
Monitoring Control Updating Period In Fast Gradient Based NMPC

Mazen Alamir1

Abstract— In this paper, a method is proposed for on-line
monitoring of the control updating period in fast-gradient-
based Model Predictive Control (MPC) schemes. Such schemes
are currently under intense investigation as a way to accom-
modate for real-time requirements when dealing with systems
showing fast dynamics. The method needs cheap computations
that use the algorithm on-line behavior in order to recover the
optimal updating period in terms of cost function decrease.
A simple example of constrained triple integrator is used to
illustrate the proposed method and to assess its efficiency.

I. INTRODUCTION

A great amount of research during the last decade has been
dedicated to the implementation of MPC schemes to systems
showing fast dynamic. These are systems having character-
istic time requiring updating periods that are incompatible
with the complete solution of the underlying optimization
problem.

The solution that emerges with a wide consensus is to
perform, during each control updating period, only a limited
number of iterations of some descent method and to apply
the so obtained sub-optimal solution during the next updating
period. The iterations are then continued after a potential
warm start at the next updating period leading hopefully to
asymptotical recovering the optimal solution.

In [2], the author showed that this implementation frame-
work enhances a generic trade-off in terms of the control
updating period. Indeed, if the latter is too small, the decrease
in the cost function is not sufficient to compensate for the
increase that may be due to model uncertainties (including
those related to the potentially unknown dynamic of the set-
point to be tracked). On the other hand, For too large control
updating periods, the lack of fresh information means that
the optimizer would solve with a high precision a rather out-
of-date optimization problem.

In the present paper, the generic framework proposed in
[2] is adapted to the specific context where the iterations are
defined by gradient or fast gradient algorithms (see for in-
stance [3], [4], [8] and the reference therein). More precisely,
while in [2], attempt to identify the so-called efficiency map
that characterizes the descent method is considered, here the
number of iterations (and hence the control updating period)
is adapted locally based on the estimation of the gradient
of the settling time under a contraction constraint on the
dynamic of the cost function.

This method can be applied as such when pure gradient
descent method is applied to distribute the computation

1CNRS-University of Grenoble, Control Systems Department 11 rue
des mathématique, Domaine Universitaire, Saint Martin d’Hères, France.
mazen.alamir at grenoble-inp.fr

of the optimal control sequence. In the case where a fast
gradient iterations are used, it is shown that the restarting
mechanism proposed by [7] is necessary in order to obtain
a monotonically decreasing cost function.

The paper is organized as follows. First, the general
framework proposed in [2] is recalled in section II in order to
set the notation and to underline the crucial role played by the
so called iteration efficiency map involved in a small gain-
like theorem. An ideal optimization problem is then derived
in which the decision variable is the control updating period
(or equivalently, the number of iterations before updating the
control) while the cost function represents the settling time of
the MPC closed-loop cost function evolution. In Section III,
an updating rule for the control updating period is defined to-
wards the minimization of this cost function and is based on
the estimation of its gradient. This estimation is done using
available data regarding the behavior of the algorithm. For
the proposed updating rule to asymptotically solve the ideal
optimization problem, a monotonicity property is needed
for the descent method. Section IV recalls the fast gradient
method and shows how restarting mechanism [7] can be used
to enhance monotonic decrease of the fast gradient method
making the proposed updating rule appropriate. Finally, in
section V, an illustrative example is given in order to show
the efficiency of the proposed scheme in monitoring on-
line the number of iterations of the fast gradient algorithm
when used in real-time implementation of constrained MPC.
Finally, section VI concludes the paper and gives hints for
further investigation.

II. THE IDEAL CONTROL UPDATING RULE
A. Some definitions and notation

In the present paper the framework of parameterized
NMPC [1] is adopted for the sake of generality since the
standard piece-wise constant control parameterization can be
viewed as a particular instantiation of the following more
general form:

Upwc(p) :=
(
u(1)(p), . . . , u(N)(p)

)
∈ U ⊂ RN ·nu (1)

where p ∈ Rnp is the vector of degrees of freedom while
the u(i)(p) stands for the corresponding constant value of
the control vector at the future i-th sampling period.

Using the notation above, the model of the dynamic system
can be given in the following general form:

∀j ∈ {1, . . . , N} , x(k + j) = X(j, x(k), p) (2)

where X(j, x, p) is the state reached by the model at the j-th
future sampling instant when it starts at the state x(k) under
the p.w.c sequence defined by p through (1) .

ar
X

iv
:1

20
9.

