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Abstract— In this paper we will discuss the application of
optimal filtering techniques for the adaptive optics system of
the LBT telescope. We have studied the application of both
Kalman and H∞ filters to estimate the temporal evolution of
the phase perturbations due to the atmospheric turbulence and
the telescope vibrations on tip/tilt modes. We will focus on the
H∞ filter and on its advantages and disadvantages over the
Kalman filter.

I. INTRODUCTION

The Large Binocular Telescope (LBT) is an opti-
cal/infrared telescope using two 8.4m diameter primary mir-
rors. By having both primary mirrors on the same mechanical
mount, LBT will be able to achieve the diffraction-limited
image sharpness of a 22.8m diameter aperture. As in any
large ground-based telescope, the diffraction limit can only
be obtained with the assistance of adaptive optics (AO),
which is a technique aimed at reducing the effects of
wavefront distortion due to atmospheric turbulence [12].

LBT will be equipped soon1 with two AO systems, one for
each arm of the telescope. Each AO unit (fig.1) comprises
a pyramid wavefront sensor (WFS), an adaptive secondary
mirror (ASM), and a real-time computer (RTC). The pyramid
wavefront sensor delivers a signal that is proportional, as
a first-order approximation, to the first derivative of the
incoming wavefront, sampled with a maximum of 30 × 30
subapertures [14]. The ASM is a deformable mirror with
672 voice-coil (electro-magnetic force) actuators, distributed
in concentric rings, to change the shape of the 1.6mm-thick
and 911mm-diameter Zerodur shell [10].

Large telescopes suffer from structure vibrations that can
reduce the AO performance [2]. Recent theoretical studies
and preliminary laboratory validations have shown that op-
timal control techniques can be used to reduce the impact
of these vibrations [8], [9]. We will present in this paper
an analysis of a mixed-control strategy for the LBT based
on both optimal filtering and classical control techniques,
aimed at reducing the impact of telescope vibrations without
burdening the RTC with heavy computations. In section II
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Fig. 1. Illustration of the optical configuration of one-arm of the LBT,
including the AO system components: the wavefront sensor (WFS), the
adaptive secondary mirror (ASM), and the real-time computer (RTC).

we will present the general control strategy for the LBT-AO
system. Section III describes the models required to design
the filter-based controllers. We have compared the perfor-
mance of these controllers based on numerical simulations.
These results will be presented in section V.

II. GENERAL CONTROL STRATEGY

The AO control diagram for the LBT is illustrated in
figure 2. The AO controller receives the WFS measurements
y(k) and computes the commands vector u(k) to drive the
actuators of the ASM. It is important to mention that the
ASM has non-negligible dynamics and, to compensate for
wavefront distortions, it must take the desired shape with
good accuracy and within a short settling time. For this
reason, it was chosen to control the ASM with a dedicated
control loop. The ASM control loop relies on the position
feedback provided by a set of capacitive sensors placed at the
back of the mirror shell. The design of the ASM controller
is based on a proportional-derivative (PD) position feedback
plus a feedforward signal that is proportional to the desired
position [11]. Summing up, there are two control systems
involved:
• A global AO control system (working @1kHz) whose
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Fig. 2. LBT-AO system control loop scheme.

goal is to determine the commands to the ASM that
corrects for a residual wavefront distortion;

• A local ASM control system (working @72kHz) with
the goal of shaping the mirror in the time of one AO
loop step (< 1ms).

