
On multiple-delay approximations of multiple-derivative controllers

Yan Wan, Sandip Roy, Anton Stoorvogel, Ali Saberi

Abstract—We study approximation of multiple-derivative
output feedback for linear time-invariant (LTI) plants using
multiple-delay approximations. We obtain a condition on the
plant and feedback that yields an equivalence between the
closed-loop spectra for the approximate feedbacks and the
desired multiple-derivative feedbacks. On the other hand, we
use a scalar example to illustrate that multiple-delay approxi-
mations of sufficiently high derivatives may in some cases yield
closed-loop spectra that differ greatly from the dynamics upon
derivative feedback (for instance, containing many and very
large right half plane poles), while in other cases replicating the
derivative feedback perfectly. Finally, through understanding
this dichotomy, we present a condition for stabilizing a SISO
relative degree-1 plant when a delay implementation of the
first-order derivative is used in the output feedback control
law.

I. INTRODUCTION

Control of linear time-invariant plants at its essence re-
quires feedback of the output’s derivatives, and so control
schemes explicitly or implicitly must obtain approxima-
tions of output derivatives (see e.g. [10]). Typically, finite-
dimensional filters (for instance, lead compensators) are
used to obtain output derivatives. However, in recent years,
feedback controllers in which derivatives are approximated
directly from current and delayed output samples have gained
some prominence [3]–[7], [9]. Specifically, these multiple
delay controllers have been of interest as alternatives to
the typical finite-state controllers for several reasons, in-
cluding: 1) the need for new signal-based control schemes
in applications where the traditional observer design fails
(such as decentralized and adaptive control applications),
2) the simplicity of approximating derivatives with delay-
differences in some application areas, and 3) the intrinsic
presence of delays in many modern control systems. Thus,
modeling and analyzing feedback control systems that use
delay approximations for derivatives, and in turn designing
delay-approximation schemes in controls, is important.
Differential equations with delays, and more specifically
the closed-loop dynamics of control systems subject to delay,
have been extensively studied [2]. However, the systems
studied here are distinct from those studied in the delay
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literature, in that multiply-delayed outputs are deliberately
being used to approximate output derivatives and hence to
implement desirable feedbacks. This deliberate use of de-
lays engenders new analyses—namely, efforts to equivalence
the performance of the delay-based controller with a true
derivative feedback control. It also forces study of delay
systems in the case where the delays are made small, as
is needed for accurate approximation of derivatives using
delayed outputs. To the best of our knowledge, a sys-
tematic treatment of deliberate-delay-based output-feedback
controllers has not been given: several works have addressed
design for particular plants or particular controllers. Of
interest to us, integrator-chains and relative degree one and
two plants with certain high frequency gain constraints have
been addressed in [3], [4], [7]. Moreover, motivated by their
study of stabilizing uncertain steady states using difference
feedback, Kokame and Mori in [6] studied the stability when
using difference counterparts in a feedback that is only
involved with a first-order derivative. Our earlier work [9]
expanded on these efforts by showing that deliberate-delay-
based controllers can stabilize a large class of LTI plants,
but did not address more complicated controls goals such as
pole placement (which we will address here); this previous
effort also only gave a detailed proof of results for the SISO
case, while we will fully study the MIMO case here. We
note that the studies [7], [9] of deliberate-delay-based output
feedback controls only consider approximation of sufficiently
low output derivatives, in particular ones that are less than the
relative degree of the plant. Meanwhile, several researchers
have recognized in the state-feedback arena that deliberate-
delay approximations of some higher derivative feedbacks
may fail, while stability is achieved upon approximation of
other feedbacks [3], [6]. This motivates the systematic study
of higher derivative feedbacks pursued here.
In this article, we further the study of deliberate-delay

control of LTI plants. We first show, in Section II, that the
closed-loop spectrum of MIMO plants upon derivative feed-
back can be achieved asymptotically using deliberate-delay
approximations, as long as the approximated derivatives are
of sufficiently low order. In Section III, we demonstrate
through a scalar example the phenomenon that approxima-
tion of higher-derivative feedbacks can in some cases yield
unexpected and undesirable response characteristics (includ-
ing spectra with poles far in the right half plane), while
replicating derivative control exactly in other cases. Based
on this understanding, we also give a more general result
on delay approximation of first-derivative output feedback
control of relative-degree-1 plant. These characteristics of
the closed-loop spectrum and response are similar in flavor
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to characteristics of neutral-type delay differential equations,
but also have some significant distinctions.

