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A LMI Solution to the LQ Problem for Discrete-Time Singularly Perturbed
Systems

Ivan Malloci, Jamal Daafouz,Member, IEEE, Claude Iung,Member, IEEE, and Rémi Bonidal

Abstract— In this article, an alternative LMI solution for
the linear quadratic optimal control design is proposed for the
discrete-time systems in the singular perturbation form. This
approach is particularly adapted for the case of high dimension
systems. Moreover, it can be easily extended to the uncertain
systems, under some assumptions. An example of practical
application to the robust steering control of hot strip mill is
presented.

Index Terms— Singular perturbation, LQ control design,
LMI, Robust control.

I. INTRODUCTION

Many industrial systems involve dynamics operating on
two or more time scales. In this case, standard control
technics can lead to ill-conditioning controllers. In order
to avoid such as numerical problems, singular perturbation
methods can be used, which consist in decomposing the
system into several subsystems, one for each time scale.
Then, a different controller is designed for each subsystem.
Singular perturbation technics also allow to reduce the con-
troller order. This propriety can be very useful when the
system order is too high to implement an effective controller.

In the optimal control framework, first contributions to the
singular perturbation theory are given in the continuous-time
by [4], [5]. Some extensions to the discrete-time case can
be found in [6], [9]. A survey of the most popular optimal
control strategies for the singularly perturbed systems is
given in [8].

In [10], an alternative LMI solution [1] for the LQ optimal
control design is proposed for the continuous-time systems.
This approach has been extended to the singularly perturbed
systems in [3]. In spite of the authors’ knowledge, it does
not exist a similar development for the discrete-time case.

In this article, a LMI solution for the LQ control design for
the discrete-time singularly perturbed systems is proposed.
The advantage associated to the LMI formulation is the
existence of several solvers that provide solutions also inthe
case of high dimension problems. Moreover, we show that
the reduced controller can directly be extended to uncertain
systems. Experimental results concerning the robust steering
control of hot strip mill are given.

The article is organised as follows. In section II, the
LQ problem for the linear discrete-time singularly perturbed
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systems is discussed. In section III, an alternative LMI
solution is presented. In section IV, results are extended to
uncertain systems. In section V, an example of industrial
application, the robust steering control of hot strip mill,is
presented.

II. PROBLEM FORMULATION

Consider the linear discrete-time singularly perturbed sys-
tem in the form



















x1(k + 1) = A11x1(k) + A12x2(k) + B1u(k)

x2(k + 1) = εA21x1(k)+

(In2
+ εA22)x2(k) + εB2u(k)

y(k) = C1x1(k) + C2x2(k)

(1)

whereε > 0 is a scalar parameter≪ 1, x1 ∈ R
n1 is the

state vector corresponding to the fast dynamics,x2 ∈ R
n2

is the state vector corresponding to the slow dynamics,
u ∈ R

r is the control signal,y ∈ R
m is the output signal

and In denotes an identity matrix∈ R
n×n. The model (1)

represents the sampling of a singularly perturbed continuous-
time system. Then, results can be extended to the continuous-
time systems controlled by digital devices. Let define

A(ε) =

[

A11 A12

εA21 (In2
+ εA22)

]

,

B(ε) =

[

B1

εB2

]

,

C =
[

C1 C2

]

.

(2)

The slow subsystem is defined as:
{

xs(k + 1) = (In2
+ εAs)xs(k) + εBsus(k)

ys(k) = Csxs(k) + Dsus(k)
(3)

with
As = A22 + A21(In1

− A11)
−1A12

Bs = B2 + A21(In1
− A11)

−1B1

Cs = C2 + C1(In1
− A11)

−1A12

Ds = C1(In1
− A11)

−1B1

(4)

and(In1
−A11) invertible; the fast subsystem is defined as:
{

xf (k + 1) = A11xf (k) + B1uf(k)

yf (k) = C1xf (k)
. (5)

Let the LQ performance index

J(ε) =
1

2

∞
∑

k=0

(y(k)′y(k) + u(k)′Ru(k))



whereR = R′ ≻ 0 ∈ R
r×r is a weighting matrix. Given the

optimisation problem

(P)

{

min
u

J(ε)

under (1),
(6)

if the pair(A(ε), B(ε)) is stabilisable and the pair(C, A(ε))
is detectable, there exists a stabilising solutionP (ε) � 0 for
the algebraic Riccati equation:

A(ε)′P (ε)A(ε) − A(ε)′P (ε)B(ε)(R + B(ε)′P (ε)B(ε))−1

B(ε)′P (ε)A(ε) − P (ε) + C′C = 0.

