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Estimation of vehicle lateral tire-road forces: a comparison letween
extended and unscented Kalman filtering

Moustapha Doumiati, Alessandro Victorino, Ali Charara daahiel Lechner

Abstract— Extensive research has shown that most of road Lateral vehicle dynamic estimation has been widely dis-
accidents occur as a result of driver errors. A close examination cussed in the literature. Several studies have been cadluct

of accident data reveals that losing the vehicle control is i i i ira_ i i
responsible for a_huge proportion of car accidents. Preventing regarding the estimation of tire-road forces and sidesigle

such kind of accidents using vehicle control systems, requires [2]-[9]- For example, in [2] and [3], the authors estimate th
certain I'nPUt data concerning vehicle dynamic parameters vehicle dynamlc state for a four-wheel vehicle model. _COﬂ-
and vehicle road interaction. Unfortunately, some parameters sequently, tire forces are calculated based on the estimate
:Inl% at(lzrtebrr?avde g%%egyﬁggn iilé:ieglrlep deilpf%gh \t'll)h'r%gagi\ﬁg i?] ;nijgrr states and using tire models. In [4], Ray estimates the leehic
Therefore, this data must be estimated. Due to the sys_tefn g)ggml%lsitates dar}d_l_lr?teralthtlre forces per axlefftcr)]r a nllr_led
nonlinearities and unmodeled dynamics, two observers déerived venicle moael. The author uses measures of the applie
from extended and unscented Kalman filtering techniques are torques as inputs to his model. We note that the torque is
Broposed and compared. The estimation process method is difficult to get in practice; it requires expensive sensbtsre
with choap. casiy-avaiable Sndard sensore. Pariomances ceonily: in [5] and (€], authors propose observers to atém
are tested and compared to real experimental'data acquired It%teral Jr(])rces per axle Wlthot-Ut u?mg torque mbeasudres.]Ln EE
using the INRETS-MA Laboratory car. Experimental results € authors propose an estimation process based on a three
demonstrate the ability of this approach to provide accurate DOF vehicle model, as a tire force estimator. In [8] and [9],
estimations, and show its practical potential as a low-cost sideslip angle estimation is discussed in details.
solution for calculating lateral-tire forces and sideslip angle. In [5], [6], [7], lateral forces are modelled with a deriwai
equal to random noise. The authors in [7], remark that such
|. INTRODUCTION modeling leads to a noticeable inaccuracy when estimating
individual lateral tire forces, but not in axle lateral fesc

Vehicle control algorithms such as Electronic Stability: ; :
" is phenomenon is due to the non-representation of the
Control (ESC) systems have made great strides towa@erm load transfer when modeling [7].

improving the handling and safety of vehicles. In fact, expe : : ; P
estimate that the ESC prevents 27% of loss of control ac%he main goal of this study is to develop an estimation

! . OO nethod that uses a simple vehicle-road model and a certain
Fﬁnt\?v%énltzesr\cl:e?smgnvc\i/gﬁBtgmgrgelﬂgsiwﬁgchir?r:glgg/e(i:t umber of valid measurements in order to estimate accuracy

is imited by the available vehicle state information and in real-time the lateral force at each individual tire-

ESC systems currently available on production cars relé?ad contact point. We suppose a prior knowledge of road

on avalible inexpensive measurements (such as longitudina nditions. .Thls. study presents two particularities:

velocity, accelerations and yaw rate), tire model, andsipe ~ * the estimation process does not use the measurement of
rate, not sideslip angle. Calculating sideslip angle from  Wheel torques, . L

sideslip rate integration is prone to uncertainty and error ¢ AS described in section Il, the estimation process uses
from sensor biases. Furthermore, other essential paresnete ~ accurate estimated normal tire forces, while other ap-
like tire-road forces are difficult to measure because of Proaches found in the literature assume constant vertical
technical, physical and economic reasons. Thereforegthes ~ TOrces.

