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Estimation of vehicle lateral tire-road forces: a comparison between
extended and unscented Kalman filtering

Moustapha Doumiati, Alessandro Victorino, Ali Charara andDaniel Lechner

Abstract— Extensive research has shown that most of road
accidents occur as a result of driver errors. A close examination
of accident data reveals that losing the vehicle control is
responsible for a huge proportion of car accidents. Preventing
such kind of accidents using vehicle control systems, requires
certain input data concerning vehicle dynamic parameters
and vehicle road interaction. Unfortunately, some parameters
like tire-road forces and sideslip angle, which have a major
impact on vehicle dynamics, are difficult to measure in a car.
Therefore, this data must be estimated. Due to the system
nonlinearities and unmodeled dynamics, two observers derived
from extended and unscented Kalman filtering techniques are
proposed and compared. The estimation process method is
based on the dynamic response of a vehicle instrumented
with cheap, easily-available standard sensors. Performances
are tested and compared to real experimental data acquired
using the INRETS-MA Laboratory car. Experimental results
demonstrate the ability of this approach to provide accurate
estimations, and show its practical potential as a low-cost
solution for calculating lateral-tire forces and sideslip angle.

I. I NTRODUCTION

Vehicle control algorithms such as Electronic Stability
Control (ESC) systems have made great strides towards
improving the handling and safety of vehicles. In fact, experts
estimate that the ESC prevents 27% of loss of control acci-
dents by intervening when emergency situations are detected
[1]. While ESC is undoubtedly a life-saving technology, it
is limited by the available vehicle state information.
ESC systems currently available on production cars rely
on avaible inexpensive measurements (such as longitudinal
velocity, accelerations and yaw rate), tire model, and sideslip
rate, not sideslip angle. Calculating sideslip angle from
sideslip rate integration is prone to uncertainty and errors
from sensor biases. Furthermore, other essential parameters
like tire-road forces are difficult to measure because of
technical, physical and economic reasons. Therefore, these
important data must be observed or estimated. If control
systems could characterize lateral tire forces characteristics,
namely lateral forces, sideslip angle and tire-road friction
coefficient, these systems could greatly enhance vehicle
handling and increase passenger safety.
As the motion of a vehicle is governed by the forces
generated between the tires and the road, knowledge of
the tire forces is crucial to predicting vehicle motion. The
lateral forces necessary for a vehicle to hold a curve arise
as a result of tire deformation. As shown in figure 1, the
relationship between the lateral force and the slip angle is
initially linear with a constant slope ofCα, referred to as
the cornering stiffness. When operating in the linear region,
a vehicle responds predictably to the driver’s inputs. When a
vehicle undergoes high accelerations, or when road friction
changes, the vehicle dynamic becomes nonlinear and the
force begins to saturate. Consequently, the tire enters the
nonlinear operating region and the vehicle approaches its
handling limits and its response becomes less predictable.
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Lateral vehicle dynamic estimation has been widely dis-
cussed in the literature. Several studies have been conducted
regarding the estimation of tire-road forces and sideslip angle
[2]-[9]. For example, in [2] and [3], the authors estimate the
vehicle dynamic state for a four-wheel vehicle model. Con-
sequently, tire forces are calculated based on the estimated
states and using tire models. In [4], Ray estimates the vehicle
dynamic states and lateral tire forces per axle for a nine
DOF vehicle model. The author uses measures of the applied
torques as inputs to his model. We note that the torque is
difficult to get in practice; it requires expensive sensors.More
recently, in [5] and [6], authors propose observers to estimate
lateral forces per axle without using torque measures. In [7],
the authors propose an estimation process based on a three
DOF vehicle model, as a tire force estimator. In [8] and [9],
sideslip angle estimation is discussed in details.
In [5], [6], [7], lateral forces are modelled with a derivative
equal to random noise. The authors in [7], remark that such
modeling leads to a noticeable inaccuracy when estimating
individual lateral tire forces, but not in axle lateral forces.
This phenomenon is due to the non-representation of the
lateral load transfer when modeling [7].
The main goal of this study is to develop an estimation
method that uses a simple vehicle-road model and a certain
number of valid measurements in order to estimate accuracy
and in real-time the lateral force at each individual tire-
road contact point. We suppose a prior knowledge of road
conditions. This study presents two particularities:

• the estimation process does not use the measurement of
wheel torques,

• As described in section II, the estimation process uses
accurate estimated normal tire forces, while other ap-
proaches found in the literature assume constant vertical
forces.

