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On the control of the algebraic connectivity and
clustering of a mobile robotic network

Fabio Morbidi

Abstract— In this paper two related problems are studied:
the control of the algebraic connectivity and clustering of a
network of single-integrator agents. A steepest-descent algo-
rithm is presented for the first problem, so that a smooth
approximation of the algebraic connectivity of the underlying
undirected communication graph converges to anassigned
value. For the second problem, a new gradient-based control
strategy is proposed to automatically partition the mobile
robotic network into two predefined groups: our spectral-
clustering method leverages a continuous-time power-iteration
algorithm on the normalized Laplacian matrix which pro-
vides an estimate of its Fiedler vector at each time instant.
The results of numerical simulations are provided to illustrate
our theoretical findings.

I. I NTRODUCTION

A. Motivation and related work

This paper presents original algorithms for controlling
the algebraic connectivityand clustering of a mobile
robotic network. Connectivity is a critical issue in numerous
problems involving groups of cooperating agents. Since con-
nectivity is not generally maintained during the execution of
a given coordination task (e.g., rendezvous at a point), several
methods have emerged in the recent literature to preserve
it at all times. The majority of the existing approaches
rely on global connectivity criteria, such as, notably, the
“algebraic connectivity” or “Fiedler value” of the underlying
communication graph (i.e., the second smallest eigenvalueof
the graph Laplacian). In the seminal work by De Gennaro
and Jadbabaie [1], an iterative decentralized supergradient
algorithm is presented for maximizing the connectivity of a
robotic network. In [2], instead, the authors leveraged the
determinant of the reduced Laplacian to define an artificial
potential field that drives the agents to configurations away
from the undesired space of disconnected networks. In [3],
the same authors used the notion ofk-connectivity and
tools from hybrid-systems theory to address an analogous
problem, while recently, in [4], a new method that relies on
the so-called spectral moments has been proposed to achieve
a desired set of adjacency eigenvalues. In [5], the Fiedler-
value maximization problem was cast as a semi-definite
program (SDP) and in [6] it has been made distributedly
implementable via a non-iterative method that solves local
SDPs using only the information from the nearest neighbors.
In [7], distributed game-theoretic algorithms that work under
imperfect information caused by delays in communication
and robots’ mobility, have been proposed for connectivity
maintenance. Finally, in [8], an original estimation procedure
based on dynamic average consensus estimators has been
introduced for tracking the algebraic connectivity and a
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gradient-based control strategy has been designed to maintain
the connectivity at all times. The focus of a second stream
of research, has been on the synthesis of (decentralized)
controllers that enable each agent to maintainlocal connec-
tivity. For discrete-time double integrators, a feasible control
space is computed in [9] for each agent to maintain all
existing pairwise connections: in [10], instead, each agent
tries to maintain its two-hop communication neighbors. Fi-
nally, in [11], the authors studied the rendezvous and the
formation control problems over dynamic graphs, and by
adding appropriate weights to their edges they guaranteed
that connectivity is preserved during robots’ motion.

Differently from Fiedler-value maximization which tends
to increase the cohesion of the agents,clustering control
consists of partitioning a network into two (or more) pre-
defined groups of nodes. The intuition behind clustering is
that of separating nodes in different groups according to
their “similarities”: in other words, we seek a partition of
the graph such that the edges between different groups have
a very low weight (which means that nodes in different
clusters are “dissimilar” from each other) and the edges
within a group have high weight (i.e. nodes within the same
cluster are “similar” to each other).Spectral clusteringhas
lately emerged as a powerful tool for network decomposition
purposes [12], [13]. In its most general form, this method
assigns nodes to clusters according to the signs of the com-
ponents of the eigenvectors of the (normalized) Laplacian
corresponding to increasing eigenvalues. In [14], the authors
have developed a distributed algorithm for spectral clustering
of static networks: the algorithm involves performing random
walks and neglecting at every step probabilities below a
threshold value. More recently, in [15], a distributed wave
equation-based algorithm that is orders of magnitude faster
than that in [14], has been proposed for the same problem.
Indeed, as pointed out in [16], [17], the clustering ofdynamic
networkscould be highly beneficial in many mobile-robot
applications, e.g., to maxime a mission’s probability of
success or economize limited energy resources.