49
22

v1
  [

cs
.S

Y
] 

 2
1 

Se
p 

20
12



Since the difference between the model used by the
controller and the real system plays a crucial role in the
sequel, the notation:

Xr(j, x(k), p,w)

is used hereafter to denote the state of the real system after
j sampling periods, starting from x(k), under the control
sequence defined by p and when some disturbance sequence
w occurs. The shorter notation Xr(j, x(k), p) is sometimes
used (explicit mention of w is omitted) as no specific
discussion is needed regarding the origin of w.

Let us denote by J(p, x) the value of the cost function
that is used to define a Model Predictive Controller (MPC).
The following assumption is considered in the sequel which
is always possible to meet by adding appropriate constant to
the cost function

Assumption 1: There is some J > 0 such that

∀(p, x), J(p, x) ≥ J > 0 (3)
This assumption is needed since contraction ratios of the
cost function at successive instants are used in the sequel in
which the cost function may appear in the denominator.

Obviously, such a cost function is defined for a given
control sequence parameter p and for a given current state x
since these quantities define the state and control trajectories
of the system’s model. The prediction horizon N is implicitly
included in the expression of J as it is considered to be given
once for all in the current paper.

An ideal MPC is defined by u(1)(p̂(x)) [see (1)] where
p̂(x) is the solution of the following constrained optimization
problem:

p̂(x) := min
p∈Rnp

J(p, x) under C(p, x) ≤ 0 (4)

where C(p, x) defines the problem constraints.

B. Distributed-in-time Implementation of MPC

Nowadays real-time MPC related investigations are jus-
tified by the fact that the computation of p̂(x) would be
impossible during a single sampling period. Rather a lim-
ited number q of iterations of some descent method are
performed. This can be denoted by:

p(q) = Sq(p(0), x) (5)

where p(q) is the parameter vector that is obtained after q
iterations of some descent method1 S starting from some
initial value p(0). The map is obviously parameterized by x
since the optimization problem (4) is also parameterized by
the current state.

Assumption 2: A single iteration of the subroutine S
needs a fixed amount of computation time that is denoted
hereafter by τc.

Assumption 3: The period τc is used as the basic sam-
pling period for the definition of the p.w.c control profile
given by (1). Namely each value u(i)(p) is maintained
constant during τc time units.

1The gradient and fast gradient iteration are considered in the present
contribution.

Therefore, if several iterations q are needed, in a sense
that will be clearer in the sequel, the control parameter p
cannot be updated before τu = qτc time units. τu may be
called the control updating period. However, if the number
of iterations q varies dynamically (as it is proposed in the
current contribution) then it is no more possible to define a
control updating period but only control updating instants tuk
such that:

tuk+1 = tuk + q(tuk) · τc (6)

where q(tuk) is the number of iterations to be performed
before the next updated value of the control parameter
p(tuk+1) is delivered. Meanwhile, the previously computed
control sequence:

u(1)(p(tuk)), . . . , u(q(t
u
k ))(p(tuk)) (7)

is applied during the updating interval [tuk , t
u
k+1]. In the

sequel, the following notation is used :

τuk = tuk+1 − tuk = q(tuk) · τc (8)

Note that for this scheme to be possible, the following
constraint is obviously needed:

q(tuk) ≤ N (N = is the prediction horizon) (9)

since otherwise, the sequence invoked in (7) would not be
available.

To summarize, the implementation scheme can be de-
scribed as follows:

1) At initial instant tu0 = 0, some initial parameter vector
p(tu0 ) is chosen. An initial number of iterations q0 =
q(tu0 ) ≤ N is also decided.

2) During the updating interval [tu0 , t
u
1 = q0τc] the first q0

elements of the control sequence U(p(tu0 )) are applied.
3) In parallel, the computation unit performs the follow-

ing tasks during [tu0 , t
u
1 ]:

a) Compute a model based prediction x̂(tu1 ) of the
state at instant tu1 .

b) Compute p(tu1 ) = S(q(tu0 )(p+(tu0 ), x̂(tu1 )) where
the initial guess p+(tu0 ) is either equal to p(tu0 )
(cold start) or equal to some warm start value
that is associated to p(tu0 ) by standard translation
technique.