The main subject of this paper regards the controller
for the global AO loop. We will follow the modal control
approach widely used in the analysis of AO systems [12].
The controllers implemented in the current generation of AO
systems are based on classical (modal) integrators [4]. These
controllers have provided good performance on atmospheric
turbulence correction, but they have been unable to attenuate
substantially the effects of telescope structure vibrations. In
the LBT case, the swinging arm supporting the ASM has
resonance frequencies in the band between 15 and 30Hz [3].
These vibrations affect mostly the tip/tilt modes2. As we will
discuss in section V, the vibration attenuation performed by
classical controllers is not enough to meet the expected AO
performance. For this reason it has been chosen to control
tip/tilt modes with a filter-based control. We will review in
section III the models of the AO system and of the input
signals (atmospheric turbulence, telescope vibrations, mea-
surement noise, etc.) required to define a system state vector
and estimate its evolution with an optimal filtering technique
such as Kalman or H∞ one (see Agapito et. al. 2008 [1] for
further considerations).

Finally, let us emphasize that the AO controller studied
in this work is a mixed controller (see fig. 2): tip/tilt modes
are controlled by a Kalman or H∞ filter-based controller
whereas the other modes are controlled with a simple in-
tegrator controller. The modal basis we chose was created
from Karhunen-Loève modes [12] defined in the LBT pupil,

2Tip and tilt modal coefficients quantify the displacements of the image
in the two orthogonal directions.

projected onto the ASM influence functions and then re-
orthonormalized. A total of 672 modes (corresponding to the
total number of ASM actuators and hence, the total number
of degrees of freedom) were computed in this way. Finally,
tip/tilt modes were projected out from all modes in order to
decouple the control of tip/tilt and the rest of the modes for
the mixed-control strategy implementation.

III. AO SYSTEM MODEL

A. WFS and ASM models

The pyramid WFS model is described by:

y(k) = DΦres(k − 1) + w(k) (1)

where y(k) is the measurement vector, w(k) is the mea-
surement noise vector —y(k) and w(k) ∈ Rq×1 where q
is the number of measurements—, D is the WFS response
matrix, and Φres(k) stands for the residual phase after ASM
correction computed as Φres(k) = Φtot(k)−Φcor(k), where
Φcor(k) is the phase correction applied by the ASM and
Φtot(k) = Φtur(k) + Φvib(k), i.e. the sum of the phase
distortions introduced by the turbulence Φtur(k) and the
telescope vibrations Φvib(k). All phase variables are modal
coefficient vectors Φ(k) ∈ Rn×1 where n is the number of
coefficients.

The ASM model can be expressed by:

Φcor(k − 1) = Nu(k − 2) (2)

where N is the ASM influence matrix, and u(k) is the com-
mand vector for the actuators of the ASM —u(k) ∈ Rm×1,
where m is the number of actuators. Note that this equation
does not take into account for the mirror dynamics. However,
the AO command vector u(k) becomes the reference to the
ASM control loop and, as we mentioned above, this loop
guarantees that the ASM takes the desired shape.



Fig. 3. Classical control strategy scheme.

B. Turbulence and vibration models

The atmospheric turbulence evolution can be described by:

Φtur(k + 1) = f(Φtur(k),Φtur(k − 1), . . .) + v(k) (3)

where v(k) is the model’s white noise. We have chosen
to approximate this equation with an Auto-Regressive (AR)
first-order model [6]:

Φtur(k + 1) = AtΦ
tur(k) + vt(k) (4)

where At is a diagonal matrix calculated as in
Le Roux et. al. 2004 [13], whose diagonal elements
are e−2π0.3ηV/f (η radial order, V wind speed, f sampling
frequency), and vt(k) is the model’s white noise calculated
from the Noll matrix [7].

The vibrations model can be expressed as:

Φvib(k + 1) = A1Φvib(k)−A2Φvib(k − 1) + vv(k) (5)

where A1 and A2 are two diagonal matrices whose diagonal
elements depend upon vibration frequency and damping
constant, and vv(k) is a white noise vector whose variance
depends upon input force power [8]. Φvib(k) and vv(k) have
p non-zero elements corresponding to the modes affected by
vibrations.