B. Original contributions and organization

This paper is divided into two parts. In the first part,
adopting a formulation similar to that in [2], we propose
a steepest-descent algorithm to steer the algebraic connec-
tivity of a network of single-integrator agents towards a
predefined value. By using an exponential-decay model to
characterize the connectivity relation between the robots, our
main contribution consists in approximating the algebraic
connectivity (that isnot a differentiable function, in general:
in fact the eigenvalues are not differentiable quantities at
points where they coalesce [18]), with a smooth symmetric
penalty function. Note that although some previous papers
in the connectivity-control literature have acknowledgedthe
nonsmooth nature of the Fiedler value (see, e.g., [19], [20]),



to the best of the author’s knowledgeno explicit solution
to this problem has been yet proposed. It is also worth
pointing out that differently from most of the existing works
which merely deal with the maximization of the Fiedler value
(that leads to the collapse of the agents into a single point,
unless e.g., a leader-follower mechanism is adopted [8]), for
the first time in this article we synthesize a more flexible
set-point controllerof the algebraic connectivity.

In the second part of the paper, we continue to adopt an
exponential-decay model for describing agents’ interaction
and inspired by [14], [15] where the spectral clustering
of a graph withstatic nodesis considered, we propose a
new gradient-based control strategy toautomaticallyparti-
tion a mobile robotic networkinto two predefined clusters.
Our approach relies on a continuous-time power iteration
algorithm on the normalized Laplacian matrix which pro-
vides an estimate of the Fiedler vector (i.e. the eigenvector
associated to the Fiedler value) at each time instant, and
bears some resemblance with the eigenstructure-assignment
techniques routinely used in the field of active-vibration con-
trol. Note that in this paper we are not specifically interested
in decentralizedcontrol strategies, but rather in providing
preliminary proof-of-concepts. Our algorithms, indeed, can
be implemented in a distributed fashion by tailoring existing
approaches (e.g., that in [8]) to our specific setting: this
extension is the subject of ongoing research.

The rest of this paper is organized as follows. Sect. II
presents some preliminaries on agents’ modeling and spectral
graph theory. The main theoretical results of the work are
introduced in Sects. III and IV, which deal with the connec-
tivity and clustering control problems. Finally, in Sect. V,
the theory is illustrated via numerical simulations, and in
Sect. VI the main contributions of the paper are summarized
and possible future research directions are outlined.

II. PRELIMINARIES

Consider a team ofn > 2 mobile agents modeled as single
integrators,ṗi(t) = ui(t), i ∈ {1, . . . , n}, wherepi(t) =
[pi1(t), . . . , pid(t)]

T ∈ IRd, d ∈ {2, 3}, denotes the position
of agenti andui(t) = [ui1(t), . . . , uid(t)]

T ∈ IRd its control
input at timet. The dynamics of the team can be rewritten
in a compact form as,

ṗ(t) = u(t), (1)

where p(t) , [pT
1 (t), . . . ,p

T
n (t)]

T ∈ IRdn and u(t) ,

[uT
1 (t), . . . ,u

T
n (t)]

T ∈ IRdn.
Note that then-agent network defined by (1), gives rise

to a graphG(p(t)) = (V, E), whereV = {1, . . . , n} is the
set of nodes or vertices indexed by the mobile agents and
E = {{i, j} | j ∈ N (i)} is the set of edges, whereN (i)
denotes the set of neighbors of agenti in the undirected
communication network.

Definition 1 (Weighted adjacency matrixA): The n × n
weighted adjacency matrixA = [aih] is defined as,

aih =

{
ahi > 0 if h ∈ N (i),

0 otherwise.