4) At the updating instant tu1 , decide the number of
iterations q(tu1 ) to perform during the next updating
interval [tu1 , t

u
1 + q(tu1 )τc]. The way this choice is

done represents the contribution of the paper and is
explained in the following sections.

5) During the updating interval [tu1 , t
u
1 + q(tu1 )τc], apply

the first q(tu1 ) elements of the sequence U(p(t1u))
previously computed

6) keep doing. . .

C. Monitoring Control Updating As A Feedback Problem

It comes out from the discussion above that an extended
system can be defined in which the state is given by z :=



(pT , xT )T and for which the dynamics is given by:

x(tuk+1) = Xr(τku , x(tuk), p(tuk),w) (10)

p(tuk+1) = Sq(t
u
k )
(
p+(tuk), X(τuk , x(tuk), p(tuk)︸ ︷︷ ︸

x̂(tuk+1)

)
(11)

or in a more condensed way using the extended state z:

z(tuk+1) = F (z(tuk), q(tuk),w) (12)

which can be viewed as a dynamical system in which z plays
the role of state vector while q plays the role of control input.
Moreover, the control objective that has to be achieved by the
control input q is to steer the scalar output J(p, x) = J(z)
to its minimum value as fast as possible. Note that whether
this achieves the control objective depends on the adequacy
of the original MPC formulation and lies out of the scope
of the control input q. The latter aims simply at making the
distributed-in-time optimization reaches asymptotically the
behavior of the ideal MPC computation.

In order to analyze the evolution of the cost function, the
following notation is needed:

J+
k := J(p+(tuk), x̂(tuk+1)): The value of the cost function

when the iterations start at the beginning of the updating
interval [tuk , t

u
k+1] based on the predicted value x̂(tuk+1) of

the future state at instant tuk+1 = tuk + q(tuk) · τc.
Ĵk+1 := J(p(tuk+1), x̂(tuk+1)): The value of the cost function
after q(tuk) iterations based on the predicted value of x̂(tuk+1)
of the state.
Jk+1 := J(p(tuk+1), x(tuk+1)): The true value of the cost
function at the new value of the state x(tuk+1).

Obviously, the convergence is tightly related to the
ratio Jk+1/Jk which can be written in terms of the above
quantities in the following form:

Jk+1

Jk
=
[ Ĵk+1

J+
k

]
︸ ︷︷ ︸
Ek(q(tuk ))

×
[Jk+1

Ĵk+1

]
×
[J+

k

Jk

]
︸ ︷︷ ︸

Dk(q(tuk ))

(13)

where
• The term Ek(q(tuk)) only depends on the efficiency of

the iteration scheme that starts at (p+(tuk), x̂(tuk+1))
as it represents the local ratio between the value at
the beginning of the q(tuk) iterations and the value at
the end and this for a given estimation x̂(tuk+1) of the
future state.

• The term Dk(q(tuk)) represents the effects of uncer-
tainties and/or the imperfection of the finite horizon
parameterization. More precisely:

– the term Jk+1/Ĵk+1 is linked to the difference
between the predicted state x̂(tk+1) that is used
in the iterations and the true state x(tk+1) that is
effectively found at tuk+1. This difference may be
induced by model mismatches (including unknown
dynamics of the set-point when the latter is used

to define an extended state for instance).

– the term J+
k /Jk represents the model based ratio

between the new value of the cost function after
prediction horizon shift by τuk and using the shifted
value of the control parameter p+(tuk) and the value
of the cost function before horizon shift. This ratio
would be necessarily < 1 in an infinite horizon set-
ting using classical p.w.c control parameterization.

Based on (13) it comes clearly that the indicator Kmin
k

defined by:

Kmin
k := min

q∈{1,...,N}
Kk(q) := Ek(q)Dk(q) (14)

is of great importance since the convergence of the scheme
may be guaranteed if for all k, one can be sure that

Kmin
k < 1

The computation of the feedback control q(tuk) in (12) can
be rationally done if one disposes at instant tuk of estimated
models for the maps Ek(q) and Dk(q) as functions of the
number of iterations q. Indeed, in this case, the following
feedback can be used:

q∗(tuk) := arg min
q∈{1,...,N}

Φ(q) := (15)
q

| log(Kk(q))|
under Kk(q) < 1 If Kmin

k < 1

Kk(q) otherwise

More clearly, if the constraint Kk(q) < 1 is feasible
(Kmin

k < 1), then optimization focuses on the settling time
which is proportional to q/| log(Kk(q))| but this minimiza-
tion is done over those values of q that correspond to a
contraction. Otherwise the contraction factor is enforced by
minimizing Kk(q).