C. Classical control strategy

The classical control strategy (see figure 3) is based on a
reconstruction matrix R and on a simple integrator:

u(k) = u(k − 1) + g∆u(k − 2) (6)

where g is the integrator gain (equal for all modes), and the
command increment is computed as:

∆u(k) = Ry(k) . (7)

The reconstruction matrix R is computed as R =
(M ′intMint)

−1M ′int, that is, the generalized inverse of the
interaction matrix Mint = DN , measured experimentally
during the AO system calibration. This is the control applied
to all modes except for tip/tilt in the mixed-control strategy.
We should note that the gain g can be optimized for each
mode, as in the case of the optimized modal gain integrator
(OMGI) [4] controller. In this work we did not implement
it, but this will be considered as a future improvement.

Fig. 4. Filter-based control strategy scheme (K is the filter asymptotic gain
matrix).

D. Filter-based control strategy

The control based on the Kalman or the H∞ filter (see
figure 4) generates the command vector from the predicted
state vector. We have defined the following state vector:

x(k) =


Φvib(k)

Φvib(k − 1)
Φtur(k)

Φtot(k − 1)
u(k − 2)

 (8)

comprising all the variables required to estimate the total
phase vector Φtot(k+ 1). The dimension of the state vector
is (2p+2n+m)×1. It turns out that the command vector u(k)
is computed by projecting Φ̂tot(k + 1) onto the command
space:

u(k) = (N ′N)−1N ′Fx̂(k + 1)

= (N ′N)−1N ′Φ̂tot(k + 1) ,
(9)

where F =
[
I 0 I 0 0

]
and I is the identity matrix.

For the Kalman filter, the state model is expressed as:

x(k + 1) =


A1 A2 0 0 0
I 0 0 0 0
0 0 At 0 0
I 0 I 0 0
0 0 0 0 0


︸ ︷︷ ︸

A

x(k)+


0
0
0
0
I


︸ ︷︷ ︸

B

u(k − 1) + v(k) ,

(10)

where v(k) =
[
vv(k) 0 vt(k) 0 0

]
. Finally, the

measurement equation is expressed as:

y(k) = D
[

0 0 0 I −N
]︸ ︷︷ ︸

C

x(k) + w(k) .
(11)



On the other hand, the state model for the H∞ filter is
expressed as: x(k + 1)

ẑ(k)− z(k)
y(k)

 =



A1 A2 0 0 0 I 0 0 0
I 0 0 0 0 0 0 0 0
0 0 At 0 0 0 I 0 0
I 0 I 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
−I 0 −I 0 0 0 0 0 I
0 0 0 D −DN 0 0 I 0


 x(k)
µ(k)
ẑ(k)



+



0
0
0
0
I
0
0


u(k − 1) ,

(12)
with x(0) = 0. Also, z(k) = Φtot(k + 1), ẑ(k) is an
estimate of z(k), and µ(k) is the disturbances vector µ(k) =[
vv(k) vt(k) w(k)

]′
.

IV. FILTERS
We decided to implement the Kalman filter because it is

the best linear state estimator and the H∞ filter because it
is capable of dealing with plant errors and unknown distur-
bances. Kalman and H∞ filters have different objectives:
• the Kalman filter’s aim is to minimize either the vari-

ance of the final state estimation error:

J1 = ε [(x̂(N)− x(N))′(x̂(N)− x(N))] , (13)

or to minimize the average RMS power of the estima-
tion error [5]:

J2 = ε

 1

N

N∑
k=0

(x̂(k)− x(k))
′
(x̂(k)− x(k))

 1
2

(14)

where ε[·] denotes the expected value, and x(N) denotes
the final state;

• the H∞ filter’s aim is to ensure that the energy gain
from the disturbances to the estimation error is less than
a prespecified level γ2 [5]:

‖ẑ − z‖22,[0,N] − γ
2‖µ‖22,[0,N] ≤ −ε‖µ‖

2
2,[0,N] (15)

where ε > 0, µ ∈ l2[0,N] is the disturbances vector3,

3The space l2[0,N] is defined as:

l2[0,N] =
{
f : f(k) = 0 ∀ k /∈ [0,N], ‖f‖2,[0,N] <∞

}
,

z = Lx, and ẑ = Fy is a z estimate (F must be casual
and linear).