important data must be observed or estimated. If contrdlhe observation system is highly nonlinear and presents
systems could characterize lateral tire forces charatiesj unmodeled dynamics. For this reason, two observers based
namely lateral forces, sideslip angle and tire-road friicti on EKF (Extended Kalman Filter) and UKF (Unscented
coefficient, these systems could greatly enhance vehid@lman Filter) are proposed. The EKF is probably the most
handling and increase passenger safety. used estimator for nonlinear systems, however the UKF has
As the motion of a vehicle is governed by the forceshown the ability to be a superior alternative especiallgmvh
generated between the tires and the road, knowledge ®fstem presents strong nonlinearities. This study corspare
the tire forces is crucial to predicting vehicle motion. Theand discusses this two filtering techniques in our estimatio
lateral forces necessary for a vehicle to hold a curve arisgproach.

as a result of tire deformation. As shown in figure 1, thén order to show the effectiveness of the estimation method,
relationship between the lateral force and the slip angle #&ome validation tests were carried out on an instrumented
initially linear with a constant slope of’,, referred to as Vvehicle in realistic driving situations.

the cornering stiffness. When operating in the linear regiorm he remainder of the paper is organized as follows. In sectio

a vehicle responds predictably to the driver’s inputs. When 2we describe the estimation process. Section 3 presents the
vehicle undergoes high accelerations, or when road frictiovehicle/road model. Section 4 describes the observer and
changes, the vehicle dynamic becomes nonlinear and theesents the observability analysis. In section 5 the obser
force begins to saturate. Consequently, the tire enters thgsults are discussed and compared to real experimengal dat
nonlinear operating region and the vehicle approaches @d then in the final section we make some concluding
handling limits and its response becomes less predictableremarks regarding our study and future perspectives.

M. Doumiati, A. Victorino and A. Charara are with Heudi- [I. ESTIMATION PROCESS DESCRIPTION
asyc Laboratory, UMR CNRS 6599, Univeksitde Technologie de . . . L .
Compigne, 60205 Compgne, Francardouni at @ds. utc. fr, The estimation process is shown in its entirety by the
acorreav@ads. utc.fr and acharara@ds. utc.fr  block diagram in figure 2, where, anda,,, are respectively

D. Lechner is with Inrets-MA Laboratory, Departement of Atmmt . . . .
Mechanism Analysis, Chemin' de la Croi Blanche, 13300 Salen dthe longitudinal and lateral accelerationisjs the yaw rate,
Provence, Francdani el . | echner@nrets. fr A;; (i represents front(1) or rear(2) aridepresents left(1)
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Fig. 2. Process estimation diagram
or right (2)) is the suspension deflectiom;; is the wheel
velocity, F.;; andF,;; are respectively the normal and lateral
tire/road forcesg is the sideslip angle at the centre of gravity
(cog). The estimation process consists of two blocks and its
role is to estimate normal and lateral forces at each tiae/ro
level and then to evaluate the lateral friction coefficiérite
following measurements are needed:

« yaw rate, longitudinal and lateral accelerations mea-
sured by an inertial sensor, _ _

« suspension deflections using suspension deflections sen-
sors,

« steering angle measured by an optical sensor,

« rotational velocity for each tire given by ABS.

The first block aims to provide the vehicle’'s weight,
normal tire forces and the corrected lateral acceleration
a, (by canceling the gravitational acceleration that distort
the accelerometer signal). It contains observers based on
vehicle’s roll dynamics and model that couples longitudina
and lateral accelerations. The first block was the subject of
our previous studies [10], [11]. This article focuses onty o
the second block, whose main role is to estimate lateral tire
forces and sideslip angle. The second block makes use of
the estimations provided by the first block. One partictyari
of this estimation process is the use of blocks in series. By
using cascaded observers, the observability problem8eshta respectively. F,, ,, ; ; are the longitudinal and lateral tire-
by an inappropriate use of the complete modeling equatiomsad forcesg, » are the front left and right steering angles
are avoided enabling the estimation process to be carried agespectively, and? is the vehicle track (lateral distance from
in a simple and practical way. wheel to wheel).

