Abstract:
Fault-tolerant control (FTC) allows to preserve performance and stability despite the presence of faults. The literature considers two main groups of techniques: the pass...Show MoreMetadata
Abstract:
Fault-tolerant control (FTC) allows to preserve performance and stability despite the presence of faults. The literature considers two main groups of techniques: the passive and the active FTC techniques. In case of the passive techniques, the fault is taken into account as a system perturbation, so that the control law has fault capabilities that allow the system to cope with the fault presence. On the other hand, in the case of the active FTC techniques, the control law uses some information given by a Fault Detection and Isolation (FDI) module, so that through some automatic adjustment in the control loop, the fault is tolerated with minimum performance degradation. In this paper, a linear parameter-varying (LPV)/linear matrix inequalities (LMIs)-based technique is used to achieve fault tolerance and to compare benefits and drawbacks of passive and active FTC. The proposed approach is applied to a two-wheel differential robot.
Published in: 2013 European Control Conference (ECC)
Date of Conference: 17-19 July 2013
Date Added to IEEE Xplore: 02 December 2013
Electronic ISBN:978-3-033-03962-9