II. A POLE EQUIVALENCE RESULT
Here, we give conditions under which delay approxi-

mations of multiple-derivative controllers achieve the same
closed-loop performance as derivative feedback, in the sense
that the closed-loop eigenvalues upon delay control either
approach those upon derivative control, or move arbitrarily
far to the left in the complex plane. In particular, we
find that delay-based and derivative-based controllers can
be made arbitrarily close as long as the derivatives being
approximated are of sufficiently low order, namely such
that the closed-loop system under derivative feedback would
be strictly proper. Derivative feedback of this form is well
known to permit stabilization and pole placement for a large
class of LTI plants (see the classical literature on asymptotic
timescale eigenstructure assignment, or ATEA, design [10]),
and so we see that delay-based approximations are apt for
stabilization and pole placement.
Specifically, let us consider a MIMO LTI system:

ẋ= A0x+B0u
y=C0x

(1)

with x ∈ R
n, u ∈ R

m and y ∈ R
p. Say that a multiple-

derivative feedback controller

u(t) =
n

∑
i=1
Kiy(i−1)(t), (2)

where Ki ∈ R
m×p, (which has transfer function F(s) =

∑ni=1 Kisi−1) can be designed for this system, so that the
closed-loop transfer functions C0(sI − A0)−1B0Kisi−1 are
strictly proper for i = 1, . . . ,n and the zeros of sI − A0 −
B0F(s)C0 are in the open left half plane.
Remark: We stress that such multiple-derivative con-

trollers can be designed for a wide class of LTI plants,
including all minimum phase plants [9].
Let us consider approximating the derivative feedback
using a multiple-delay scheme. In particular, we consider
approximating y(1), . . . ,y(n−1) by developing a polynomial
interpolation of the observation at times t− ετ1, . . . ,t− ετn,
and computing the derivatives from the interpolation (see [7],
[9] for background). With a little algebra, we can specify the
transfer function Fε(s) of this approximate feedback (which
is parametrized on ε) as follows. First defining

Li,ε (s) =
(i−1)!
(−ε)i−1

e′i

⎛
⎜⎜⎜⎝

1 τ1 · · · τn−11
1 τ2 · · · τn−12
...
...

...
1 τn · · · τn−1n

⎞
⎟⎟⎟⎠

−1⎛
⎜⎝
e−ετ1s

...
e−ετns

⎞
⎟⎠ ,

where 0 ≤ τ1 < τ2 < · · · < τM and ei denotes the ith unit
vector, we get

Fε (s) =
n

∑
i=1
Ki

⎛
⎜⎜⎜⎜⎜⎝

Li,ε (s) 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 Li,ε (s)

⎞
⎟⎟⎟⎟⎟⎠

=
n

∑
i=1
KiL̃i,ε (s). (3)

We shall consider the closed-loop spectrum upon use of this
approximate feedback control1, as a function of ε . We obtain
the following main result:

Theorem 1 For sufficiently small ε , the closed system upon
application of the approximate feedback Fε(s) to the system
(1) is also stable. In particular, n closed-loop poles approach
the closed-loop poles when the true derivative feedback (2)
is used, while the remaining (infinite number of) poles move
arbitrarily far left in the complex plane as ε is decreased.