Since self-loops are not allowed, we defineaii = 0, ∀ i ∈
{1, 2, . . . , n}. ⋄

Definition 2 (Weighted Laplacian matrixL):
The weighted Laplacian matrix is defined as,

L = D−A,

where the diagonal matrixD = diag(A1) is called the
degree matrix, and1 is a column vector ofn ones. ⋄

Property1 (Spectral properties ofL):
Let λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L) be the ordered
eigenvalues of the LaplacianL. Then, we have that:

1) λ1(L) = 0 with corresponding eigenvector1. The al-
gebraic multiplicity ofλ1(L) is equal to the number of
connected components in the graphG.

2) λ2(L) > 0 if and only if the graphG is connected.λ2 is
called thealgebraic connectivityor Fiedler valueof G
and the associated eigenvector is calledcharacteristic
valuationor Fiedler vectorof G. ⋄

Definition 3 (Reduced LaplacianL∗): Let

Orth(1) , {P ∈ IRn×(n−1) |PTP = In−1 and PT
1 = 0},

whereIn−1 is the(n−1)×(n−1) identity matrix. By fixing
someP ∈ Orth(1), we define the reduced Laplacian to be
the (n− 1)× (n− 1) symmetric matrix:

L∗ = PT LP. ⋄
Property2 (Spectrum ofL∗): Let 0 = λ1 ≤ λ2 ≤ . . . ≤

λn be the ordered eigenvalues ofL. Thenλ2 ≤ . . . ≤ λn

are the eigenvalues ofL∗. ⋄
There exist two matrices which are callednormalized

Laplacian in the literature [21]. This paper deals with the
normalized LaplacianLsym, which is a symmetric matrix.

Definition 4 (Normalized LaplacianLsym): The normali-
zed LaplacianLsym ∈ IRn×n is defined as,

Lsym , D−1/2 LD−1/2 = In −D−1/2 AD−1/2. ⋄

Property3 (Spectral properties ofLsym [21]): Lsym has
the following spectral properties:

1) 0 is an eigenvalue ofLsym with eigenvectorD1/2
1.

The algebraic multiplicity of the eigenvalue 0 is equal
to the number of connected components in the graph.

2) Lsym is a symmetric positive semidefinite matrix and
it has n nonnegative real-valued eigenvalues0 =
λ1(Lsym) ≤ . . . ≤ λn(Lsym) ≤ 2. If G is a bipartite
graph, thenλn(Lsym) = 2.

3) tr(Lsym) = n for any graphG. ⋄

Definition 5 (Spectral clustering of graphG): The signs
of then components of the Fiedler vectorv2 of Lsym, define
a partition of the connected graphG into two vertex-cutsets1.
For example, ifv2 = [0.35, 0.7, 0.06, −0.2, 0.12, −0.7]T ,
then the graphG is partitioned into the vertex-cutsets
{1, 2, 3, 5} and{4, 6}, according to the sign pattern. ⋄

Through all the paper, we will assume that the components
aih, i 6= h, of the weighted adjacency matrixA are defined
according to the followingposition-dependent Gaussian sim-
ilarity function,

aih(p(t)) , exp

(
−
‖pi(t)− ph(t)‖2

2 σ2

)
,

where‖ · ‖ denotes the standard Euclidean norm and param-
eterσ > 0 controls the width of the neighborhoods2. In this
way, by suitably moving then agents, we are ultimately
able to control the algebraic connectivity and clustering of
the robotic network.

1As pointed out in [12, Sect. 8.5], the normalized LaplacianLsym offers
distinctive advantages over the standard LaplacianL for spectral clustering.

2For the sake of simplicity, as in [2], we donot consider here a threshold
value on‖pi(t) − ph(t)‖ over which an edge ceases to exist.



III. SET-POINT CONNECTIVITY CONTROL

The first problem studied in this paper is that of connec-
tivity control.