The observation system is highly nonlinear and presents
unmodeled dynamics. For this reason, two observers based
on EKF (Extended Kalman Filter) and UKF (Unscented
Kalman Filter) are proposed. The EKF is probably the most
used estimator for nonlinear systems, however the UKF has
shown the ability to be a superior alternative especially when
system presents strong nonlinearities. This study compares
and discusses this two filtering techniques in our estimation
approach.
In order to show the effectiveness of the estimation method,
some validation tests were carried out on an instrumented
vehicle in realistic driving situations.
The remainder of the paper is organized as follows. In section
2 we describe the estimation process. Section 3 presents the
vehicle/road model. Section 4 describes the observer and
presents the observability analysis. In section 5 the observers
results are discussed and compared to real experimental data,
and then in the final section we make some concluding
remarks regarding our study and future perspectives.

II. ESTIMATION PROCESS DESCRIPTION

The estimation process is shown in its entirety by the
block diagram in figure 2, whereax andaym are respectively
the longitudinal and lateral accelerations,ψ̇ is the yaw rate,
∆ij ( i represents front(1) or rear(2) andj represents left(1)
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Fig. 1. Generic tire curve

or right (2)) is the suspension deflection,wij is the wheel
velocity,Fzij andFyij are respectively the normal and lateral
tire/road forces,β is the sideslip angle at the centre of gravity
(cog). The estimation process consists of two blocks and its
role is to estimate normal and lateral forces at each tire/road
level and then to evaluate the lateral friction coefficient.The
following measurements are needed:

• yaw rate, longitudinal and lateral accelerations mea-
sured by an inertial sensor,

• suspension deflections using suspension deflections sen-
sors,

• steering angle measured by an optical sensor,
• rotational velocity for each tire given by ABS.
The first block aims to provide the vehicle’s weight,

normal tire forces and the corrected lateral acceleration
ay (by canceling the gravitational acceleration that distorts
the accelerometer signal). It contains observers based on
vehicle’s roll dynamics and model that couples longitudinal
and lateral accelerations. The first block was the subject of
our previous studies [10], [11]. This article focuses only on
the second block, whose main role is to estimate lateral tire
forces and sideslip angle. The second block makes use of
the estimations provided by the first block. One particularity
of this estimation process is the use of blocks in series. By
using cascaded observers, the observability problems entailed
by an inappropriate use of the complete modeling equations
are avoided enabling the estimation process to be carried out
in a simple and practical way.

III. V EHICLE-ROAD MODEL

A. Four-wheel vehicle model
The Four-Wheel Vehicle model (FWVM) was chosen for

this study because it is simple and corresponds sufficiently
to our objectives. The FWVM is widely used to describe
transversal vehicle dynamic behavior [3], [4], [6]. In this
study, we adopt the following simplified assumptions:

• rear longitudinal forces are neglected relative to the
front longitudinal forces (Assuming a front-driven ve-
hicle). We suppose thatFx1 = Fx11 + Fx12,

• front steering angles are equal(δ11 = δ12 = δ) and rear
steering angles are approximately null (δ21 = δ22 = 0).

Figure 3 shows the FWVM model, wherėψ is the yaw
rate,β is the center of gravity sideslip angle, it is the angle
between the vehicle heading and the direction of its velocity,
Vg the center of gravity velocity, andL1 andL2 the distance
from the vehicle center of gravity to the front and rear axles
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Fig. 3. Four-wheel vehicle model.

respectively.Fx,y,i,j are the longitudinal and lateral tire-
road forces,δ1,2 are the front left and right steering angles
respectively, andE is the vehicle track (lateral distance from
wheel to wheel).
The simplified FWVM is derived from [12] and it is formu-
lated as the following dynamic relationship:

V̇g = 1

m

[

Fx1 cos(β − δ) + Fy11 sin(β − δ)+
Fy12 sin(β − δ) + (Fy21 + Fy22) sin(β)

]

,

ψ̈ = 1

Iz

[

L1[Fy11 cos δ + Fy12 cos δ + Fx1 sin δ]−
L2[Fy21 + Fy22]+
E
2
[Fy11 sin δ − Fy12 sin(δ)]

]

,

β̇ = 1

mVg

[

−Fx1 sin(β − δ) + Fy11 cos(β − δ)+
Fy12 cos(β − δ) + (Fy21 + Fy22) cos(β)

]

− ψ̇,

ay = 1

m [Fy11 cos δ + Fy12 cos δ + (Fy21 + Fy22) + Fx1sinδ],

ax = 1

m [−Fy11 sin δ − Fy12 sin δ + Fx1 cos δ].
(1)

wherem is the vehicle mass,Iz is the yaw moment of inertia
andαij are the front and the rear sideslip angles (tire sideslip



angle is the angle between the tire direction and its velocity).
The vehicle velocityVg, the steer angleδ, the yaw rateψ
and the vehicle body slip angleβ are then used as a basis
for the calculation of the tyre slip anglesαij , where:

α11 = δ − arctan
[

Vgβ+L1ψ̇

Vg−Eψ̇/2

]

,

α12 = δ − arctan
[

Vgβ+L1ψ̇

Vg+Eψ̇/2

]

,

α21 = − arctan
[

Vgβ−L2ψ̇

Vg−Eψ̇/2

]

,

α22 = − arctan
[

Vgβ−L2ψ̇

Vg+Eψ̇/2

]

.