To summarize, if models for Ek(·) and Dk(·) were avail-
able, equation (15) completely defines the feedback law q
for the extended system (12). It may be argued however that
assuming the availability of Ek(q), even through identifica-
tion (as it has been suggested and shown to be efficient on a
rather involved nonlinear example in [2]) is a rather strong
assumption. An alternative method is proposed in the next
section that enhances a distributed-in-time solution of (15).

III. A SUB-OPTIMAL CONTROL UPDATING RULE

Recall first of all that at the end of the computation period
[tuk , t

u
k+1], one disposes by using (13) of the following local

estimation of Ek(q(tuk)) and Dk(q(tuk)):

Ek(q(tuk)) =
Ĵk+1

J+
k

; Dk(q(tuk)) =

[
Jk+1J

+
k

Ĵk+1Jk

]
(16)

Moreover, provided that q(tuk) ≥ 2, one can use the interme-
diate results of the iterations to estimate the gradient of Ek



at q(tuk). Indeed, one obviously has:

∆Ek

∆q
(q(tuk)) ≈

J(p(q(t
u
k )), x̂(tuk+1))− J(p(q(t

u
k )−1), x̂(tuk+1))

J(p(0), x̂(tuk+1)
(17)

Regarding the map Dk(·), one may notice that by definition
Dk(0) = 1. Therefore, the following simple model can be
adopted for Dk(·):

Dk(q) = 1 + αD
k · q (18)

where the coefficient αD
k is estimated, in accordance with

(16) by the expression:

αD
k :=

1

q(tuk)

[
Jk+1J

+
k

Ĵk+1Jk
− 1

]
≈:

∆Dk

∆q
(q(tuk)) (19)

which is nothing but an estimation of the gradient of Dk at
q(tuk). Therefore, using (17) and (19), the sensitivity of Kk

at q(tuk) can be evaluated:

∆Kk

∆q
(q(tuk)) ≈ Ek

∆Dk

∆q
+Dk

∆Ek

∆q
(20)

Moreover, when Kk(q(tuk)) < 1, the sensitivity of the settling
time can also be obtained by:

∆(q/| log(Kk(q))|)
∆q

≈
− log(Kk) +

q

Kk
× ∆Kk

∆q

[log(Kk)]2
(21)

Having all the quantities above at hand, the updating rule for
q can be given by Algorithm 1:

Algorithm 1 Updating rule q(tuk+1) = U(q(tuk), tuk)

1: If (Kk ≥ 1) then
2: Γ← ∆Kk

∆q
(q(tuk)) [see (17), (19) and (20)]

3: Else
4: Γ← ∆(q/| log(Kk(q))|)

∆q
[see (21)]

5: End If
6: q(tuk+1)← max

{
2,min

{
qmax, q(t

u
k)− δ · sign(Γ)

}}
Note that in Algorithm 1, Γ stands for the gradient of Kk

if the current estimated value of Kk is greater to 1 (Step
2), otherwise, Γ is taken to be the gradient of the settling
time (Step 4). In both cases, a step δ ∈ N in the opposite
direction is taken and resulting value is projected in [2, qmax]
where qmax ≤ N is the maximum number of iterations being
allowed. Note that q ≥ 2 is needed for the estimation of
∆Ek/∆q to be possible according to (17).

It is obvious that Algorithm 1 implements a quantified
gradient method that hopefully reaches a vicinity of the
optimal solution of (15). This is more likely to occur when
the unknown efficiency map is monotonically decreasing
function of q. This is generally not the case in fast gradient
method unless a restarting strategy is adopted as shown in
the following section.

