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Thermal Storage Power Balancing with Model Predictive Control

Rasmus Halvgaard, Niels K. Poulsen, Henrik Madsen and John B. Jørgensen

Abstract— The method described in this paper balances
power production and consumption with a large number of
thermal loads. Linear controllers are used for the loads to
track a temperature set point, while Model Predictive Control
(MPC) and model estimation of the load behavior are used
for coordination. The total power consumption of all loads is
controlled indirectly through a real-time price. The MPC incor-
porates forecasts of the power production and disturbances that
influence the loads, e.g. time-varying weather forecasts, in order
to react ahead of time. A simulation scenario demonstrates that
the method allows for the integration of flexible thermal loads
in a smart energy system in which consumption follows the
changing production.

I. INTRODUCTION

Integration of large amounts of renewable energy sources

in the power system, such as wind and solar energy, in-

troduces large fluctuations in power production. This type

of green energy must be either stored or consumed right

away. Consuming all of it as it is produced requires a very

flexible and controllable power consumption. Thermal loads,

in particular, consume power and often have flexible oper-

ating temperatures and thermal storage capacity. Examples

of controllable electric thermal loads are heat pumps in

buildings [1], auxiliary heating in solar collector storage

tanks [2], and commercial and domestic refrigeration systems

[3]. In a smart energy system these loads can potentially

offer flexibility if they are pooled together into a large-scale

system with large power consumption. With the right control

scheme this large-scale system of flexible thermal loads can

help balance changing power production levels by adjusting

the consumption of the loads accordingly [4]. However,

an incentive to help balance the power and a method for

coordinating must be established.
In this paper an indirect control strategy is proposed where

a control signal, referred to as a control price, communicates

the need for balancing. The control price is linearly linked to

the temperature set points and therefore indirectly influences

the total power consumption of a group of thermal loads.

This group is often referred to as an aggregation of loads, and

all loads are connected to an aggregator [5]. The aggregator

broadcasts the current control price, which is translated by

each load individually into a local temperature set point

to be followed. Based on a model of the aggregated con-

sumption response to the control price, closed-loop feedback

is provided at the aggregator level by measuring the total
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power consumption. In this way the aggregator is able to

balance instantaneous power or track an amount of power

already bought from a market [6]. In this paper the aggregator

controller is based on Model Predictive Control (MPC) [7].

The MPC uses an estimated low-order autoregressive (ARX)

model for real-time power balancing. Moreover, an integrator

model is added to eliminate model and forecast errors and

to achieve offset-free tracking.

For control, the MPC needs a model of the aggregated

thermal loads. This model should predict the effect of a

price change and calculate a single control price, which is

broadcast to all loads. The aggregator model is estimated

from the price response and may be very small compared to

a centralized model that includes detailed information about

all loads.

Compared to a centralized direct control strategy, the

decentralized indirect method described in this paper re-

duces the aggregator problem complexity considerably. The

computation efforts are decreased dramatically and the need

for two-way communication is eliminated. The relationship

between control price and set point in this paper was inspired

by [8]. A similar concept of balancing is found in [9],

where simple hysteresis control is used. In [10] an indirect

price strategy based on bilevel programming and a large

centralized model is proposed to minimize power imbalances

accounting for the load’s response to the price signal. An

example of a centralized direct control strategy can be

found in [11]. Note that most centralized formulations can

be solved more efficiently through decomposition of the

optimization problem into smaller subproblems. However,

two-way communication is still needed for coordination and

as the number of loads increase a decentralized approach is

needed. A completely decentralized approach, where opti-

mization variables are exchanged between loads as dynamic

prices, is considered in [12].

This paper is organized as follows. In Section II we

formulate an aggregated model of a large-scale system of

thermal loads. Section III describes the MPC that controls

the aggregated loads. In Section IV the control method is

demonstrated through simulation. The control price concept

is discussed further in Section V, while Section VI provides

conclusions.

II. MODELING

First we model the dynamics of the thermal loads and

their closed loop behavior with Linear Quadratic (LQ) con-

trollers. Then connection to the aggregator and the estimated

aggregated model is described. For notational simplicity,

2013 European Control Conference (ECC)
July 17-19, 2013, Zürich, Switzerland.

978-3-952-41734-8/©2013 EUCA 2567



the discrete time step subscript k has been omitted in the

following while the superscript + denotes k+1.

A. Thermal load

Each thermal load is modeled by the discrete-time state

space model

x+ = Ax+Bu+Ed +w (1a)

y =Cx (1b)

y is the output temperature, u is the power consumption, d

and w ∈ N(0,σ2
w) are disturbances influencing the states x.