(2)

B. Lateral tire-force model
The model of tire-road contact forces is complex because a

wide variety of parameters including environmental factors
and pneumatic properties (load, tire pressure, etc.) impact
the tire-road contact interface. Many different tire models
are to be found in the literature, based on the physical
nature of the tire and/or on empirical formulations deriving
from experimental data, such as the Pacejka, Dugoff and
Burckhardt models [12], [13]. Dugoff’s model was selected
for this study because of the small number of parameters that
are sufficient to evaluate the tire-road forces. The nonlinear
lateral tire forces are given by:

Fyij = −Cαitanαij .f(λ) (3)

whereCαi is the lateral stiffness,αij is the slip angle and
f(λ) is given by:

f(λ) =

{

(2 − λ)λ, if λ < 1
1, if λ ≥ 1

(4)

λ =
µFzij

2Cαi
|tanαij |

(5)

In the above formulation,µ is the coefficient of friction
andFzij is the normal load on the tire. This simplified tire
model assumes no longitudinal forces, a uniform pressure
distribution, a rigid tire carcass, and a constant coefficient of
friction of sliding rubber [14].

C. Relaxation model
When vehicle sideslip angle changes, a lateral tire force is

created with a time lag. This transient behavior of tires can
be formulated using a relaxation lengthσ. The relaxation
length is the distance covered by the tire while the tire force
is kicking in. Using the relaxation model presented in [15],
lateral forces can be written as:

Ḟyij =
Vg

σi
(−Fyij + Fyij), (6)

whereFyij is calculated from a Dugoff’s reference tire-force
model, Vg is the vehicle velocity andσi is the relaxation
length.

IV. OBSERVER DESIGN

This section presents a description of the observer dedi-
cated to lateral tire forces and sideslip angle. The nonlinear
stochastic state-space representation of the system described
in the section above is given as:

{

Ẋ(t) = f(X(t), U(t)) + bm(t)
Y (t) = h(X(t), U(t)) + bs(t)

(7)

The input vectorU comprises the steering angle and the
normal forces considered estimated by the first block (see
section 2):

U = [δ, Fz11, Fz12, , Fz21, Fz22] = [u1, u2, u3, u4, u5].
(8)

The measure vector Y(t) comprises yaw rate, vehicle velocity
(approximated by the mean of the rear wheel velocities
calculated from wheel encoders information), longitudinal
and lateral accelerations:

Y = [ψ̇, Vg, ax, ay] = [y1, y2, y3, y4]. (9)

The state vector comprises yaw rate, vehicle velocity, sideslip
angle at the cog, lateral forces and the sum of the front
longitudinal tire forces:

X = [ψ̇, Vg, β, Fy11, Fy12, Fy21, Fy22, Fx1]
= [x1, x2, x3, x4, x5, x6, x7, x8].

(10)
The process and measurement noise vectors, respectively
bm(t) and bs(t), are assumed to be white, zero mean and
uncorrelated.
Consequently, the evolution equations are:

Ẋ = f(X,U) = [ẋ1, ẋ2, ẋ3, ẋ4, ẋ5, ẋ6, ẋ7, ẋ8]

ẋ1 = 1

Iz

[

L1[x4 cosu1 + x5 cosu1 + x8 sinu1]−
L2[x6 + x7]+
E
2
[x4 sinu1 − x5 sinu1]

]

,

ẋ2 = 1

m

[

x8 cos(x3 − u1) + x4 sin(x3 − u1)+
x5 sin(x3 − u1) + (x6 + x7) sin(x3)

]

,

ẋ3 = 1

mVg

[

−x8 sin(x3 − u1) + x4 cos(x3 − u1)+
x5 cos(x3 − u1) + (x6 + x7) cosx3

]

− x1,

ẋ4 = x2

σ1

(−x4 + Fy11(α11, u2)),

ẋ5 = x2

σ1

(−x5 + Fy12(α12, u3)),

ẋ6 = x2

σ2

(−x6 + Fy21(α21, u4)),

ẋ7 = x2

σ2

(−x7 + Fy22(α22, u5)),

ẋ8 = 0.
(11)

The observation equations are:

y1 = x1,

y2 = x2,

y3 = 1

m [−x4 sinu1 − x5 sinu1 + x8 cosu1],

y4 = 1

m [x4 cosu1 + x5 cosu1 + (x6 + x7) + x6 sinu1].
(12)

The state vectorX(t) will be estimated by applying the
extended and unscented Kalman filter techniques: observers
OEKF andOUKF ) respectively (see section IV-B).