Problem1 (Set-point connectivity control):Let the initial
configurationp(t0) of then agents be arbitrary. Design the
control inputsu1, . . ., un of the agents, so that the quadratic
cost function,

J1 = γ (λ2(L) − λd
2)

2, (2)

is minimized, whereγ is a positive gain andλd
2 > 0 repre-

sents thedesired algebraic connectivityof the network. ⋄
Note that the cost function (2) can be equivalently rewrit-

ten as (cf. Property 2),

J1 = γ
(
λmin(L

∗) − λd
2

)2
= γ

(
λmax(−L∗) + λd

2

)2
,

whereλmin(·) andλmax(·) denote the minimum and maxi-
mum eigenvalue of a matrix, respectively.

Since the cost functionλmax(−L∗) is nondifferentiablein
general (in fact, the gradient ofλmax(−L∗) does not exist
when the maximum eigenvalue of−L∗ is not simple, i.e., it
has algebraic multiplicity greater than one), in the remaining
of this section we will use itssmoothed version(a symmetric
exponential penalty function [22, p. 293])

Φε(−L∗) , ε ln
( n−1∑

k=1

exp
(
−

λk(L
∗)

ε

))
, (3)

whereε > 0 is a smoothing parameter andλk(L
∗) denotes

the k-th eigenvalue ofL∗. Note that (3) is aC∞ convex
function with respect to−L∗ and it possesses the following
uniform approximation property toλmax(−L∗),

0 ≤ Φε(−L∗)− λmax(−L∗) ≤ ε ln(n− 1), ∀ ε > 0,

from which it follows thatlimε ↓ 0 Φε(−L∗) = λmax(−L∗).
The next proposition provides a solution to Problem 1.

Our idea simply consists in considering

J1 = γ
(
λmax(−L∗) + λd

2

)2
= lim

ε ↓ 0
γ
(
Φε(−L∗) + λd

2

)2
,

(4)
as an artificial potential function, and in using it to define a
steepest-descent control law for each of then agents.

Proposition1 (Solution to Problem 1):Problem 1 is
solved if the following control input is applied to agenti
for ε ↓ 0:

ui = −2 γ (Φε(−L∗) + λd
2)
[
tr
(
R diag(Π)RT PT Θi1 P

)
,

. . . , tr
(
R diag(Π)RT PT Θid P

)]T
,

(5)
whereR, diag(Π), P, Θi1, . . . , Θid are matrices whose
explicit expression is given in the proof below.

Proof: ConsiderJ1 in (4) as a potential function and
define the control of agenti as follows:

ui = −∇pi
J1 = lim

ε ↓ 0
−∇pi

γ
(
Φε(−L∗) + λd

2

)2

= lim
ε ↓ 0

−2γ
(
Φε(−L∗)+λd

2

)
∇pi

Φε(−L∗), (6)

where∇pi
J1 denotes the gradient ofJ1 with respect topi.

By using [22, Th. B.17], we can rewrite thed-dimensional

gradient vector∇pi
Φε(−L∗) in (6), as,

∇pi
Φε(−L∗) =

[
tr

((
∂ Φε(−L∗)

∂ L∗

)T
∂ L∗

∂ pi1

)
, . . . ,

tr

((
∂ Φε(−L∗)

∂ L∗

)T
∂ L∗

∂ pid

)]T
.

(7)

Let nowO(n−1) denote the group of(n− 1)× (n− 1) real
orthogonal matrices. Then, by leveraging the results in [23],
we have that,

∂ Φε(−L∗)

∂ L∗
= R diag

(
Π(−L∗, ε)

)
RT , (8)

where R ∈ O(n − 1) is such that RT L∗ R =
diag(λ(L∗)), beingλ(L∗) ∈ IRn−1 the vector of eigenvalues
of L∗ in nondecreasing order. Moreover,Π(−L∗, ε) =
[Π1(−L∗, ε), . . . ,Πn−1(−L∗, ε)]T , where

Πk(−L∗, ε) =
e−λk(L

∗)/ε

∑n−1
ℓ=1 e−λℓ(L∗)/ε

, k ∈ {1, . . . , n− 1}.