Proof: The proof consists of two steps. We will first
show that the closed-loop system using the approximate
feedback Fε(s) has exactly n poles in the right half plane
Res≥−1/ε . Then we will show that these n poles converge
to the the n poles of the closed-loop using derivative feedback
as ε → 0.
Let us look at the resulting closed loop system:

sI−A0−B0Fε(s)C0 (4)

and the associated zeros. We use the factorization: C0(sI−
A0)−1B0 = 1

q(s)P(s), where P is a polynomial matrix and
q(s) = det(sI−A). Note that our earlier assumption guaran-
tees that P(s)Ki is a polynomial of order less than or equal
to n− i for i= 1, . . . ,n. Next we note:

q(s)p−1Gε(s) = q(s)p−1 det(sI−A0−B0Fε(s)C0)
= q(s)p det

(
I− (sI−A0)−1B0Fε(s)C0

)
= q(s)p det

(
I−C0(sI−A0)−1B0Fε(s)

)
= det(q(s)I−P(s)Fε(s)) .

The next step is to apply a scaling: s̄= εs and obtain:

Ḡε(s̄) = ε pnq(s)p−1Gε(s)
= ε pnq(s)p−1 det(sI−A0−B0Fε(s)C0)
= det(εnq(s)I− εnP(s)Fε(s))

= det

(
εnq(s)I− εn

n

∑
i=1
P(s)KiL̃i,ε(s)

)

= det

(
q̄ε(s̄)I−

n

∑
i=1
P̄i,ε(s)L̄i,ε(s)

)

where q̄ε(s̄) = εnq(ε−1s̄), P̄i,ε(s̄) = εn−iP(ε−1s̄)Ki, and
L̄i,ε(s̄) = ε iL̃i,ε(ε−1s̄).
We note that q̄ε(s̄), P̄i,ε(s̄) and L̄i,ε(s̄) all depend polynomi-

ally on ε and converge to s̄n, Pi,0s̄n−i and 0 respectively when
ε → 0 where Pi,0 is some constant matrix (which might be
zero). Hence Ḡ0(s̄) = s̄pn has exactly pn zeros at the origin.
Next we note that for Re s̄≥−1 there exists constants N1,

N2 and N3 such that ‖L̄i,ε(s̄)‖≤ εN1, ‖P̄i,ε(s̄)‖≤N2|s̄|n−i and
|s̄n− q̄ε(s̄)| ≤ εN3|s̄|n−1. But then(

q̄ε(s̄)I−
n

∑
i=1
P̄i,ε(s)L̄i,ε(s)

)
v= 0

1We stress that these control problems that we are addressing here is not
simply a delay-independent stability problem, in that not only the delays
but also the parameters are changing with ε .

Y. Wan et al.: On Multiple-Delay Approximations of Multiple-Derivative Controllers WeB3.3

4164



for some v with ‖v‖ = 1 implies: s̄nv = (s̄n− q̄ε(s̄))v+

∑ni=1 P̄i,ε(s)L̄i,ε(s)v. But then |s̄|n ≤ εN3|s̄|n−1 +

∑ni=1 εN1N2|s̄|n−i which clearly implies that for ε small
enough we must have that |s̄| ≤ 1. Hence for ε small
enough, all zeros of Ḡε(s̄) in Re s̄ ≥ −1 are also inside the
unit circle. Next, an application of Hurwitz’s theorem, see
[1], implies that Ḡε(s̄) has exactly np eigenvalues inside the
unit circle for ε small enough and which converge to zero
as ε → 0. Hence we know that Ḡε(s̄) for ε small enough
has exactly np eigenvalues in Res ≥ −1. This implies
immediately that Gε(s) has, again for small ε , exactly n
eigenvalues in Res≥−1/ε .
Next we choose a region K such that it contains all zeros

of

sI−A0−B0

(
n

∑
i=1
Kisi−1

)
C0. (5)

We will show that Gε(s) has exactly n zeros in K which
converge to the zeros of (5) as ε converges to zero. As
already indicated in [7] Fε(s) = ∑ni=1 Kisi−1+O(εs). in the
region K . But this implies that inside the compact region
K , (4) converges uniformly to (5) as ε → 0. This implies
that Gε(s) has, for small enough ε , n zeros inside K which
converge to the zeros of (5) as ε → 0. Since Gε(s) has exactly
n zeros in the region Res ≥ −1/ε , we find that Gε(s) has
no other zeros outside K in the region Res ≥ −1/ε . This
clearly implies that n zeros converge to the zeros of (5) while
the remaining zeros approach −∞. This completes the proof
of stability and the associated convergence of eigenvalues.