The optimal solution is given by:

u(k) = K(ε)

[

x1(k)
x2(k)

]

(7)

whereK(ε) = −(R + B(ε)′P (ε)B(ε))−1B(ε)′P (ε)A(ε).
Whenε → 0, the system has a two-time scale dynamics.

In this case, standard technics lead to ill-conditioning
controllers. In order to avoid such as numerical problems,
the singular perturbation method may be used : the system is
decomposed into two subsystems and a different controller
is designed for each of them. Hence, also the optimisation
problem (6) must be decomposed into two subproblems :

Slow subproblem: For ε = 0, consider

(P1)

{

min
us

J0
s = 1

2

∑∞

k=0(ys(k)′ys(k) + us(k)′Rsus(k))

under (3)

with Rs = R′
s = R + D′

sDs ≻ 0. If the pair (As, Bs) is
stabilisable and the pair(Cs, As) is detectable, there exists a
stabilising solutionPs � 0 for the algebraic Riccati equation:

(As − BsR
−1
s D′

sCs)
′Ps + Ps(As − BsR

−1
s D′

sCs)−

PsBsR
−1
s B′

sPs + C′
s(In1

− DsR
−1
s D′

s)Cs = 0.

The optimal solution is given by:

us(k) = Ksxs(k) (8)

whereKs = −R−1
s (B′

sPs + D′
sCs). The state-feedback law

(8) guarantees the conditionRe{ξ(As +BsKs)} < 0, where
ξ(X) denotes the spectrum ofX . This implies asymptotic
stability of the closed-loop system (3) for sufficiently small ε.

Fast subproblem: Consider

(P2)







min
uf

J0
f = 1

2

∑∞

k=0(yf (k)′yf(k) + uf (k)′Ruf(k))

under (5)

with R = R′ ≻ 0. If the pair(A11, B1) is stabilisable and the
pair (C1, A11) is detectable, there exists a stabilising solution
Pf � 0 for the algebraic Riccati equation:

A′
11PfA11 − A′

11PfB1(R + B′
1PfB1)

−1

B′
1PfA11 − Pf + C′

1C1 = 0.

The optimal solution is given by:

uf (k) = Kfxf (k) (9)

whereKf = −(R + B′
1PfB1)

−1B′
1PfA11.

Composite control: From (3) and (5), the composite con-
trol law is given by :

uc(k) = us(k) + uf (k) = K0

[

x1(k)
x2(k)

]

, (10)

with K0 =
[

Kf (Ks − Kf (In1
− A11)

−1(A12 + B1Ks))
]

.
The control laws (8) and (9) are designed using indepen-

dent gainsKs andKf . Whenε → 0, the composite control
law (10) is close to the optimal solution (7). An index of
performance degradation is given in [9].

III. LMI SOLUTION

The LQ problem (6) may be formulated in a convex
form. In this case, the solution can be found solving a
LMI problem [10]. This approach has been extended for the
continuous-time singularly perturbed systems in [3]. In this
section, a similar development is proposed for the discrete-
time singularly perturbed systems. Let define the following
sets:

W =

{

W (ε) = W (ε)′ =

[

W1(ε) W2(ε)
W2(ε)

′ W3(ε)

]

≻ 0

}

,

(11)

Wε =

{

W̄ (ε) =

[

W (ε) S(ε)′

S(ε) W4(ε)

]

� 0, W (ε) ∈ W

}

,

with
S(ε) =

[

S1(ε) S2(ε)
]

, (12)

and

Qε =











W̄ (ε) ∈ Wε : A(ε)W (ε)A(ε)′+

A(ε)S(ε)′B(ε)′ + B(ε)S(ε)A(ε)′+

B(ε)S(ε)W (ε)−1S(ε)′B(ε)′ − W (ε) ≺ 0











(13)

and denote

lim
ε→0

W (ε) =

[

W 0
1 W 0

2

W 0′

2 W 0
3

]

= W 0,

lim
ε→0

W̄ (ε) =

[

W 0 S0′

S0 W 0
4

]

= W̄ 0,

lim
ε→0

S(ε) =
[

S0
1 S0

2

]

= S0.