Note thatΠk(−L∗, ε) > 0, k ∈ {1, . . . , n − 1}, and that∑n−1
k=1 Πk(−L∗, ε) = 1. Finally, observe that,

∂ L∗

∂ pij
= PT ∂ L

∂ pij
P , PT Θij P, j ∈ {1, . . . , d}, (9)

whereΘij ∈ IRn×n is given in equation (10) at the top of
the next page. By collecting equations (6)-(10) together, we
obtain the control input in (5).

IV. CLUSTERING CONTROL

The second problem studied in this paper is formulated as
follows (recall Def. 5).

Problem2 (Clustering control):Let the initial configura-
tion p(t0) of the n agents be arbitrary. Design the control
inputs u1, . . . , un of the agents, so that the following
quadratic cost function,

J2 = (v2 − vd
2)

T Γ (v2 − vd
2) , (11)

is minimized, whereΓ ∈ IRn×n is a symmetric positive-
definite gain matrix,v2 ∈ IRn is the Fiedler vector of the
normalized LaplacianLsym, and vd

2 ∈ ker(λ2(Lsym)In −
Lsym) is an n-dimensional vector that specifies thedesired
clusteringof the network. ⋄

The next proposition, an extension of Theorem 1 in [8],
is instrumental in presenting the main result of this sec-
tion (Prop. 3). It introduces acontinuous-time power-
iteration algorithm for estimating the Fiedler vectorv2

of Lsym at each time instant. For the sake of conciseness,
the proof is omitted.

Proposition2 (Continuous-time power iteration onLsym):
Let δ ∈ IRn be such that diag(δ) = D1/2. Given any initial
conditionx(t0) and positive gainsk1, k2 andk3, as long as
vT
2 x(t0) 6= 0, the conditions,

k1 > k2
n

‖δ‖2
λ2(Lsym), k3 > k2 λ2(Lsym), (12)

are necessary and sufficient for the following system,

ẋ = −

(
k1
n

δ δ
T + k2 Lsym + k3

[
‖x‖2

n
− 1

]
In

)
x ,

(13)
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


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

. (10)

to converge to an eigenvectorṽ2 corresponding toλ2(Lsym),

satisfying‖ṽ2‖ =
√
n
(
1− k2

k3

λ2(Lsym)
)
. �

Note that in order to accommodate the continuous-time
power iteration onL in [8, Th. 1] to the normalized Laplacian
Lsym, we had to modify the so-called “deflation step” (cf. the
first term on the right-hand side of (13)), as follows:

ẋ = −
k1
n

D1/2
11

T (D1/2)T x = −
k1
n

δ δ
T
x. (14)

From a geometric viewpoint, system (14) drivesx to
ker(D1/2

1), i.e., the space spanned by the eigenvectors
v2, . . . ,vn of Lsym. In the case of repeated eigenvalues
λ2(Lsym) = . . . = λr(Lsym) < λr+1(Lsym), Prop. 2 is
still valid. In this case, as shown in [8], all trajectories
with vT

2 x(t0) 6= 0 converge to an equilibrium point on the
r-dimensional manifold,

M =
{
q = [q1, . . . , qn]

T
∣∣ ‖q‖ =

√
n (1− k2

k3

λ2(Lsym)) ,

q1 = 0, qi = 0, ∀ i > r
}
.

However, for the existence ofunique cuts that divide
the network into two clusters, we henceforth assume that
λ2(Lsym) 6= λ3(Lsym), (cf. [15]).

Remark1 (On the fulfillment of the conditions in (12)):
Note that the conditions in (12) can be satisfied also with
a partial knowledge of the network topology. In fact, we
have thatλ2(Lsym) < tr(Lsym) = n (recall Property 3.3),
from which it follows that the conditions in (12) are fulfilled
if we simply choosek1 > k2 (n/‖δ‖)2, k3 > k2 n. ⋄

We are now in a position to present our solution to
Problem 2. As in Sect. III, we will leverage a gradient-based
method to define the control input of then agents.