Let us make one note about the above result. For SISO
plants and MIMO uniform rank plants, the condition given
in the above theorem reduces to the condition that the
derivatives being approximated are strictly lower in order
than the (common) relative degree of the plant; the theorem
indicates that approximation of these derivatives can be used
successfully in feedback control. More generally, the theorem
indicates that output derivatives which can be written as
linear functions of the concurrent state are amenable to
multiple-delay approximation in feedback. We note that,
often, many fewer than n delays may be needed for approxi-
mation; a careful delineation of the number of delays needed
requires the special coordinate basis for linear systems,
see the study of asymptotic timescale and eigenstructure
assignment (ATEA) in [10].

III. ANATOMY OF HIGHER DERIVATIVE
APPROXIMATIONS: SCALAR EXAMPLES

In Section II, we have shown that multiple-delay approxi-
mations to multiple-derivative controllers achieve equivalent
performance in the limit of small delay, as long as the high-
est output derivative approximated is less than the relative
degree of the plant (i.e., the closed loop transfer functions
are strictly proper). In several domains including decentral-
ized and adaptive control, one encounters the problem that
multiple-derivative controllers involving derivatives up to and
including the relative degree of the plant (i.e., controllers

that make the closed-loop non-strictly proper) are needed
(see e.g., [11]). We are thus motivated to understand the
closed-loop dynamics when multiple-delay approximations
for derivatives of order equal to the relative degree are used.
In this section, we expose the complexity of the dynamics

when delay approximations for derivatives of order equal to
the relative degree are used. It turns out in this case that
the delay approximation does not always yield the dynamics
achieved using the derivative controller, even in the limit of
small delay. We show this interesting phenomenon using a
canonical (scalar) example.
We consider the scalar system

ẋ(t) = u(t), (6)

and consider delay approximation of the following stabilizing
derivative-based controller

u= ax(t)+bẋ(t), (7)

where the gains a and b need to satisfy either a> 0 and b> 1
or a< 0 and b< 1 for stability. Specifically, we approximate
the derivative term ẋ(t) in the controller (7) as x(t)−x(t−Δ)

Δ ,
where Δ is a small time delay, in which case the delay-based
controller is

u=
b+aΔ

Δ
x(t)−

bx(t−Δ)

Δ
. (8)

We notice here that the derivative being approximated is in
fact that of the full state (in this case, a scalar), and so the
special output feedback structure used in Section II to prove
equivalence is not in force here.
In Section III-A, we show that delay approximations to

stabilizing derivative controllers can lead to instabilities that
are not present if derivative control is used, and compare
this effect with the instabilities observed in delay-differential
equations of neutral type. Next, Section III-B identifies a
class of derivative feedbacks (for the scalar plant) that are
amenable to approximation by multiple-delay controllers.
Using this insight into the dichotomy of approximation
performance, we give conditions in Section IV on feedback
controllers for relative-degree-1 plant with higher derivative
feedbacks that allow approximation.