The disturbance d could be an outdoor temperature acting

on a building, or solar radiation, while w is the unmodeled

process noise. For the method described in this paper we de-

sign LQ controllers to track a temperature set point r . When

choosing linear controllers, the aggregated model is also

linear and allows for a linear MPC at the aggregator level.

The unconstrained LQ controller should be able to track the

set point with no offset by rejecting any disturbances. Offset-

free integral control is achieved by augmenting the state

vector x with an integrating state x̃, such that xi =
[

xT x̃T
]T

.

From now on the different loads are subscripted i to denote

the L different loads. With integral control the ith load is

then modeled by

x+i = Aixi +Biui +Firi +Eidi +Giwi (2a)

yi =Cixi (2b)

with

Ai =

[

A 0

−C I

]

Bi =

[

B

0

]

Ci =
[

C 0
]

(3a)

Fi =

[

0

I

]

Ei =

[

E

0

]

Gi =

[

I

0

]

(3b)

The following linear control law is applied to track the

temperature set point ri

ui =−Kixi Ki =
[

K −K̃
]

(4)

A stationary control gain Ki has been designed for each load

with the weights Qi ≥ 0 and Ri ≥ 0 on the states xi and

control action ui, respectively. All loads are assumed stable

and controllable. The assumption of full-state feedback is

justified by the use of SISO models later in the numerical

example in Section IV. Alternatively, a Kalman filter could

be applied to estimate any unmeasured states. The controller

weights should be tuned separately for each load to trade

off long settling times for temperature overshoot and power

consumption.

As the aggregator objective is to manipulate power con-

sumption indirectly through the set point, the relationship

between ui and ri must be modeled. In our case a linear

expression for power consumption is readily available from

the control law (4). Inserting (4) in (2) gives us the closed-

loop model

x+i = (Ai −BiKi)xi +Fi fi(p)+Eidi +Giwi (5a)

zi = ui =−Kixi (5b)

K̃

s

K

lif(p)
p r u y

z

+

d

+
−−

x

Fig. 1. Load i with system li : (Ai,Bi,Ci,Ei) and LQ integral controller.

−1 +1 p

r

b

b+ a

b− a

0

Fig. 2. Function f (p) from control price to temperature set point

The aggregator measures the power consumption and not the

temperature.Therefore, power consumption is now defined as

the model output zi from the ith load. yi still indicates the

temperature output. In (5) the temperature set point ri has

been replaced by a function fi with the aggregator control

price p as argument. The control price is a scalar that is

broadcast to all loads, reflecting the need for balancing. A

block diagram of the controlled load is shown in Fig. 1.

Here it is seen how the control price is added as input to the

closed-loop model. Each load must map the control price to

an individual temperature set point. This mapping is done by

the affine function fi(p) defined for each load

ri = fi(p) =−
ri − ri

p− p
(p− p)+ ri (6)

When (p, p) = (−1,1) and (ri,ri) = (bi − ai,bi + ai), (6)

reduces to

fi(p) =−ai p+bi (7)

When the price is constrained the function fi(p) also con-

strains the temperature set point to a certain interval defined

by ai and bi. This mapping is illustrated in Fig. 2 and is

key to understanding the role of the control price. Note that

for cooling systems the sign on the slope a will be chosen

opposite of (7).

B. Aggregated model

We can put all the closed-loop models from (5) together

to get a large linear model of all L loads. This augmented

state space model subscripted a is then

x+a = Aaxa +Ba(p)+Ead +Gawa (8a)

za =Caxa (8b)
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x̂a

Fig. 3. System overview of aggregator and loads.

with Ba(p) = Fa fa(p) and

Aa = blkdiag(A1 −B1K1,A2 −B2K2, . . . ,AL −BLKL)

Fa = blkdiag(F1,F2, . . . ,FL)

Ga = blkdiag(G1,G2, . . . ,GL)

fa(p) =
[

f1(p) f2(p) · · · fL(p)
]T

xa =
[

xT
1 xT

2 · · · xT
L

]T

wa =
[

wT
1 wT

2 · · · wT
L

]T

Ea =
[

ET
1 ET

2 · · · ET
L

]T

Ca =−
[

KT
1 KT

2 · · · KT
L

]

·111

The derived closed-loop model (8) of all loads describes

the aggregated response from price to power consumption.

The desired SISO model with za ∈ R
1 and p ∈ R

1 is here

formed by the output matrix Ca, which sums all power

consumption contributions za = ∑
L
i=1 zi. The disturbance, d ∈

R
1, is assumed from now on to be a scalar influencing

all loads. It is assumed that the main component of this

disturbance can be forecast, while the remaining tracking

errors from disturbances are assumed to be eliminated by

the MPC integral controller.