The simplified FWVM is derived from [12] and it is formu-
lated as the following dynamic relationship:

Fig. 3. Four-wheel vehicle model.

[1l. V EHICLE-ROAD MODEL _

A. Four-wheel vehicle model V,=1 [ ]}Zzl 03?1(56’156))1}5%1 Snjr(%_ g);n(ﬂ) } ’
The Four-Wheel Vehicle model (FWVM) was chosen for vtz (I

this study because it is simple and corresponds sufficiently

to our objectives. The FWVM is widely used to describe -

transversal vehicle dynamic behavior [3], [4], [6]. In this Y= %
study, we adopt the following simplified assumptions:

Lo|Fyo1 + Fyao)+

L1[Fy11 cosd + Fy12 cos6 + Fypq sind]— ]
%[Fyn sind — Fy12sin(0)]

« rear longitudinal forces are neglected relative to the .
front longitudinal forces (Assuming a front-driven ve- 3 _ _1_ | —Fo1sin(f—0)+ Fyiy cos(f — 0)+ .’
hicle). We suppose thaf,; = F,1; + Fy12, mVy | Fyi2co8(8 — 6) + (Fya1 + Fy22) cos(3) ’
« front steering angles are equal, = 4,2 = ) and rear
steering angles are approximately nd}};(= d22 = 0). a, = %[Fyu cos & + Fy12co86 + (Fyo1 + Fyaz) + Fp1sind),

Figure 3 shows the FWVM model, wher¢ is the yaw

rate, 5 is the center of gravity sideslip angle, it is the angle a, = %[—Fyn sind — Fy128ind + Fyq cosd].

between the vehicle heading and the direction of its velpcit N}

V, the center of gravity velocity, anfl; and L, the distance wherem is the vehicle masd,, is the yaw moment of inertia
from the vehicle center of gravity to the front and rear axleanda;; are the front and the rear sideslip angles (tire sideslip



angle is the angle between the tire direction and its vefpcit The input vectorU comprises the steering angle and the
The vehicle velocityV,, the steer anglé, the yaw rateiy  normal forces considered estimated by the first block (see
and the vehicle body slip anglé are then used as a basissection 2):

for the calculation of the tyre slip angles;, where:
‘ U=1[0, Faur, Faz,, Foor, Fozo] = [un, u2, us, ua, ug).
VgﬁJrLlw} 8

a11 = 0 — arctan [Vg—Eu}/Q

The measure vector Y(t) comprises yaw rate, vehicle velocit
(approximated by the mean of the rear wheel velocities

o1y = & — arctan [ngLlw} : calculated from wheel encoders information), longitudina

Vy+Ep/2 @ and lateral accelerations:
a1 = — arctan [\tq€;5)2/1g] ; V=W Ve @z ] =ly1, 2, 93, vl ©)
! The state vector comprises yaw rate, vehicle velocity stije
V,8—La angle at the cog, lateral forces and the sum of the front
Qo = — arctan [7\/;-&-&/1/2} : longitudinal tire forces:

B. Lateral tire-force model X ny . . . P P
The model of tire-road contact forces is complex because a — [, Vg, B Fyus Fyia, Fyan, "f2’ =]
- [xla .T/'27 xSa 1‘4) x57 xﬁa 1‘7) x8 M

wide variety of parameters including environmental fagtor (10)

and pneumatic properties (load, tire pressure, etc.) 'mpla‘Fhe process and measurement noise vectors, respectively

the tire-road contact interface. Many different tire made ;
are to be found in the literature, based on the physic Tﬁé@rrzln‘,ﬂé’a(t)' are assumed to be white, zero mean and

nature of the tire and/or on empirical formulations demyin ; : )
from experimental data, such as the Pacejka, Dugoff ar%onsequently, the evolution equations are:
Burckhardt models [12], [13]. Dugoff's model was selected v

for this study because of the small number of parameters tha‘{(
are sufficient to evaluate the tire-road forces. The noaline