A. Instabilities caused by delay approximations
Here we use a simple first-order system (6) to show that

the delay approximation of certain derivative controllers may
introduce ORHP poles. We find the pole locations of the
closed-loop delay-based system, and present an interesting
phenomenon: the unstable pole becomes larger with more
accurate approximations. Let us present several results de-
scribing this possible instability caused by approximation.
The delay-based controller (8) may introduce ORHP poles,

although the corresponding derivative controller stabilizes the
system when a> 0 and b> 1. When (8) is used, the closed
loop poles satisfy

s= a+
b
Δ

(1− e−Δs). (9)
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As an example, when a = 1, b = 10, and Δ = 0.001, the
closed-loop system has a real root at s ≈ 10000. With the
decrease of Δ, the real pole moves further to the right.
This peculiar phenomenon motivates us to further charac-
terize the locations and number of the ORHP poles. Inter-
estingly, we can constrain the pole locations of the system
upon use of the delay-based approximation to a contour in
the complex plane. We show this result in Lemma 1.

Lemma 1 Consider the first order system (6) and a sta-
bilizing derivative-based controller (7). The poles of the
closed-loop system using the corresponding delay-based im-
plementation of the controller (8) are located on the contour
(r−a− b

Δ )2+q2 = b2
Δ2 e

−2Δr.

Proof: Rewrite (9) with s = r+ q j, where r is the
real part of a pole, and q is the imaginary part. A little
bit of algebra leads to r = a+ b

Δ − b
Δe

−Δr cos(Δq) and q =
b
Δe

−Δr sin(Δq). Combining these two expressions and notic-
ing that sin(Δq)2+ cos(Δq)2 = 1, we obtain the condition.
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Fig. 1. The contour of poles when a= 1, b= 9 and Δ = 0.1. a) the contour
of the OLHP poles; b) the contour of the ORHP poles.

This result shows that the poles reside on a contour
centered at (a+ b

Δ ,0) with varying radius bΔe
−Δr. An example

of the contour when a = 1, b = 9 and Δ = 0.1 is shown
in Figure 1. When the delay Δ is small, Δr roughly equals
the constant b, hence the shape of the ORHP contour is
roughly a circle. Also, with the decrease of Δ, the ORHP
contour shifts to the right with the radius roughly scaled
with 1Δ . On the other hand, the shape of the contour in the
OLHP is determined by the dominant exponential term. Of
interest to us, we note that the OLHP contour scales to the
left as Δ decreases. Meanwhile, the OLHP contour changes
significantly with r, due to the exponential term. We again
stress that, as the delay Δ is decreased, the unstable pole
becomes larger and larger.
The delay-based controller (8) for any fixed set of param-

eters is formally one of retarded type, and hence has a finite
number of ORHP poles. We notice that if we instead use
a controller with a delayed-derivative approximation for the
scalar plant, i.e.

u(t) = ax(t)+bẋ(t−Δ) (10)

the resulting closed-loop system is a neutral delay-
differential equation. One characteristic of neutral delay-
differential equations (see e.g. [2], [8]) is the presence of
an “infinite root chain,” i.e. of an infinite number of ORHP

eigenvalues all with real part located in an interval. Besides
the difference, the controllers in (10) and (8) may result
in unstable dynamics that do not resemble that using the
derivative controller (7). It is quite interesting to observe
when using delay approximation, how this number of poles
depends on the system parameters, to see whether the dy-
namics are similar to those of a neutral type system.
Let us describe the dependence of the number of ORHP

poles on the delay Δ and on the gain b.

Lemma 2 Consider the first order system (6) and a stabiliz-
ing derivative-based controller (7) with a> 0 and b> 1. The
corresponding delay-based implementation of the controller
(8) introduces a finite number of poles in the ORHP. The
number of ORHP poles can grow with the decrease of the
time delay Δ, but remains bounded. However, the number of
ORHP poles grows unboundedly with b.