As the number of loads increase, so does model complex-

ity and, ultimately, controller computation time. However,

this high dimensional model can be well approximated by

a lower-order model [13], [14]. In our method, we reduce

the model by estimating a low-order AR model from the

simulated response

Aar(q
−1)ẑa = Bar(q

−1)p+Ear(q
−1)d̂ +η (9)

η is the unmodeled disturbances. The model (9) can be used

for model estimation and control. It is assumed to be accurate

enough to enable the aggregator MPC to eliminate model

mismatch errors through an observer and stable closed-loop

feedback. Forecasts of the load disturbance d̂ is also added

to the model with the term Ear.

III. AGGREGATOR CONTROLLER

The MPC is well suited for control at the aggregator level

due to the following reasons. It handles capacity constraints

indirectly through a limit on the price. It rejects disturbances

and is able to track the power consumption reference ra with

a small error, since ra is known ahead of time so the MPC

can react in advance. In practice, ra could be a time-varying

forecast of wind power production, and at every time step

the MPC takes continuously updated forecasts into account.

A. Aggregator objective

The method presented in this paper will indirectly change

the power consumption of all thermal loads through a price

that is linearly related to the temperature set points. In this

way the aggregator puts a price on heating or cooling, and

indirectly on electricity as well. The set points will be set at

a high temperature set point when the price is low, and at a

low temperature when the price is high. However, the interval

within which the temperature set point is allowed to vary and

is up to the individual load, e.g. it could be the temperature

comfort interval in a building heated by a heat pump [1].

The temperature interval could even be set at zero by setting

ai = 0 in (7), but then the aggregator would have no flexibility

to exploit. Note that the same method holds for refrigeration

systems. However, in this case the set points should set at

a low temperature when the price is low. Controlling the

loads through a price requires a model of the price response

as well as models of the thermal load behavior. The loads

are connected to the aggregator through a control price p as

shown in Fig. 3. The total power consumption of the loads za

is measured by the aggregator that estimates an aggregated

model and provides closed-loop feedback with an MPC for

tracking the power consumption reference ra.

B. Offset-free ARX MPC

We assume the model (8) to be estimated from data as an

ARX model on the form (9). To obtain offset-free tracking

we replace the unmodeled term η by an integrator model

[15]

η =
1−αq−1

1−q−1
e (10)

α is a tuning parameter [15]. The observer error e = za − ẑa

is obtained from measurements of the aggregated response

za (8). Adding the integrator model (10) to (9) yields the

controller model in ARMAX form

Ac,ar = (1−q−1)Aar Ec,ar = (1−q−1)Ear (11a)

Bc,ar = (1−q−1)Bar Cc,ar = 1−αq−1 (11b)

The final controller model used as a predictor is obtained by

realizing (11) as a discrete state-space model in innovation

form

x̂+a = Acx̂a +Bc p+Ecd̂ +Kce (12a)

ẑa =Ccx̂a (12b)

This is the one-step predictor. For predicting j-steps ahead

the term Kce is omitted.
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Algorithm 1 MPC algorithm

For every time step find the optimal control price p∗k

Require P =
(

x̂a,k, pk−1,{d̂k+ j}
N−1
j=0 ,{ra,k+ j}

N−1
j=0

)

za,k =Caxa,k {Measure}
ek = za,k −Ccx̂a,k {Estimate error}
{pk+ j}

N−1
j=0 = µ (P) {Solve QP}

xa,k+1 = Aaxa,k +Fa fa(pk)+Eadk +Gawa,k {Actuate}
x̂a,k+1 = Acx̂a,k +Bc pk +Ecd̂k +Kcek {Predict}
return p∗k

C. Model Predictive Control

We use the tracking MPC formulation from [16] and

minimize the residual by solving the following optimization

problem at every time step k

minimize
1

2

N−1

∑
j=0

||ẑa,k+1+ j − ra,k+1+ j||
2
2 +λ ||∆pk+ j||

2
2

subject to (12)

x̂a,k+1+ j = Acx̂a,k+ j +Bc pk+ j +Ecd̂k+ j

ẑa,k+ j =Ccx̂a,k+ j

−1 ≤ pk+ j ≤ 1

∆pmin ≤ ∆pk+ j ≤ ∆pmax

(13)

The optimal control price {p∗k}
N−1
j=0 is found over the predic-

tion horizon j = 0,1, . . . ,N−1. The control price minimizes

the deviations from the power consumption reference based

on model predictions of the aggregated thermal loads. The

first control price p∗0 is broadcast to all loads and the process

is repeated at the next time step. Only the optimal control

price at the current time step is implemented, e.g. the current

price, and consequently closed-loop feedback is obtained.