:f(XaU) = [151’ 1:25 .56.37 ZE.4a 17'55 'r.67 fé7, IS]

lateral tire forces are given by: _ L %1{54 iﬁ)zu]l: 5 oS Uy + Tg sin ug]— ]
Ty =1 2|T6 7 ,
Fyij = —Castanag;. f(A) 3) %[m sinu; — x5 sin uy
\J,“v(h)\e)r?scgii/; tg;.‘: lateral stiffnessy;; is the slip angle and R Cps(ms —w) + 24 sin(zs - )+
m | xpsin(xs —uy) + (e + x7) sin(zg) |’
Cf@=MA, ifa<l
) = {17 if > 1 (4) g = 1 —xgsin(zs —uy) + xacos(rg —ur)+ | "
- 37 mVy | x5cos(ws —up) + (z6 + x7) cos z3 b
My , -

A= 2C,, [tanag;]| ® = 2 (—xa + Fy (o, u2)),

In the above formulationy is the coefficient of friction Zs = %(7% + Fyiz(ang, us)),

and F;; is the normal load on the tire. This simplified tire
model assumes no longitudinal forces, a uniform pressure, . S
distribution, a rigid tire carcass, and a constant coefitote# T6 = g(—we + Fya1(az21,u4)),
friction of sliding rubber [14].

7 = B2 (—x7 + Fyaa(a2, us)),

g2

C. Relaxation model

When vehicle sideslip angle changes, a lateral tire force ists = 0.
created with a time lag. This transient behavior of tires can ) _ (12)
be formulated using a relaxation length The relaxation The observation equations are:
length is the distance covered by the tire while the tiredorc
is kicking in. Using the relaxation model presented in [15], Y1 = %1,
lateral forces can be written as:

W
Fyij = 2(=

Y2 = T2,

Fyij + Fyij), ®) ys = L[—aysinu; — z5sinuy + xs cosuy],

whereF'y;; is calculated from a Dugoff's reference tire-force , — L[z, cosu; + x5 cosu; + (26 + 27) + 26 sinuy].

model, V; is the vehicle velocity andr; is the relaxation | (12)
length. The state vectorX (t) will be estimated by applying the
extended and unscented Kalman filter techniques: observers
IV. OBSERVER DESIGN Opxr and Oy i r) respectively (see section IV-B).

This section presents a description of the observer deq&- .
cated to lateral tire forces and sideslip angle. The noatine”- Observability
stochastic state-space representation of the systemilslbcr  Observability is a measure of how well the internal states

in the section above is given as: of a system can be inferred from knowledge of its inputs and
) external outputs. This property is often presented as a rank
X)) = [f(X@),U®))~+ bm(t) @) condition on the observability matrix. Using the nonlinear
Y(#) = h(X(@),U(t))+0bs(?) state space formulation of the system represented in (&), th
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For these situations, we assume that lateral forces and

sideslip angle are null, which approximately corresporads t
the real cases.