A. Observability
Observability is a measure of how well the internal states

of a system can be inferred from knowledge of its inputs and
external outputs. This property is often presented as a rank
condition on the observability matrix. Using the nonlinear
state space formulation of the system represented in (6), the
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observability definition is local and uses the Lie derivative
[16]. An observability analysis of this system was undertaken
in [17]. It has been shown that the system is observable
except when:

• steering angles are null,
• vehicle is at rest (Vg = 0).

For these situations, we assume that lateral forces and
sideslip angle are null, which approximately corresponds to
the real cases.

B. Estimation method

The aim of an observer or a virtual sensor is to estimate
a particular unmeasurable variable from available measure-
ments and a system model in a closed loop observation
scheme, as illustrated in figure 4. A simple example of an
open loop observer is the model given by relations (1). Be-
cause of the system-model mismatch (unmodelled dynamics,
parameter variations,. . . ) and the presence of unknown and
unmeasurable disturbances, the calculation obtained fromthe
open loop observer would deviate from the actual values over
time. In order to reduce the estimation error, at least some
of the measured outputs are compared to the same variables
estimated by the observer. The difference is fed back into the
observer after being multiplied by a gain matrixK, and so we
have a closed loop observer (see figure 4). The observer was
implemented in a first-order Euler approximation discrete
form. At each iteration, the state vector is first calculated
according to the evolution equation and then corrected online
with the measurement errors (innovation) and filter gainK
in a recursive prediction-correction mechanism. The gain is
calculated using the Kalman filter method which is a set of
mathematical equations and is widely represented in [18],
[19].
First, theOEKF has been developped in order to estimate
the state vectorX(t) (see section IV). However, some system
properties and EKF drawbacks encountered during this study,
especially:

• the high nonlineaties of the model,
• the calculation complexity of the Jacobian matrices

which causes implementation difficulties,

lead us to develop theOUKF . The UKF is introduced to
improve the EKF especially for strong nonlinear systems.
For these systems, the first order linearization of the EKF
algorithm using Jacobian matrices is not enough, and the
errors linearization are too important. The UKF acts directly
on the nonlinear model and approximates the states by using
a set of sigma points, avoiding the linearization made by the
EKF [20], [21]. The UKF is a powerful nonlinear estimation
technique and has been shown to be a superior alternative to
the EKF in many robotic applications.
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Fig. 5. Experimental test: vehicle trajectory, speed, steering angle and
acceleration diagrams

V. EXPERIMENTAL RESULTS

A. Experimental car

The experimental vehicle shown in figure 4 is the
INRETS-MA (Institut National de la Recherche sur les
Transports et leur Śecurit́e - Département Ḿecanismes
d’Accidents) Laboratory’s test vehicle. It is a Peugeot 307
equipped with a number of sensors including accelerometers,
gyrometers, steering angle sensors, linear relative suspen-
sion sensors, correvit and dynamometric hubs. Among these
sensors, the correvit (a non-contact optical sensor) gives
measurements of rear sideslip angle and vehicle velocity,
while the dynamometric hubs are wheelforce transducers that
measure in real time the forces and moments acting at the
wheel center. We note that the correvit and the wheel-force
transducer are very expensive sensors (correvit: 15 Ke and
dynamometric hub: 100 Ke). The sampling frequency of the
different sensors is 100Hz.
The estimation process algorithm is a computer program
written in C++. It is integrated into the laboratory car as
a DLL (Dynamic Link Library) that functions according to
the software acquisition system.

B. Test conditions

Test data from nominal as well as adverse driving condi-
tions were used to assess the performance of the observer
presented in section IV, in realistic driving situations. We
report a right-left-right bend combination maneuver (one of
a number of experimental tests that we carried out) where
the dynamic contributions play an important role. Figure 5
presents the Peugeot’s trajectory (on a dry road), its speed,
steering angle and ”g-g” acceleration diagram during the
course of the test. The acceleration diagram, that determines
the maneuvering area utilized by the driver/vehicle, shows
that large lateral accelerations were obtained (absolute value
up to 0.6g). This means that the experimental vehicle was
put in a critical driving situation.