This is often referred to as the receding horizon principle. A

regularization term is also added to the objective with penalty

λ on the price rate ∆p to enforce stability.

Algorithm 1 shows the closed-loop MPC algorithm that

runs at every time step [16]. The MPC control law p= µ(P)
is evaluated by solving (13), and real-time computation is

enabled from the low-order aggregated controller model.

IV. NUMERICAL EXAMPLE

We model the individual load with a first-order transfer

function G(s) from power consumption u to temperature y

G(s) =
c

τs+1
(14)

τ is the time constant and c is the gain. The same model

is used to model the disturbance response from d to y. We

discretize with a zero-order hold and sampling period Ts = 1.

As an example we set up a portfolio of L = 10 loads, each

modeled with (14) and the parameters from Table I. We select

different price scalings in a, but use the same temperature

interval bias b. The tuning weight R is set rather high to

minimize control action and is not tuned separately for each

load.

i τ c a b Q R

1 55.4 1.32 1.00 21 1 2
2 68.3 2.94 1.22 21 1 2
3 27.4 2.91 1.44 21 1 2
4 58.6 1.97 1.67 21 1 2
5 53.2 2.60 1.89 21 1 2
6 36.9 1.28 2.11 21 1 2
7 45.7 1.84 2.33 21 1 2
8 53.4 2.83 2.56 21 1 2
9 85.8 2.58 2.78 21 1 2

10 77.7 2.92 3.00 21 1 2

TABLE I

PARAMETERS FOR NUMERICAL EXAMPLE WITH L = 10
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Fig. 4. Power consumption response and estimated response to unit price
step (upper) and their residual (lower).

A. Estimated controller model

Fig. 4 depicts the unit price step response of the chosen

model. The response fits an AR(2,2) model quite well, except

for a small stationary error, even though the response is the

sum of L = 10 different first-order models. For the chosen

numerical parameters in Table I we find the following model

Âar(q
−1) = 1−1.756q−1 +0.7798q−2 (15a)

B̂ar(q
−1) =−12.62q−1 +12.40q−2 (15b)

Êar(q
−1) =−2.286q−1 +2.038q−2 (15c)

Also a response from the disturbance to power consumption

was used to estimate the polynomial Êa(q
−1). The final

controller model is obtained by adding the integrator model

as in (11).

In this numerical example some process noise was added

to simulate unmodeled disturbances with wa ∈ N(0,0.01).
We tune the controller with the parameters to α = 0.7, λ =
103 and (∆pmin,∆pmax) = (−1,1). These parameters matter

considerably when the plant is subject to stochastics [17].
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B. Simulation results

A simulation of the MPC price control with the estimated

models is shown in Fig. 5 and 6. The upper plot of Fig. 5

shows the aggregated response and how the power reference

is tracked by the aggregator MPC with no offset errors.

Since prediction of the reference ra is available to the MPC,

control prices which indirectly change power consumption

are broadcast ahead of time in order to minimize the residual.

The residual is plotted below, along with the control price.

After 55 time steps the control price constraint is active at

−1. At this point the power reference is very high and the

aggregator demands all available power from the thermal

loads. Note that the control price is not constant when the

total reference power consumption is constant, i.e. tracking

a constant power requires a ramping of the price due to the

dynamics of the loads.

There is a small stationary offset error during ramping

of the reference. A double integrator can be added to (10)

to eliminate the error. However, this requires the LQ load

controllers to increase their order as well. This means the

response will be more sensitive to noise and the tuning

parameter α becomes extremely important [17]. In this work

we accept the ramp offset error and use a single integrator.

The bottom plot of Fig. 6 shows the temperatures of the

loads. Some loads are more flexible than others and allow a

wider temperature interval, i.e. b±a with a large ai, indicated

by the various dashed lines at different levels. Consequently,

a more flexible load will have a more varying temperature.

However, the temperature is still ensured to lie within the

predefined interval, b±a, due to the constrained control price.