Kalman and H∞ filters use different problem descriptions
too:
• for Kalman filter the signal generating system is as-

sumed to be a state-space system driven by a white noise
process with known statistical properties. The observed
output is also corrupted by a white noise process with
known statistical properties;

• for H∞ filter the system has unknown disturbances of
finite energy that drive the signal generating system and
corrupt the observations.

V. SIMULATIONS AND DATA ANALYSIS
A. Preliminary considerations

Telescope structure vibrations may exhibit large ampli-
tudes, in particular on tip/tilt modes, and they depend on
many factors such as telescope orientation, telescope tracking
errors, and wind shaking.

The LBT relies on a set of accelerometers placed on the
structure supporting the ASM to characterize the vibrations
(frequency and amplitude) affecting the AO system. In this
work we did not consider an adaptive controller, so the
vibration’s parameters will be previously calibrated with the
accelerometers and used to build the Kalman (or H∞) filter.
For these reasons it is important to study the robustness of
the controllers with respect to errors in the vibration’s model.

We will first compare the performance of the three con-
trollers (classical, mixed-Kalman, and mixed-H∞) under
the presence of only atmospheric turbulence (sec. V-B).
Then, we will consider the presence of a telescope vibration
affecting tip-tilt modes (sec. V-C). Finally, we will study the
robustness of the mixed-controllers with respect to changes
on the vibration frequency (sec. V-D).

All the simulations were made on an end-to-end simulator
of the LBT-AO system. Table I presents a summary of the
simulation parameters.

B. Performance under the presence of turbulence

First, let us consider that there are no vibrations. In this
case, mixed-Kalman controller gives a SR4 of 80.7%, the
mixed-H∞ controller a SR of 80.4%, and the classical con-
troller a SR of 84.1% (Table II). Note that the performance

where ‖ · ‖2,[0,N] is the finite-horizon 2-norm, defined as:

‖f‖2,[0,N] =

{
N∑
k=0

f ′(k)f(k)

} 1
2

,

where f = {f(k)}∞−∞.
4To measure the performance of an AO system we use the Strehl Ratio

(SR). It is the ratio of the observed peak intensity at the detection plane
compared to the theoretical maximum peak intensity of a diffraction-limited
image.



Telescope
Effective diameter (D) 8.22m
Central obstruction 0.11D

Pyramid WFS
Sensing wavelength (λ) 0.75µm

Tilt modulation radius 4.0 λ
D

Number of subapertures 30× 30
Number of photons per integration time per subaperture 50
Number of electrons per pixel of readout noise 8

ASM
Number of modes 672

Turbulence
Seeing 0.8 (@0.5µm)
Outer scale (L0) 22m
Wind speed 20m/s

Loop parameters
Sampling frequency 800Hz
Total delay 2 frames

TABLE I
SUMMARY TABLE OF SIMULATION PARAMETERS.

%SR @ 2.2µm
vibration Classical mixed-Kalman mixed-H∞

No 84.1 80.7 80.4
Yes 30.9 80.4 80.2

TABLE II
SIMULATION RESULTS: PERFORMANCE OF THE LBT-AO SYSTEM WITH

AND WITHOUT TELESCOPE VIBRATIONS.

of the mixed controllers is slightly lower with respect to the
classical one because the AR1 dynamic model of the turbu-
lence is a simple one; it is just a first-order approximation of
the Taylor’s hypothesis model of the turbulence’s temporal
evolution [13].