Proof: First, we notice that when a > 0 and b >
1, the derivative-based controller (7) stabilizes the system.
Moreover, from the proof of Lemma 1, we have |Δq| ≤ be−Δr.
Next, we recall the well-known property that the closed-

loop system using the delay-based controller—which is a
retarded delay-differential equation for any fixed Δ—has only
a finite number of ORHP poles (see e.g., [2].)
Now let us count the number of ORHP poles. When q= 0,

the closed-loop system has a single real pole at (a+ b
Δ −

b
Δe

−Δr,0). When q �= 0, combining the expressions for q and
r from the proof of Lemma 1 and eliminating r from the
expression, we obtain

ΔqeaΔ+b = bsin(Δq)eΔq cot(Δq). (11)

By introducing q′ = Δq, we can see that the right side of
(11) is simply an oscillating function of q′ with varying
amplitude within the bound |q′|< be−Δr, and the left side is a
monotonic function of q′ with the scaling factor eaΔ+b. From
consideration of the oscillating function on the right side with
the observation that cot(Δq) is unbounded, one automatically
sees that the number of solutions to (11) and hence the
number of complex ORHP poles is between be−Δr

π − 2 and
be−Δr

π +2. Hence as Δ decreases, one sees that the number of
solutions to (11) may increase but always below the bound
b
2π +1. We also automatically recover from the lower bound
that the number grows unboundedly with b.
We notice that our delay-based approximation, though

formally yielding a retarded differential equation, has some
resemblance to delayed-derivative approximation for large
b, in terms of having highly unstable dynamics and a large
number of ORHP poles.
The analysis of the example in this section demonstrates

that the delay approximation when the stabilizing derivative
controller has highest derivative term equal to the relative
degree may cause instability. Such a system is different in
terms of dynamics from both the delayed-derivative system
and the delay approximation when we use one less degree
in the derivative controller. The former system is a neutral
system that has chains of infinite number of roots in certain
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right half planes. Meanwhile, the later controller guarantees
that the dynamics using the approximation resembles the
dynamics using the derivative controller. When a derivative
equal to the relative degree is used in the control law, the
resulting system remains retarded but may not represent the
dynamics using the derivative controller anymore, and in
fact show certain neutral type behavior, as we see when b
becomes large. This peculiar dynamics is cause by the fact
that delay is used to approximate a quantity that is not part
of the state of the system.

B. A Pole Placement Result for Some Approximations
We have shown that, unfortunately, delay approximations
to derivative feedbacks of order equal to the relative degree
of a plant can fail. Luckily, only some such approximations
cause instability. In fact, in many cases, depending on the
parameters of the stabilizing derivative controller, certain
delay approximations can be shown to achieve equivalence
to the derivative feedback in a pole-placement sense, as the
delay Δ is made small. Here, we shall demonstrate this pole-
equivalence result for the canonical scalar system (6) with
a< 0 and b< 0 in (8). This simple example provides us with
a means for implementing multiple-derivative controllers for
decentralized systems. That is, through smart design of the
stabilizing derivative controller, stability can be maintained
using delay approximation.
Although this delay feedback only differs from the one

considered in Section III-A in its sign, the resulting closed-
loop dynamics are stable, and in fact the spectrum become
equivalent to that in (7) as the delay Δ becomes small.
Precisely, the following result holds:

Theorem 2 Consider the poles of the first-order system (6)
using delay-feedback control (8) where a< 0 and b< 0. As
Δ → 0, one pole approaches a

1−b , i.e. the single pole of the
closed-loop system using derivative feedback control (7). The
remaining poles have real parts approaching −∞.

Proof: We notice that this closed-loop dynamics,
which represents a negative derivative feedback to a single-
integrator plant, has a single stable pole, at a

1−b . As in Section
III-A, we can limit the poles to the contour given in Lemma
1. For a < 0 and b < 0, it is immediate that this contour is
located entirely within the OLHP, so stability of the closed-
loop follows.
What remains to be shown is that one pole approaches
a
1−b , while the remaining poles move arbitrarily far left. To
prove this, let us first show that one pole can be placed
arbitrarily close to a

1−b by choosing Δ small, while the
remaining poles must be outside a circle centered the origin
with radius increasing unboundedly as Δ becomes small.
We notice that the characteristic equation of the delay-
feedback system is given by s = a+ bs

1+q(s) , where q(s) =
sΔ

1−e−sΔ −1, and we have written the differential equation in
this form to highlight that the delay approximation performs
a low-pass filtering. Notice that, roughly, q(s)≈ 0 for |s|< 1

Δ
and q(s) ≈ sΔ for |s| > 1

Δ .