An alternative LMI solution to the problem (6) is obtained
solving the following optimisation problem [10]:

(Pε) : min
W̄ (ε)∈Qε

J(ε) = Tr

([

C′C 0
0 R

]

W̄ (ε)

)

.

Furthermore, ifW̄ ∗(ε) is optimal, it can be written as:

W̄ ∗(ε) =

[

W ∗(ε) S∗(ε)′

S∗(ε) W ∗
4 (ε)

]

=

[

W ∗(ε) W ∗(ε)K(ε)′

K(ε)W ∗(ε) K(ε)W ∗(ε)K(ε)′

]

whereK(ε) = S∗(ε)W ∗(ε)−1 is the optimal gain and

lim
ε→0

K(ε) = K0 = S0∗W 0∗−1
. (14)



Hence,Pε may be reformulated as:

min
W (ε)≻0,S(ε)

Tr

( [

C′C 0
0 R

] [

W (ε) S(ε)′

S(ε) S(ε)W (ε)−1S(ε)′

])

.

(15)
When ε is small, numerical difficulties to minimise the

criterion J(ε) of Pε arise. This problem is due to the
ill-conditioning of the constraint (13). It can be avoided
decomposing the original problemPε into two well-behaved
subproblems, as in the LQ case. The criterion can be decom-
posed as follows:

J(ε) = Tr













[

C′
1

C′
2

]

[

C1 C2

]

[

W1(ε) W2(ε)
W2(ε)

′ W3(ε)

]

+

R
[

S1(ε) S2(ε)
]

×
[

W1(ε) W2(ε)
W2(ε)

′ W3(ε)

]−1 [

S1(ε)
′

S2(ε)
′

]













.

Given Φ(ε) = W1(ε) − W2(ε)W3(ε)
−1W2(ε)

′, we obtain:

J(ε) =Js(ε) + Jf (ε) =

Tr





[

C1 C2 + C1W2(ε)W3(ε)
−1

]

[

Φ(ε) 0
0 W3(ε)

]

[

⋆
]′



 +

Tr





R
[

S1(ε) − S2(ε)W3(ε)
−1W2(ε)

′ S2(ε)
]

×
[

Φ(ε)−1 0
0 W3(ε)

−1

]

[

⋆
]′





with

Js(ε) =Tr((C2 + C1W2(ε)
′W3(ε)

−1)W3(ε)

(C2 + C1W2(ε)
′W3(ε)

−1)′ + RS2(ε)W3(ε)
−1S2(ε)

′),

Jf (ε) = Tr((C1(W1(ε) − W2(ε)W3(ε)
−1W2(ε)

′)C′
1+

R(S1(ε) − S2(ε)W3(ε)
−1W2(ε)

′)

(W1(ε) − W2(ε)W3(ε)
−1W2(ε)

′)−1

(S1(ε) − S2(ε)W3(ε)
−1W2(ε)

′)′).

Let define

W 0
2 = (In1

− A11)
−1(A12W

0
3 + B1S

0
2), (16)

Ws = W 0
3 , Ss = S0

2 , (17)

Wf = W 0
1 − W 0

2 (W 0
3 )−1W 0′

2 ,

Sf = S0
1 − S0

2(W 0
3 )−1W 0′

2 .
(18)

Then:

lim
ε→0

C2 + C1W2(ε)W3(ε)
−1 = C2 + C1(In1

− A11)
−1A12+

C1(In1
− A11)

−1B1SsW
−1
s = Cs + DsSsW

−1
s ,

lim
ε→0

Js(ε) = J0
s = Tr(CsWsC

′
s + CsS

′
sD

′
s + DsSsC

′
s

DsSsW
−1
s S′

sD
′
s + RSsW

−1
s S′

s),

lim
ε→0

Jf (ε) = J0
f =Tr(C1WfC′

1 + RSfW−1
f S′

f ).

The last two equations can be written in the form:

J0
s = Tr

([

C′
sCs C′

sDs

D′
sCs D′

sDs + R

] [

Ws Ss

S′
s SsW

−1
s S′

s

])

,

(19)

J0
f = Tr

([

C′
1C1 0
0 R

] [

Wf Sf

S′
f SfW−1

f S′
f

])

, (20)

with
J0 = J0

s + J0
f . (21)

In terms of variables,J0
s depends onWs andSs whereas

J0
f depends onWf and Sf . Hence, two independent

optimisation subproblems can be defined:

Slow subproblem:

(Ps) : min
W̄s∈Qs

Tr

([

C′
sCs C′

sDs

D′
sCs D′

sDs + R

]

W̄s

)

,

with

Ws =

{

W̄s =

[

Ws S′
s

Ss Vs

]

≻ 0

}

and

Qs =
{

W̄s ∈ Ws : AsWs + WsA
′
s + BsSs + S′

sB
′
s ≺ 0

}

.