C. Performance under the presence of turbulence and vibra-
tions

Let us now consider the case where there is a telescope vi-
bration affecting tip/tilt modes with an amplitude of 80 milli-
arcseconds at a frequency of 20Hz. Under these conditions,
mixed-Kalman controller provides a SR of 80.4%, and
mixed-H∞ controller a SR of 80.2%. Their performances
are very similar to the ones obtained in the previous case.
On the other hand, the classical controller has a very different
performance; the SR has been reduced to 30.9% under the
presence of this vibration (Table II). We should note that
this result was obtained by increasing the integrator’s gain in
order to increase the attenuation at the vibration’s frequency.
Of course, the gain cannot be increased arbitrarily due to
stability constraints. Therefore, the AO performance with the
classical controller will remain limited by the presence of
telescope vibrations.

D. Robustness study

In order to test the robustness of the controllers based on
the Kalman and the H∞ filters, we introduced an error on
the value of the vibration’s frequency in the state model,
whereas the actual vibration’s frequency was left equal to
20Hz. From figure 5 (and table III) we can see that the two
filters have very similar performance when the error on the

frequency (Hz) %SR @ 2.2µm
model error mixed-Kalman mixed-H∞
16.5 -3.5 22.4 30.9
17 -3 25.5 36.4

17.5 -2.5 30.6 43.7
18 -2 39.1 52.7

18.5 -1.5 51.0 62.8
19 -1 65 71.3

19.5 -0.5 76.8 78.4
20 0 80.4 80.2

20.5 0.5 77.8 78.4
21 1 70.1 74.1

21.5 1.5 61 67.6
22 2 52.8 60.7

22.5 2.5 46.1 54.5
23 3 40.9 48.9

23.5 3.5 36.9 44.6

TABLE III
STREHL RATIO VALUES SHOWN IN FIGURE 5.

frequency is less than |0.5Hz|. When the error is greater
than |1Hz| the performance of the mixed-H∞ is ≈ 10% in
SR better than the mixed-Kalman controller. Note that the
SR of the classical controller with this vibration is lower
than the mixed controllers almost for every considered error
values.

These simulation results can also be explained by looking
at the corresponding sensitivity functions. Figure 6 represents
the maximal singular values of the transfer functions between
disturbances and estimation error5. From this figure we can
see that the Kalman filter estimation sensitivity functions in
correspondence of the vibration frequency have a peak. This
means that the Kalman filter is more sensitive to disturbances
around this frequency, and that model errors around this
frequency will have a greater influence on the estimation.
Instead, the H∞ filter is characterized by flatter sensitivity
functions. Hence, this filter should be more robust to errors
on the vibration’s frequency value, as has been shown with
numerical simulations above.

5We trace this graph and not all the sensitivity functions for a simpler
and better comprehension - the sensitivity functions are n×m.



Fig. 5. Robustness study: performance of the mixed controllers under the
presence of model errors regarding the vibration’s frequency.

Fig. 6. Singular values of the disturbances - esitmation error transfer
function for Kalman and H∞ filters.

VI. CONCLUSIONS AND FURTHER WORK

We have presented in this work a mixed-control strategy
combining classical and filter-based techniques for the LBT-
AO system. We have shown with numerical simulations
that the mixed controllers are able to effectively eliminate
the effects of telescope’s structure vibrations on the AO
performance. In order to achieve this, it is crucial to charac-
terize accurately the vibration parameters, in particular the
vibration’s frequency value. We have verified that the H∞

filter is more robust than the Kalman filter with respect
to uncertainties on the vibration’s frequency value. For the
particular parameters simulated in this work, an absolute loss
of 10% of SR at 2.2µm is expected in the presence of a
frequency error of ±1.2Hz and ±0.9Hz in the vibration’s
model for the H∞ and the Kalman filter respectively.

We should note that more than one vibration frequencies
can be taken into account straightforwardly by extending the
model and the state vector. As a next step, we will implement
the mixed-control strategy in a test bench based on the
real-time computer of the LBT-AO system. We should note
that the mixed-control strategy can be implemented without
changes on the existing hardware and firmware.
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