C. Validation of observers

The observer results are presented in two forms: as
tables of normalized errors, and as figures comparing the
measurements and the estimations. The normalized error for
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an estimationz is defined in [8] and [9] as:

ǫz = 100 ×
‖zobs − zmeasured‖

max(‖zmeasured‖)
(13)

where zobs is the variable calculated by the observer,
zmeasured is the measured variable andmax(‖zmeasured‖) is
the absolute maximum value of the measured variable during
the test maneuver.
Figures 6 and 7 show lateral forces on the front and rear
wheels, while figure 8 shows the sideslip angle evolution
during the trajectory. These figures show that the observers
are relatively good with respect to measurements. Some
small differences during the trajectory are to be noted. These
might be explained by neglected geometrical parameters,
especially the cambers angles, which also produce a lateral
forces component [22] and [23].
Comparing the two observers, we can see thatOUKF is more
efficient. In fact, during the time interval [12s-18s], when
the vehicle is highly sollicitated, the observerOEKF does
not converge well. This phenomenon is due to the intense
nonlinearities of the vehicle dynamic equations. Therefore,
the first order linearization of the EKF algorithm is not
sufficient, and the errors of linearization are too important.
The UKF algorithm shows his ability to overcome this
difficulty. Consequently, we can deduce that the observer
OUKF is the more appropriate estimator in our application.
Table I presents maximum absolute values, normalized mean
errors and normalized std for lateral tire forces and sideslip
angle at the cog. Despite the simplicity of our chosen model,
we can deduce that for this test, the performance of the
observers, notably theOUKF is satisfactory, with normalized
error globaly less than8%.

Given the vertical and lateral tire forces at each tire-road
contact level, the estimation process is able to evaluate the
used lateral friction coefficientµ. This is defined as a ratio
of friction force to normal force and it is given by:

µij =
Fyij

Fzij
(14)

From figure 9, which shows the used lateral friction co-
efficients, we remark that the estimatedµij is close to the
measured one. A closer investigation reveals that highµij
is detected during the trajectory, especially when the lateral
acceleration is up to0.6. During this maneuvre, we deduce
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X
X

X
X

XX
EKF

UKF Max ‖‖ Mean % Std %

Fy11 2180 (N)
X

X
X

X
XX

4.87
5.02 X

X
X

X
XX

3.75
3.51

Fy12 3617 (N)
X

X
X

X
XX

9.7
9.32 X

X
X

X
XX

4.07
4.30

Fy21 1342 (N)
X

X
X

X
XX

11.98
7.55 X

X
X

X
XX

9.14
5.33

Fy22 2817 (N)
X

X
X

X
XX

10.12
5.07 X

X
X

X
XX

6.96
2.92

β 0.023
X

X
X

X
XX

13.4
10.20 X

X
X

X
XX

10.42
9.52

TABLE I
OBSERVERSOEKF AND OUKF : MAXIMUM ABSOLUTE VALUES ,

NORMALIZED MEAN ERRORS AND NORMALIZED STD.

that µ11 andµ21, which correspond to the non compressed
tires (outside part of the vehicle during cornering), attained
the limit for the dry road friction coefficient. In fact, dry road
surfaces show a high friction coefficient in the range 0.9-1.1
(that results in safe driving on such surfaces), meaning that
for this test the limits of handling were reached.
The friction coefficient evaluation is important for evaluating
the ratio of the used friction and for determining the available
remainder.

VI. CONCLUSION

This paper has presented a new method for estimating
lateral tire forces and sideslip angle, that is to say two of
the most important parameters affecting vehicle stabilityand
the risk of leaving the road. The two developed observers
are derived from a simplified four-wheel vehicle model and
are based respectively on extended and unscented Kalman
filtering techniques. Tire-road interaction is represented by
the Dugoff model. We then use the lateral friction model
to evaluate the friction coefficient according to the estimated
lateral and vertical forces from the whole estimation process.
A comparison with real experimental data demonstrates the
potential of the estimation process, showing that it may be
possible to replace expensive correvit and dynamometric hub
sensors by software observers that can work in real-time
while the vehicle is in motion. This is one of the important
results of our work. Another important result concerns the
estimation of individual lateral forces acting on each tireof
the vehicle, that is an evolution with respect to the current
literature concerning the vehicle dynamic community.
Future studies will improve vehicle/road model in order
to widen validity domains for the observer. Subsequent,
vehicle/road models will take into account roll and vertical
dynamics. Moreover, we note that the mean of the rear wheel
speeds could be a poor approximation of the vehicle velocity
in many situations (longitudinal tire slips, low road friction,
. . . ). This shortcoming of the current design will be addressed
in the future.
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