IV. MONOTIC VERSION OF THE FAST GRADIENT
METHOD

The fast gradient [5] version of the descent iteration
invoked in (5) leads to the following algorithm:

Algorithm 2 Fast gradient iterations p̄ = S(q)(p, x)

1: Initialization. p(0) ← p, r ← p
2: for i = 1, q do
3: p(i) ← PC

(
r − 1

L
[∇J(r, x))]

)
4: r ← p(i) + c(p(i) − p(i−1))
5: end for
6: p̄← p(q)

in which L is an upper bound on the Lypschitz constant
of the gradient ∇J of the cost function, namely:

∀(x, p1, p2) , ‖∇J(p2, x)−∇J(p1, x)‖ ≤ L‖p2 − p1‖

while c ∈ [0, 1[ is chosen according to the problem
conditioning [6]. For quadratic problems, the choice c =√
λmax(H)−

√
λmin(H)√

λmax(H) +
√
λmin(H)

where H is the problem Hessian

is considered to be optimal. Note that in the case where c = 0
is used, the algorithm reduces to the classical pure gradient
descent.

The map PC is the projection map into the set of ad-
missible values. This map can be made easy to compute by
working on the dual problem in which the constraints are
limited to hypercube for which PC is reduced to a vector
of element-wise saturation constraints (See for instance [3],
[4]).

The convergence of the above scheme depends on the
choice of c. Indeed, the pure gradient method (c = 0) shows a
proved convergence rate in 1/i while an optimal fast gradient
method decreases the cost function as 1/(i + 2)2. More
precisely, denoting by J∗(x) the optimal value of the cost
function, one can write:

J(S(q)(p, x), x)− J∗(x) ≤ α0

q`
; ` ∈ [1, 2] (22)

Recall that while the pure gradient method leads to mono-
tonically decreasing cost, the use of c > 0 in the fast gradient
version very frequently leads to non monotonically decreas-
ing behavior2. In [7], the authors showed very elegantly
that this fact occurs systematically under certain quite mild
conditions. Moreover, they proposed the following modified
version of the fast algorithm:

2It is worth underlying that this is not incompatible with (22) since the
later is only a bound on the potential oscillations.



Fig. 1. Evolution of the relative decrease given by
J(p(q), x)− J(p(0, x)

|J(p(0, x)|
as a function of the number of iterations q for pure gradient and fast gradient
without restart or with two different values of the restart counter threshold
smax used in Algorithm 3

Algorithm 3 Fast gradient iterations p̄ = S(q)(p, x) with
constant restarting strategy

1: Initialization. p(0) ← p, r ← p, s← 0
2: for i = 1, q do
3: s← s+ 1

4: p(i) ← PC

(
r − 1

L
[∇J(r, x))]

)
5: r ← p(i) + c(p(i) − p(i−1))
6: if (s = smax) then r ← p(i), s = 0 End if
7: end for
8: p̄← p(q)

Note that in this new version, a restarting feature is intro-
duced each smax iterations of the original fast algorithm in
order to avoid too large moment due to increasing difference
between r and p(i).

Figure 1 shows a typical evolutions of the ratio:

J(p(q), x)− J(p(0), x)

|J(p(0), x)|
for different configuration of Algorithm 3, namely: The pure
gradient algorithm (c = 0), the fast gradient with no restart
(smax = ∞), the fast gradient with smax = 5 and 8
respectively. These curves have been at a randomly chosen
instant during the scenario depicted in the example studied
in section V. Other random instant systematically gave the
same kind of behavior.

The main message that can be derived from this obser-
vation is that provided that the restart technique is applied
in the case of fast gradient (c 6= 0), the efficiency map is
monotonic and a gradient descent can be safely used in the
updating rule for the control updating period following the
lines used in Algorithm 1.

V. ILLUSTRATIVE EXAMPLE
Let us consider the constrained system consisting in a

triple integrator:

ẋ1 = x2 ; ẋ2 = x3 ; ẋ3 = u ; |u| ≤ 1 (23)

Fig. 2. Closed-loop evolution under the adaptive control updating period
with initial q = 2, δ = 10, qmax = 100. Prediction horizon N = 200.

and assume that fast gradient MPC is used to force this
system to track some reference signal yref = xref1 using
the cost function:

J =

N∑
k=1

‖y(k)− yref (k)‖2Q + ‖u(k)‖2R (24)

with Q = 100 and R = 1 and a sampling period τ = 0.02.
The fast gradient is used with restart parameter smax = 8
The number of iterations is limited to qmax = 100 and the
step size δ = 10 is used in the updating rule defined in step
6 of Algorithm 1.