The temperature interval can be adjusted for each load by

the scaling ai and can even be time varying. Naturally, the

temperature does not depend exclusively on the control price;

it also depends on the dynamics, i.e. the time constant, of

the load and its controller tuning. The power consumption

of each load is shown in the upper plot of the figure. As

intended, power consumption mainly occurs when the price

is low, as becomes evident when comparing to the price in

Fig. 5. The stationary power consumption, when p = 0

and d = 0, varies from load to load as observed in Fig. 6

because of the different initial levels of u. In our example

the combined stationary power consumption of all the loads

when disregarding the disturbance is

z0
a =

L

∑
i=1

bi

ci

(16)

In Fig. 5 power consumption was plotted around zero as the

deviation from this stationary consumption z0
a. From (16) it

can be seen that the stationary power consumption depends

on the number of loads L, their temperature settings (b,a),
their efficiency c, and disturbance d. The methods accounts

for local disturbances by forecasting a global disturbance d̂

that acts on all loads. Any remaining sources of error will

be eliminated by the MPC. A disturbance has also been used

in the simulation shown in Fig. 5. After thirty time steps the

disturbance kicks in, e.g. a change in outdoor temperature
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Fig. 5. Simulation of the aggregator tracking a power consumption ra by
controlling an aggregation of thermal loads. Total power consumption za is
plotted around zero as the deviation from the stationary consumption z0

a.
The normalized residual is plotted below along with the control price p. As
intended, load consumption is highest when the price is low. The disturbance
is forecast dh and eliminated by the MPC. The disturbance shown here is
scaled and does not match the units of the y-axis.
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Fig. 6. Load output temperatures yi (lower) and their temperature intervals
bi ±ai (dashed lines). Also their power consumptions ui are plotted (upper).

which changes the power consumption. By forecasting the

disturbance, the tracking error can be greatly improved. A

forecast that is close to the real disturbance is implemented

and this is why almost no deviations are seen at the dis-

turbance transitions after 30 and 70 time steps. A single

disturbance acting on all loads can be justified when the loads

are geographically close to each other and the disturbance

considered is the outdoor temperature. Solar radiation has a

more local impact on buildings but can also be forecast for

a larger area [18].
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V. DISCUSSION

The control price used in this method should not be

interpreted as the final billing price for each load. The control

price helps the aggregator meet its balancing objective, but

does not create an incentive for the loads to choose high tem-

perature intervals, ai. High temperature intervals increase the

flexibility and thereby also the regulating power. Moreover,

it lowers temperature variations for all aggregated loads.

Consequently, all loads are forced to help the aggregator

reach its tracking goals regardless of their own optimal

strategy. This method is not optimal for every load in terms

of energy savings, but will ensure that total aggregated

power consumption follows production, e.g. from wind, to

the benefit of the overall energy system.
A negative control price should not be considered a

subsidy. However, the sign on p merely says whether the

aggregator needs up or down regulation. It is evident from the

simulations that if the price is negative a majority of the time,

often the loads with the largest temperature interval will be at

very low temperatures, thus saving a lot of power. If the price

is mostly positive, the loads with low temperature intervals

will save power. The opposite is true if we consider cooling

rather than heating. In this case, the final electricity cost for

each load should not depend exclusively on the control price.

There must be a clear incentive to provide a large temperature

interval, since this will enable more power at the aggregator

level and less discomfort for all loads. Final billing could be

calculated on the basis of consumption ui,k, and temperature

interval 2ai, defining how much load i allows the temperature

to vary. Also the heat capacity of the load, e.g. the time

constant τi, could play a role if it was measured. Instead

of billing for power consumption using the control price,

we suggest putting a price on flexibility, i.e. the temperature

interval ai which, in practice, could be time varying.
As a consequence of using linear unconstrained controllers

for the loads, no actuator saturation was considered. If

actuator constraints are involved, the price response will not

be linear, and clipping of the power will be observed. As a

result the response in Fig. 2 might look more sigmoidal and

bend at the price limits ±1. One way to prevent this problem

is to restrain loads from setting ai too high compared to its

capacity and the expected disturbances. Another way is to

include an adaptive model of the price response. Note that

time-varying linear models can be easily implemented in the

MPC algorithm by changing the coefficients of the controller

model (15).

VI. CONCLUSIONS

The method described in this paper enables a linear MPC,

based on a low-order SISO ARX model, to balance power

production with consumption of a considerable number of

thermal loads in real-time. The method requires linear tem-

perature set point controllers to control the loads as well

as model estimation of the price response at the aggregator

level. The aggregator MPC controls total power consumption

of all loads indirectly through a broadcast real-time price, i.e.

one-way communication. It also handles the load temperature

constraints through price constraints. The MPC incorporates

forecasts of disturbances and power production, e.g. time-

varying wind power forecasts, in order to react ahead of

time. Added integral control eliminates model and forecast

errors, while feedback is provided by measuring total load

power consumption. Individual loads can set their own de-

sired upper and lower temperature bounds. The method was

demonstrated through simulation and allows for integration

of flexible thermal loads a smart energy system in which

consumption follows a changing production.
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