(€A21W1 (E)Alzlé + eAs1 Wo (E)(In2 + EAQQ)/ + (In2 + EAQQ)WQI(E)Alzlg + (In2 + EAQQ)W3 (E)

(I, + €As2) + €A2151(e) Bhe + (I, + €Aa2)S2(e) Bhe + £B2S1 () Ay e + eBaSa(e) (I, + cA22) + (30)
eB3(S1()X(e)S1(e) + S2(e)Q(e)'S1(e)" + S1(e)Q(e)Sa(g)" + S2(e)Y(g)S2(g)") Bae — Ws(e)).

HY =Ay WOA, + AW AL + Ay WAL, + A WOAL, + A11SY Bl + A198) B, + By S04, + By S9A,,+
By SY(WY — wWowe ™ W) 1Y By — BusIws T WY (WP — wiwe T W) 1Y B~

By SYWO — wOWOT W) wIw? T SY B, + B SIWY T SY B, + B SIWI T wY (1
(WO — Wow2 W) twowo s Bl — WP <.

HY = Ay W9 + AW + B1SY — W2 =0, (32)

HY =W Ay + Ay W + Aga W + W Aby + SY BS + ByS9 < 0. (33)

HY =AWy Ay + AnSyBY + BiSp Aty + BiSy W, SpBy — Wy + Ay WiWy (WA, + Ws AL, + S BY)+
By SYW (WE AL, + Wi Aly + S BY) + A1a(WH A, + Wi A, + SY By) — WoWy Wy = (34)
AnWr Ay + A1Sy Bl + BiSp ALy + BuS WSy Bl — Wy < 0.

HY = AW, + WA, + B,S, + S.B. < 0. (35)
IV. ROBUST REDUCED CONTROLLER The slow subsystem is:
Consider the uncertain discrete-time linear system 2s(k+1) = (In, + €A ) w4 (k) + eBlug(k)
ys(k) = Clas(k) + Diug(k).

(38)  with o ‘ } }
A = Ay + Ay (I, — ALy) AL

where A(e) and B(¢) are the polytopic domainsi(e) = By = By + Ay (In, — A1) "' By

N ) N . A CZ:C2+Cl(I At )71Ai

Y AAAl(e) andB(e) = Y. ABBi(e). A and AP denote the s m T a2

i=1 i=1 D! = Cy (I, — AY,) ' Bi.

N
uncertainty and belong to the unit simpléx = {Z;/\i ~  Let choose the weighting matrix R such thAt= R’ =
1I,A, > 0} and: € ' = {1,..,N}, where N is the T'T = 0. The next theorem designs a reduced controller

number of uncertain parameters. As in the linear case, veble to stabilise the uncertain system (38) and minimise the

can separate the fast and slow manifold: performance index
. . . il i i’ i
Il(k + 1) = Azlll.fCl (k) + A112I2(1€) + Biu(k) JSO,Z' — T’I“ (|:Ojlcsz i?s iDS :| |:‘g’//s S m§515/:|) ,
l'g(k + 1) = EA%lxl(k)—f— (39) Ds CS Ds Ds + R s sVVs s
(In, + eAby)aa(k) + e Byu(k) which is defined in (19) for the linear case.

y(k) = Cra1(k) + Coma (k).



Theorem 2: If A%, is Schur and there exist matricds =
X!, =0, Wy, =W, > 0 and S, of appropriate dimension
such that the LMI optimisation problem

i, Tr (%) (40)
under _ .
X, C'W,+ DS, TS,
(%) W 0 >0 (41)
(%)’ (%)’ Wi
and _ , _ .
AW, + WAL + BYS, + S'BY <0 (42)

has a solution, then the reduced controligr= [0 S W, !]
guarantees the asymptotical stability of the closed-lo@p s
tem (38),Vi e T.

Proof: Using the Schur complement, (41) can be
written as

X, =C'W,C" + 'S,/ D! + DIS,CV +
DiS, WS,/ D + TS, W tS,/T'.
Then
Tr(X,) =Tr(C'W,C! + .5,/ D! + D'S,C*'+
DiSW 'S,/ DY + TS, WS,/ T') =
Tr(CiW,C! + CiS,/Di' + Dis,CV +
DS, WS,/ DY + RSW 'S, ) = Jo7,
viel. ]
Remark 2: The extension of the full-order controller to
uncertain systems is not immediate becaw@Z depends
on the state matriced?,, A%, and Bi.

maintains the strip off-centre betweenl5 and 20 cm for

the whole set of treated products, whereas, when the system
is not controlled, the strip off-centre varies betwees0 and

50 cm.

60

40

Z (mm)

600 800 1000 1200
t(N)

200 400

Fig. 1. Strip off-centre evolution

VI. CONCLUSION

In this article, a LMI solution for the LQ control design
of singularly perturbed systems in the discrete-time case i
proposed. In order to design the controller, a model repre-
senting the sampling of singularly perturbed continudomt
systems has been used. Then, results can be applied to the
continuous-time systems controlled by digital devices.

The reduced controller can directly extended to systems
with polytopic uncertainties. An example of industrial ap-
plication, the robust steering control of hot strip mill, is
presented.

V. INDUSTRIAL APPLICATION "

Here, experimental results concerning the robust steering
control of the Eisenhittenstadt hot strip mill of Arcelothdi
are presented [2], [7]. The rolling process consists inlings
a metal strip between two rolls in inverse rotation for
obtaining a strip with constant and desired thickness. ThéS]
lateral movement of the strip with reference to the mill axis
called strip off-centre 4), may induce a decrease of the 4]
product quality and rolls damage. Then, this displacement
must be reduced to improve the reliability and the quality[5
of the process. Since the hot strip mill has a two-time scale
dynamics, the singular perturbation method has been usdél
to design a reduced controller. Moreover, a hot strip mill
treats a set of very different products. Then, for each prbdu [7]
parameter, a different uncertainty has to be considerecaand
robust controller is needed. Fig. 1 shows the results obthin
using the reduced controlldt,. designed using Theorem 2.
The solid line shows theZ evolution for 10 different strips
(thicknesse [2, 3] mm, width € [1250, 1600] mm) whereas
the dotted line shows the& evolution of a strip rolled
with the system in open loop and the following physical
characteristics: thickness 2.02 mm, width = 1510 mm. In
the horizontal axis, we have the time (expressed in sample
times, withT, = 0.05 sec). Notice that the same controller

(2]

(8]

El
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