Figures 2 and 3 show the behavior of the closed-loop
using the proposed adaptive algorithm for two different initial
values q = 2 and q = 100 respectively and using a prediction
horizon length of N = 200 sampling periods. The results
clearly show that the updating scheme converges towards
the same pattern regardless of the initial choice of q. The
performance of the closed-loop under the proposed adaptive
strategy is to be compared to those depicted on Figures 4
and 5 where constant q = 2 and q = 100 are respectively
applied to assess the efficiency of the proposed strategy to
improve the convergence towards the ideal case.

Observing the behavior of the updating parameter q on
Figures 2 and 3 suggests that a constant q = 20 would be
appropriate. This is checked on Figure 6 where indeed a
constant q = 20 seems to give nice results. Nevertheless, the
same constant value q = 20 is no more appropriate when
a prediction horizon N = 100 is used as shown on Figure
7. Again, firing the updating mechanism and starting from
q = 20 enables the new optimal updating parameter to be
recovered leading to quasi-optimal performance level (Figure
8) .

VI. CONCLUSION
In this work a new updating mechanism for the number

of iterations to be performed in fast gradient based NMPC
implementation is proposed and assessed using a,n illustra-
tive example. The method shows nice ability to automati-
cally recover the optimal performance despite bad a priori
knowledge on the optimal number of iterations. The updating
mechanism uses cheap computation based on the behavior of
the algorithm and the cost function in closed-loop.



Fig. 3. Closed-loop evolution under the adaptive control updating period
with initial q = 100, δ = 10, qmax = 100. Prediction horizon N = 200

Fig. 4. Closed-loop evolution without the updating mechanism and using
constant q = 2. Prediction horizon N = 200

Fig. 5. Closed-loop evolution without the updating mechanism and using
constant q = 100. Prediction horizon N = 200

Fig. 6. Closed-loop evolution without the updating mechanism and using
constant q = 20. Prediction horizon N = 200

Fig. 7. Closed-loop evolution without the updating mechanism and using
constant q = 20. Prediction horizon N = 100

Fig. 8. Closed-loop evolution under the adaptive control updating period
with initial q = 20, δ = 10, qmax = 100. The restarting threshold smax =
8 is used in the fast gradient descent. Prediction horizon N = 100

REFERENCES

[1] M. Alamir. Stabilization of nonlinear systems using receding-horizon
control schemes: A parameterized approach for fast systems. Springer-
Verlag, 2006.

[2] M. Alamir. A Framework for Monitoring Control Updating Period in
Real-Time NMPC, chapter In Assessement and Future Directions in
Nonlinear Model Predictive Control. Lecture Notes in Control and
Information Sciences, Springer-Verlag,, 2008.

[3] A. Bomporad and P. Patrinos. Simple and certifiable quadratic pro-
gramming algorithms for embedded linear model predictive control.
In Proceeding of the IFAC Nonlinear Predictive Control Conference,
Noordwijkerhout, NL, 2012.

[4] C. N. Jones, A. Domahidi, M. Morari, S. Richter, F. Ullmann, and
M. Zeilinger. Fast predictive control: Real-time computation and
certification. In Proceeding of the IFAC Nonlinear Predictive Control
Conference, Noordwijkerhout, NL, 2012.

[5] Y. Nesterov. A method of solving a convex programming problem with
convergence rate o (1/k2). Soviet Mathematics Doklady, 27(2):372–376,
1983.

[6] Y. Nesterov. Introductory lectures in convex optimization: a basic
course. Kluwer Academic Publishers, 2004.

[7] B. O’Donoghue and A. Candes. Adaptove restart for accelerated
gradient schemes. arxiv:1204.3982. April 2012.

[8] P. Zometa, M. Kogel, T. Faulwasser, and R. Findeisen. Implementation
aspects of model predictive control for embedded systems. In Proceed-
ing of the American Control Conference, Washington, USA., 2012.


	I INTRODUCTION
	II THE IDEAL CONTROL UPDATING RULE
	II-A Some definitions and notation
	II-B Distributed-in-time Implementation of MPC
	II-C Monitoring Control Updating As A Feedback Problem

	III A SUB-OPTIMAL CONTROL UPDATING RULE
	IV MONOTIC VERSION OF THE FAST GRADIENT METHOD
	V ILLUSTRATIVE EXAMPLE
	VI CONCLUSION
	References