Fast subproblem:

(Pf ) : min
W̄f∈Qf

Tr

([

C′
1C1 0
0 R

]

W̄f

)

,

with

Wf =

{

W̄f =

[

Wf S′
f

Sf Vf

]

≻ 0

}

and

Qf =

{

W̄f ∈ Wf : AfWfA′
f + AfS′

fB′
f+

BfSfA′
f + BfSfW−1

f S′
fB′

f − Wf ≺ 0

}

that, using the Schur complement, becomes

Qf =

{

W̄f ∈ Wf :

[

Wf (⋆)′

AfWf + BfSf Wf

]

≻ 0

}

.

The next theorem gives a solution for the problemPs - Pf .

Theorem 1: Assume that problemsPs and Pf admit,
respectively, solutions

W̄s =

[

Ws S
′

s

Ss Vs

]

, W̄f =

[

Wf S
′

f

Sf Vf

]

.

Then:
i) The solutionW̄ (ε) of the problemPε satisfies

lim
ε→0

W̄ (ε) =

[

W 0 S0′

S0 W 0
4

]

= W̄ 0,

lim
ε→0

J(ε) = J0 = J0
s + J0

f =

Tr

([

C′C 0
0 R

] [

W 0 S0′

S0 W 0
4

])

with

W 0 =

[

Wf + W 0
2 W−1

s W 0′

2 W 0
2

W 0′

2 Ws

]

, (22)

S0 =
[

Sf + SsW
−1
s W 0′

2 Ss

]

, (23)

W 0
4 = S0W 0−1

S0′

. (24)



ii) There existsε0 > 0 such that the problemPε admits
the approximate solution

W̄ 0 =

[

W 0 S0′

S0 W 0
4

]

∀ ε ∈ ( 0, ε0].
iii) For ε ∈ ( 0, ε0], the controller gain (14) is given by

K0 = S0W 0−1
.

Proof:

i) From (11), denote

W (ε)−1 =

[

Σ(ε) Ω(ε)
Ω(ε)′ Υ(ε)

]

(25)

with

Σ(ε) = (W1(ε) − W2(ε)W3(ε)
−1W2(ε)

′)−1

Ω(ε) = −Σ(ε)W2(ε)W3(ε)
−1

Υ(ε) =W3(ε)
−1+

W3(ε)
−1W2(ε)

′Σ(ε)W2(ε)W3(ε)
−1.

(26)

Then, substituting (2), (11) and (25) in (13), we obtain:
[

H1(ε) H2(ε)
H2(ε)

′ εH3(ε)

]

≺ 0 (27)

with H1(ε), H2(ε) and H3(ε) defined in equations
(28)-(30). Whenε → 0, using (26) we obtain (31)-
(33).
Equation (16) verifies (32). Furthermore, substituting
(16) and (18) in (31), we obtain (34) and, substituting
(4), (16) and (17) in (33), we obtain (35).
Finally, (34) and (35) represent the constraints of the
problemsPf andPs, respectively. Equations (28)-(35)
are defined in the next page.

ii) Replacing in (27) the unknown values of
W1(ε), W2(ε), W3(ε), S1(ε), S2(ε) with W 0

1 , W 0
2 ,

W 0
3 , S0

1 , S0
2 , we obtain

[

H0
1 εG

εG′ ε(H0
3 + εL)

]

≺ 0, (36)

with H0
1 andH0

3 defined in (34) and (35),

G =A11W
0
1 A′

21 + A12W
0
2
′
A′

21 + A11W
0
2 A′

22+

A12W
0
3 A′

22 + A11S
0
1
′
B′

2 + A12S
0
2
′
B′

2+

B1S
0
1A′

21 + B1S
0
2A′

22 + B1(S
0
1Σ0S0

1
′
+

S0
2Ω0′S0

1
′
+ S0

1Ω0S0
2
′
+ S0

2Υ0S0
2
′
)B′

2

and

L =A21W
0
1 A′

21 + A21W
0
2
′
A′

22 + A22W
0
2 A′

21+

A22W
0
3 A′

22 + A21S
0
1
′
B′

2 + A22S
0
2
′
B′

2+

B2S
0
2A′

21 + B2S
0
2A′

22 + B2(S
0
1Σ0S0

1
′
+

S0
2Ω0′S0

1
′
+ S0

1Ω0S0
2
′
+ S0

2Υ0S0
2
′
)B′

2.