V. EXPERIMENTAL RESULTS

B. Estimation method A. Experimental car

. . _ . The experimental vehicle shown in figure 4 is the

The aim of an observer or a virtual sensor is to estimatqRETS-MA (Institut National de la Recherche sur les
a particular unmeasurable variable from available measurgransports et leur &urie - Déepartement Mcanismes
ments and a system model in a closed loop observatigpaccidents) Laboratory’s test vehicle. It is a Peugeot 307
scheme, as illustrated in figure 4. A simple example of agquipped with a number of sensors including accelerometers
open loop observer is the model given by relations (1). B_%/rometers, steering angle sensors, linear relative suspe
cause of the system-model mismatch (unmodelled dynamiGon sensors, correvit and dynamometric hubs. Among these
parameter variations,...) and the presence of unknown agensors, the correvit (a non-contact optical sensor) gives
unmeasurable disturbances, the calculation obtainedthem measurements of rear sideslip angle and vehicle velocity,
open loop observer would deviate from the actual values ov@jhijle the dynamometric hubs are wheelforce transducets tha
time. In order to reduce the estimation error, at least somMfeasure in real time the forces and moments acting at the
of the measured outputs are compared to the same variabi@gee| center. We note that the correvit and the wheel-force
estimated by the observer. The difference is fed back irdo thransducer are very expensive sensors (correvit: €5aKd
observer after being multiplied by a gain matfix and sowe gynamometric hub: 100 €). The sampling frequency of the
have a closed loop observer (see figure 4). The observer Wgierent sensors is 100Hz.

implemented in a first-order Euler approximation discretehe estimation process algorithm is a computer program
form. At each iteration, the state vector is first calculateqyritten in C++. It is integrated into the laboratory car as

according to the evolution equation and then correctedienli 3 pL| (Dynamic Link Library) that functions according to
with the measurement errors (innovation) and filter g&in the software acquisition system.

in a recursive prediction-correction mechanism. The gain i

calculated using the Kalman filter method which is a set 08 Test conditions

mathematical equations and is widely represented in [18], . . .
[19]. g v rep [ Test data from nominal as well as adverse driving condi-

First, theOrxr has been developped in order to estimatéons were used to assess the performance of the observer

properties and EKF drawbacks encountered during this stuquort a right-left-right bend combination maneuver (ofie o
number of experimental tests that we carried out) where

especially: ; JTIE - ’
) . . the dynamic contributions play an important role. Figure 5
« the high nonlineaties of the model, . _ presents the Peugeot’s trajectory (on a dry road), its speed
« the calculation complexity of the Jacobian matricesteering angle and "g-g” acceleration diagram during the
which causes implementation difficulties, course of the test. The acceleration diagram, that detesnin

the maneuvering area utilized by the driver/vehicle, shows
hat large lateral accelerations were obtained (absohiteev

p to 0.69). This means that the experimental vehicle was
t in a critical driving situation.

lead us to develop th€y k. The UKF is introduced to
improve the EKF especially for strong nonlinear system
For these systems, the first order linearization of the EK
algorithm using Jacobian matrices is not enough, and tH¥
errorzs Iinealt_rization aéeltoodimportant. The LFl]KF acts %I;ect_
on the nonlinear model and approximates the states by usi I
a set of sigma points, avoiding the linearization made by thg: Validation of observers

EKF [20], [21]. The UKF is a powerful nonlinear estimation The observer results are presented in two forms: as
technique and has been shown to be a superior alternativetables of normalized errors, and as figures comparing the
the EKF in many robotic applications. measurements and the estimations. The normalized error for



Front left lateral force FYi, (N)

2000 YU
Lot ARG
ﬁ‘-, ¥ Y ﬂ‘: measurement
1000 Ef;?‘ ‘:f‘u S O
M “‘ """ Ouke
(3 : '
=Y \ M,
-1000| W e oot *‘1
v oty L oy
i i i i i 4 i i
5 10 15 20 25 30
Front right lateral force Fy12 (N)
4000 e
A
2000} MoV Y
A T
0 st LA N
L-f‘\-‘f .
l R PR
5 10 15 20 25 30
Time (s)

Fig. 6. Estimation of front lateral tire forces.

an estimatior: is defined in [8] and [9] as:

”Zobs - ZmeasuredH

maz(||Zmeasured||)

e, = 100 x (13)

where z.,s is the variable calculated by the observer
Zmeasured 1S the measured variable anthz (|| 2 casured||) 1S
the absolute maximum value of the measured variable durir
the test maneuver.