Rearranging, we obtain that the characteristic polynomial
is (s− a)q(s)+ (1− b)s− a = 0. Using this form, we shall
prove that all poles within a circle in the complex plane
whose radius increases unboundedly as Δ decreases can only
lie within a small ball around a

1−b . In particular, consider a
small ball of radius ε > 0 around the point a

1−b . For all s
outside this ball, notice that |(1−b)s−a| ≥ |(1−b)|ε . Now
consider a (large) circle of radius f . For any f , it is clear
that the maximum value of |q(s)| within this circle can be
made arbitrarily small by choosing Δ sufficiently small; more
specifically, it is easily seen that |q(s)| within this circle can
be upper bounded by K fΔ, for some positive constant K.
In turn, we find that |(s−a)q(s)| within the circle is upper
bounded by K f ( f +a)Δ. Thus, by choosing Δ < (1+b)ε

K f ( f+a) , we
can guarantee that |(1+ b)s+ a| > |(s− a)q(s)| for all s in
the circle of radius f , for any f . Choosing Δ in this way, we
guarantee that all roots of the characteristic equation within
the circle of radius f must be within the ball of radius ε
around a

1−b . By considering the characteristic equation, we
can trivially check that there is indeed precisely one (real)
pole within the ball, and that this pole has multiplicity 1.
We can use the contour on which the poles must be located
to complete the proof. Notice that, for particular a < 0 and
b < 0, the contour is located in the OLHP and further that
as Δ is decreased the real part of the point on the contour
for each possible imaginary value decreases (becomes more
negative). This observation, together with the fact that Δ can
be selected to exclude poles from inside a circle of arbitrary
radius f (except the one near a

1−b ), shows that the remaining
poles can be moved arbitrarily far left in the complex plane
by choosing Δ sufficiently small.
The equivalence of the delay-feedback approximation with

the derivative-based controller for a< 0 and b< 0 is hearten-
ing, because it suggests that some derivative controls of order
equal to the relative degree of a plant can be implemented
using multiple-delay approximations.

IV. DESIGNING DERIVATIVE-APPROXIMATION
CONTROLLERS FOR RELATIVE DEGREE 1 PLANTS
The anatomy of higher-derivative approximations intro-
duced in the above sections shows that instabilities may
result when approximating some derivative feedbacks, while
approximations of other derivative feedbacks match the
derivative feedback’s performance. That is, approximation
is possible when some feedback gains are applied to the
higher-derivative terms, but not when other gains are used.
This understanding motivates study of which feedback gains
allow for use of higher-derivative approximations, for more
general LTI plants. Here, let us present a first result in this
direction. Specifically, let us show how delay-approximation
controllers can be used to stabilize SISO LTI plants with
relative degree 1. Formally, consider a SISO plant

ẋ= Ax+bu
y= cx

(12)

that has relative degree 1, i.e. for which cb is nonzero.
Assume that there exist a derivative feedback u= k1y+ k2ẏ
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which stabilizes this system. Let us consider control of this
plant by approximating this derivative feedback by

k1y(t)+ k2
y(t)− y(t− ετ)

ετ
, (13)

for any τ > 0. We note that the derivative of the output
to be approximated in feedback is equal to the relative
degree of the plant, which equivalently means that 1) the
closed-loop transfer function is not strictly proper and that
2) the derivative ẏ is not simply a linear function of the
concurrent state. Thus, we expect this feedback might not
be easily approximated when certain gains k1 and k2 are
used. The following theorem gives conditions under which
the deliberate-delay approximation matches the derivative-
feedback control.

Theorem 3 Consider the system (12) with relative degree 1
and the delay-based feedback (13). Provided k2 and cb have
opposite sign, the closed loop system is asymptotically stable
for all small enough ε > 0.