Σ0, Ω0 and Υ0 are obtained replacing
W1(ε), W2(ε), W3(ε), S1(ε), S2(ε) in (26). The

conditions H0
1 ≺ 0 and H0

3 ≺ 0 imply that there
exists a scalarε0 > 0 such that

H0
1 − εG(H0

3 + εL)
−1

G′ ≺ 0,

is verified ∀ ε ∈ (0, ε0]. Then, using the Schur com-
plement, also (36) is verified∀ ε ∈ (0, ε0].

iii) Consider

us(k) = Ksxs(k) = SsW
−1
s xs(k)

and

uf (k) = Kfxf (k) = SfW−1
f xf (k).

The composite controller is given by

uc(k) = us(k) + uf(k) = Ksxs(k) + Kfxf (k).

To derive the slow model, we assumed thatxs(k) =
x2(k) whenx1(k+1) ≃ x1(k), i.e. when the transient
behaviour is finished. Moreover, to derive the fast
model we assumed thatxf (k) = x1(k) − (In1

−
A11)

−1(A12xs(k) + B1us(k)) = x1(k) − (In1
−

A11)
−1(A12 + B1Ks)xs(k) whenx2(k + 1) ≃ x2(k),

i.e. during the fast transient). Then, we have

uc(k) =SfW−1
f x1(k) + SsW

−1
s x2(k)−

SfW−1
f (In1

− A11)
−1×

(A12 + B1SsW
−1
s )x2(k) =

K0

[

x1(k)
x2(k)

]

,

which corresponds to (10). In order to prove thatK0 =
S0W 0−1

, the formula of the inverse of partitioned
matrix can be applied to (22). We find

W−1
0 =

[

W−1
f −W−1

f W 0
2 W−1

s

−W−1
s W 0′

2 W−1
f Wt

]

,

with Wt = W−1
s + W−1

s W 0′

2 W−1
f W 0

2 W−1
s . Then

K0 =

[

SfW−1
f SsW

−1
s − SfW−1

f (In1
− A11)

−1×

(A12 + B1SsW
−1
s )

]

which concludes the proof.

Remark 1: Let Kf = SfW−1
f = 0. We obtain the reduced

control law

ur(k) =
[

0 Ks

]

[

x1(k)
x2(k)

]

, (37)

whereKs = SsW
−1
s is the optimal controller gain of the

slow subsystem. IfA11 is Schur, the closed-loop system is
still asymptotically stable∀ ε ∈ ( 0, ε0 ]. An upper bound of
the performance degradation is given in [9].



H1(ε) =A11W1(ε)A
′
11 + A12W2(ε)

′A′
11 + A11W2(ε)A

′
12 + A12W3(ε)A

′
12 + A11S1(ε)

′B′
1 + A12S2(ε)

′B′
1+

B1S1(ε)A
′
11 + B1S2(ε)A

′
12 + B1(S1(ε)Σ(ε)S1(ε)

′ + S2(ε)Ω(ε)′S1(ε)
′ + S1(ε)Ω(ε)S2(ε)

′+

S2(ε)Υ(ε)S2(ε)
′)B′

1 − W1(ε),

(28)

H2(ε) =A11W1(ε)A
′
21ε + A12W2(ε)

′A′
21ε + A11W2(ε)(In2

+ εA22)
′ + A12W3(ε)(In2

+ εA22)
′+

A11S1(ε)
′B′

2ε + A12S2(ε)
′B′

2ε + B1S1(ε)εA
′
21 + B1S2(ε)(In2

+ εA22)
′ + B1(S1(ε)Σ(ε)S1(ε)

′+

S2(ε)Ω(ε)′S1(ε)
′ + S1(ε)Ω(ε)S2(ε)

′ + S2(ε)Υ(ε)S2(ε)
′)B′

2ε − W2(ε),

(29)