Figures 6 and 7 show lateral forces on the front and rei
wheels, while figure 8 shows the sideslip angle evolutio
during the trajectory. These figures show that the observe
are relatively good with respect to measurements. Son
small differences during the trajectory are to be noteds&éhe
might be explained by neglected geometrical parametet
especially the cambers angles, which also produce a late
forces component [22] and [23].

Comparing the two observers, we can see thak r is more
efficient. In fact, during the time interval [12s-18s], when
the vehicle is highly sollicitated, the observ®y i does

not converge well. This phenomenon is due to the intense

nonlinearities of the vehicle dynamic equations. Thersfor
the first order linearization of the EKF algorithm is not
sufficient, and the errors of linearization are too impartan
The UKF algorithm shows his ability to overcome this
difficulty. Consequently, we can deduce that the obserw
Oy i r 1s the more appropriate estimator in our application
Table | presents maximum absolute values, normalized me
errors and normalized std for lateral tire forces and sigesl
angle at the cog. Despite the simplicity of our chosen mode
we can deduce that for this test, the performance of tr
observers, notably th@y i r is satisfactory, with normalized
error globaly less thag%.

Given the vertical and lateral tire forces at each tire-roa
contact level, the estimation process is able to evaluae t
used lateral friction coefficient. This is defined as a ratio
of friction force to normal force and it is given by:

Fyij
FZZ‘j

From figure 9, which shows the used lateral friction co.
efficients, we remark that the estimatgg; is close to the
measured one. A closer investigation reveals that buga
is detected during the trajectory, especially when therdate
acceleration is up t6.6. During this maneuvre, we deduce

Hij = (14)
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UKF
ERE Max ||| Mean % Std % [5]
502 35T
Fyu 2180 (N) | 487 3.75
Fyiz 3617 (N) | 97 5% 4.07 30
755 533
Fy2 1342 (N) | 1798 9.14 [6]
507 797
Fy22 2817 (N) | 1012 6.96
1020 957
B 0.023 | 133 10.42 7
[7]
TABLE |
OBSERVERSOg i AND Oy i p: MAXIMUM ABSOLUTE VALUES,
NORMALIZED MEAN ERRORS AND NORMALIZED STD. [8]
[9]

that 1111 and poy, which correspond to the non compressedio]
tires (outside part of the vehicle during cornering), aitai

the limit for the dry road friction coefficient. In fact, drpad
surfaces show a high friction coefficient in the range 0B-1.
(that results in safe driving on such surfaces), meaning thél
for this test the limits of handling were reached.

The friction coefficient evaluation is important for evding
the ratio of the used friction and for determining the avaéa
remainder.

[12]
[13]

VI. CONCLUSION

This paper has presented a new method for estimatir[fg“]
lateral tire forces and sideslip angle, that is to say two of
the most important parameters affecting vehicle stability
the risk of leaving the road. The two developed observeyss,
are derived from a simplified four-wheel vehicle model an
are based respectively on extended and unscented Kalman
filtering techniques. Tire-road interaction is represdnty  [16]
the Dugoff model. We then use the lateral friction model
to evaluate the friction coefficient according to the esteda [17]
lateral and vertical forces from the whole estimation pssce
A comparison with real experimental data demonstrates the
potential of the estimation process, showing that it may
possible to replace expensive correvit and dynamometiic hu
sensors by software observers that can work in real-tirrtl?g]
while the vehicle is in motion. This is one of the importan
results of our work. Another important result concerns the
estimation of individual lateral forces acting on each tife [5q;
the vehicle, that is an evolution with respect to the current
literature concerning the vehicle dynamic community.

Future studies will improve vehicle/road model in ordef21]
to widen validity domains for the observer. Subsequent,
vehicle/road models will take into account roll and vertica
dynamics. Moreover, we note that the mean of the rear whel@fl
speeds could be a poor approximation of the vehicle veloci&(
in many situations (longitudinal tire slips, low road fran,
...). This shortcoming of the current design will be addeelss

in the future.
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