Proof: The closed loop poles of the
approximating feedback are the zeros of:
det

(
sI−A−b

[
k1+ k2 1ετ (1− e−ετs)

]
c
)
which can be

rewritten as: gε(s) = det
(
q(s)− p(s)

[
k1+ k2 1ετ (1− e−ετs)

])
where c(sI − A)−1b = p(s)

q(s) , q(s) is a monic polynomial
of order n, and p(s) is a polynomial of order
n − 1 whose leading coefficient equals cb. The
next step is to apply a scaling: s̄ = εs and obtain:
gε(s̄) = εngε(s) = det

(
q̄ε(s̄)− p̄ε(s̄)

[
k1ε + k2 1τ

(
1− eτ s̄)]),

where q̄ε(s̄) = εnq(ε−1s̄) and p̄ε(s̄) = εn−1p(ε−1s̄).
We note that q̄ε(s̄) and p̄ε(s̄) depend polynomially on

ε and converge to s̄n and p0s̄n−1 respectively when ε → 0
where p0 is some constant matrix (which might be zero).
Next we note that for Re s̄≥−1 there exists constants N1,

N2 and N3 such that ‖k1ε + k2 1τ
(
1− eτ s̄)‖ ≤ N1, ‖p̄ε(s̄)‖ ≤

N2|s̄|n−1, and |s̄n− q̄ε(s̄)| ≤ εN3|s̄|n−1. But then ḡε(s̄) = 0
implies: |s̄|n ≤ εN3|s̄|n−1+N1N2|s̄|n−1 which clearly implies
that for ε small enough we must have that |s̄|<N4 for some
constant N4.
Next, we note that

s̄n− k2(cb)
τ s̄n−1(1− e−τ s̄) (14)

has n zeros at the origin since k2(cb) �= 1. Moreover, this
function has no zeros with Re s̄> 0. After all in that case

s̄= k2(cb)
τ (1− e−τ s̄) (15)

with Re(1− e−τ s̄) ≥ 0 and k2(cb) < 0 yields that the right
hand side lies in the open left half plane while s̄ lies in the
open right half plane which provides us with a contradiction.
Thus, we have that q̄ε(s̄) has no zeros in the ORHP. Next,
we consider the possibility of imaginary axis zeros. If there
were any, one would need τ s̄ = 2qπ j for some integer q.
Since in (15) the right hand side must be on the imaginary
axis. However, this immediately yields s̄= 0 if we go back
to (15).

We find thus that (15) has exactly n zeros in Re s̄≥ 0 and
|s̄| ≥ N4. Using that the function is analytic, we find that
there exists δ > 0 such that this function has exactly n zeros
in Re s̄≥−δ and |s̄| ≤N4. But this implies that ḡε(s), which
converges uniformly in the region Re s̄ ≥ −δ and |s̄| ≤ N4
to (14), has exactly n zeros in this region. Since we already
established that this function did not have zeros with |s̄| ≥N4,
we find that (14) has exactly n zeros in Re s̄≥−δ .
Next we choose a region K in the open left half plane

such that it contains all zeros of

det(sI−A−b [k1+ k2s]c) (16)

which is possible since the derivative based feedback was
stabilizing. We will show that gε(s) has exactly n zeros
in K which converge to the zeros of (5) as ε converges
to zero. Similar to the proof of Theorem 1 we find: k1+
k2 1ετ (1− e−ετs) = k1 + k2s+O(εs). But this implies that
inside the compact region K , Gε(s) converges uniformly
to (16) as ε → 0. This implies that gε(s) has, for small
enough ε , n zeros inside K which converge to the zeros of
(5) as ε → 0. Since gε(s) has exactly n zeros in the region
Res≥−δ/ε , we find that gε(s) has no other zeros outside
K in the region Res ≥ −δ/ε . This clearly implies that n
zeros converge to the zeros of gε(s) while the remaining
zeros approach −∞. This completes the proof of stability.
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