H3(ε) =
1

ε
(εA21W1(ε)A

′
21ε + εA21W2(ε)(In2

+ εA22)
′ + (In2

+ εA22)W
′
2(ε)A

′
21ε + (In2

+ εA22)W3(ε)

(In2
+ εA22)

′ + εA21S1(ε)
′B′

2ε + (In2
+ εA22)S2(ε)

′B′
2ε + εB2S1(ε)A

′
21ε + εB2S2(ε)(In2

+ εA22)
′+

εB2(S1(ε)Σ(ε)S1(ε)
′ + S2(ε)Ω(ε)′S1(ε)

′ + S1(ε)Ω(ε)S2(ε)
′ + S2(ε)Υ(ε)S2(ε)

′)B′
2ε − W3(ε)).

(30)

H0
1 =A11W

0
1 A′

11 + A12W
0′

2 A′
11 + A11W

0
2 A′

12 + A12W
0
3 A′

12 + A11S
0′

1 B′
1 + A12S

0′

2 B′
1 + B1S

0
1A′

11 + B1S
0
2A′

12+

B1S
0
1(W 0

1 − W 0
2 W 0

3
−1

W 0′

2 )−1S0′

1 B′
1 − B1S

0
2W 0

3
−1

W 0′

2 (W 0
1 − W 0

2 W 0
3
−1

W 0′

2 )−1S0′

1 B′
1−

B1S
0
1(W 0

1 − W 0
2 W 0

3
−1

W 0′

2 )−1W 0
2 W 0

3
−1

S0′

2 B′
1 + B1S

0
2W 0

3
−1

S0′

2 B′
1 + B1S

0
2W 0

3
−1

W 0′

2

(W 0
1 − W 0

2 W 0
3
−1

W 0′

2 )−1W 0
2 W 0

3
−1

S0′

2 B′
1 − W 0

1 ≺ 0.

(31)

H0
2 = A11W

0
2 + A12W

0
3 + B1S

0
2 − W 0

2 = 0, (32)

H0
3 =W 0′

2 A′
21 + A21W

0
2 + A22W

0
3 + W 0

3 A′
22 + S0′

2 B′
2 + B2S

0
2 ≺ 0. (33)

H0
1 =A11WfA′

11 + A11S
′
fB′

1 + B1SfA′
11 + B1SfW−1

f S′
fB′

1 − Wf + A11W
0
2 W−1

3 (W 0
2 A′

11 + W3A
′
12 + S0′

2 B′
1)+

B1S
0
2W−1

3 (W 0
2 A′

11 + W3A
′
12 + S0′

2 B′
1) + A12(W

0
2 A′

11 + W3A
′
12 + S0′

2 B′
1) − W 0

2 W−1
3 W 0′

2 =

A11WfA′
11 + A11S

′
fB′

1 + B1SfA′
11 + B1SfW−1

f S′
fB′

1 − Wf ≺ 0.

(34)

H0
3 = AsWs + WsA

′
s + BsSs + S′

sB
′
s ≺ 0. (35)

IV. ROBUST REDUCED CONTROLLER

Consider the uncertain discrete-time linear system

{

x(k + 1) = A(ε)x(k) + B(ε)u(k)

y(k) = Cx(k)
(38)

whereA(ε) and B(ε) are the polytopic domainsA(ε) =
N
∑

i=1

λA
i Ai(ε) andB(ε) =

N
∑

i=1

λB
i Bi(ε). λA

i andλB
i denote the

uncertainty and belong to the unit simplexΛ = {
N
∑

i=1

λi =

1, λi ≥ 0} and i ∈ Γ = {1, ..., N}, where N is the
number of uncertain parameters. As in the linear case, we
can separate the fast and slow manifold:



















x1(k + 1) = Ai
11x1(k) + Ai

12x2(k) + Bi
1u(k)

x2(k + 1) = εAi
21x1(k)+

(In2
+ εAi

22)x2(k) + εBi
2u(k)

y(k) = C1x1(k) + C2x2(k).

(39)

The slow subsystem is:
{

xs(k + 1) = (In2
+ εAi

s)xs(k) + εBi
sus(k)

ys(k) = Ci
sxs(k) + Di

sus(k).

with
Ai

s = Ai
22 + Ai

21(In1
− Ai

11)
−1Ai

12

Bi
s = Bi

2 + Ai
21(In1

− Ai
11)

−1Bi
1

Ci
s = C2 + C1(In1

− Ai
11)

−1Ai
12

Di
s = C1(In1

− Ai
11)

−1Bi
1.

Let choose the weighting matrix R such thatR = R′ =
T ′T ≻ 0. The next theorem designs a reduced controller
able to stabilise the uncertain system (38) and minimise the
performance index

J0,i
s = Tr

([

Ci
s

′
Ci

s Ci
s

′
Di

s

Di
s

′
Ci

s Di
s

′
Di

s + R

] [

Ws Ss

S′
s SsW

−1
s S′

s

])

,

which is defined in (19) for the linear case.



Theorem 2: If Ai
11 is Schur and there exist matricesXs =

X ′
s ≻ 0, Ws = W ′

s ≻ 0 and Ss of appropriate dimension
such that the LMI optimisation problem

min
Xs,Ss,Ws

Tr
(

Xs

)

(40)

under 



Xs Ci
sWs + Di

sSs TSs

(⋆)′ Ws 0
(⋆)′ (⋆)′ Ws



 � 0 (41)

and
Ai

sWs + WsA
i
s

′
+ Bi

sSs + S′
sB

i
s

′
≺ 0 (42)

has a solution, then the reduced controllerKr = [0 SsW
−1
s ]

guarantees the asymptotical stability of the closed-loop sys-
tem (38),∀ i ∈ Γ.

Proof: Using the Schur complement, (41) can be
written as

Xs �Ci
sWsC

i
s

′
+ Ci

sSs
′Di

s

′
+ Di

sSsC
i
s

′
+

Di
sSsW

−1
s Ss

′Di
s

′
+ TSsW

−1
s Ss

′T ′.

Then

Tr(Xs) �Tr(Ci
sWsC

i
s

′
+ Ci

sSs
′Di

s

′
+ Di

sSsC
i
s

′
+

Di
sSsW

−1
s Ss

′Di
s

′
+ TSsW

−1
s Ss

′T ′) =

Tr(Ci
sWsC

i
s

′
+ Ci

sSs
′Di

s

′
+ Di

sSsC
i
s

′
+

Di
sSsW

−1
s Ss

′Di
s

′
+ RSsW

−1
s Ss

′) = J0,i
s ,

∀ i ∈ Γ.
Remark 2: The extension of the full-order controller to

uncertain systems is not immediate becauseW
0,i
2 depends

on the state matricesAi
11, Ai

12 andBi
1.

V. INDUSTRIAL APPLICATION

Here, experimental results concerning the robust steering
control of the Eisenhüttenstadt hot strip mill of ArcelorMittal
are presented [2], [7]. The rolling process consists in crushing
a metal strip between two rolls in inverse rotation for
obtaining a strip with constant and desired thickness. The
lateral movement of the strip with reference to the mill axis,
called strip off-centre (Z), may induce a decrease of the
product quality and rolls damage. Then, this displacement
must be reduced to improve the reliability and the quality
of the process. Since the hot strip mill has a two-time scale
dynamics, the singular perturbation method has been used
to design a reduced controller. Moreover, a hot strip mill
treats a set of very different products. Then, for each product
parameter, a different uncertainty has to be considered anda
robust controller is needed. Fig. 1 shows the results obtained
using the reduced controllerKr designed using Theorem 2.
The solid line shows theZ evolution for 10 different strips
(thickness∈ [2, 3] mm, width ∈ [1250, 1600] mm) whereas
the dotted line shows theZ evolution of a strip rolled
with the system in open loop and the following physical
characteristics: thickness= 2.02 mm, width = 1510 mm. In
the horizontal axis, we have the time (expressed in sample
times, withTs = 0.05 sec). Notice that the same controller

maintains the strip off-centre between−15 and 20 cm for
the whole set of treated products, whereas, when the system
is not controlled, the strip off-centre varies between−30 and
50 cm.
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Fig. 1. Strip off-centre evolution

VI. CONCLUSION

In this article, a LMI solution for the LQ control design
of singularly perturbed systems in the discrete-time case is
proposed. In order to design the controller, a model repre-
senting the sampling of singularly perturbed continuous-time
systems has been used. Then, results can be applied to the
continuous-time systems controlled by digital devices.

The reduced controller can directly extended to systems
with polytopic uncertainties. An example of industrial ap-
plication, the robust steering control of hot strip mill, is
presented.
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