Proposition3 (Solution to Problem 2):Problem 2 is
solved if the following control input is applied to agenti,

ui = − 2
(
(x− vd

2)
T Γ [ zi,1, . . . , zi,d]

)T
, (15)

wherex ∈ IRn in (15) is obtained from integration of equa-
tion (13) at each time instant, andzi,j ∈ IRn, j ∈ {1, . . . , d},
is obtained from integration of the following linear time-
varying system,

żi,j = −
( k1

n
δ δ

T + k2 Lsym +
2 k3
n

xxT

+ k3

[
‖x‖2

n
− 1

]
In

)
zi,j −

(2 k1
n

∂ δ

∂ pij
δ
T+ k2

∂ Lsym

∂ pij

)
x,

(16)

where

∂ δ

∂ pij
=

1

2 σ2

[( n∑

k=2

e−
‖p1−pk‖2

2 σ2

)−1/2

(p1j − pij) e
−

‖p1−pi‖
2

2σ2 ,

. . . , −
( n∑

k=1
k 6=i

e−
‖pi−pk‖2

2 σ2

)−1/2 n∑

k=1
k 6=i

(pij − pkj) e
−

‖pi−pk‖2

2 σ2 ,

. . . ,
( n−1∑

k=1

e−
‖pn−pk‖2

2 σ2

)−1/2

(pnj − pij) e
−

‖pn−pi‖
2

2 σ2

]T
,

∂ Lsym

∂ pij
=

∂D−1/2

∂ pij
LD−1/2 +

(
∂D−1/2

∂ pij
LD−1/2

)T

+ D−1/2 Θij D
−1/2,

Θij ∈ IRn×n is given in (10) above, and

∂D−1/2

∂ pij
=

−
1

2 σ2
diag

(( n∑

k=2

e−
‖p1−pk‖2

2σ2

)−3/2

(p1j − pij) e
−

‖p1−pi‖
2

2 σ2 ,

. . . ,−
( n∑

k=1
k 6=i

e−
‖pi−pk‖2

2σ2

)−3/2 n∑

k=1
k 6=i

(pij − pkj) e
−

‖pi−pk‖2

2σ2 ,

. . . ,
( n−1∑

k=1

e−
‖pn−pk‖2

2σ2

)−3/2

(pnj − pij) e
−

‖pn−pi‖
2

2σ2

)
.

Proof: ConsiderJ2 in (11) as a potential function, and
define the control input of agenti as follows:

ui = −∇pi
J2 = −2

(
(v2 − vd

2)
T Γ

[
∂ v2

∂ pi1
, . . . ,

∂ v2

∂ pid

])T
.

In order to explicitly compute this control, we need to know
v2 and the partial derivatives∂ v2

∂ pi1
, . . . , ∂ v2

∂ pid
, at each time

instant. In place ofv2, we can use its estimatex provided
by equation (13). Moreover, if we define the vector,zi,j ,
∂ x
∂ pij

, j ∈ {1, . . . , d}, and compute the partial derivative with
respect topij of both sides of (13), we obtain the linear
time-varying system in (16), which gives us an estimate of
∂ v2

∂ pi1
, . . . , ∂ v2

∂ pid
at each time instant.

Remark2 (On the computation of multiple clusters):If
the control input in (15) is applied to system (1), the robotic
network is partitioned into two desired clusters. Additional
clusters can be computed from the sign of the components
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Fig. 1. Set-point connectivity control: (a) Trajectory of the 5 agents (the initial and final positions are marked with bullets and squares, respectively);
(b) Time history ofλ2(L) (solid) and desired algebraic connectivityλd

2
(dash); (c) Time evolution of the control inputsui = [ui1, ui2]

T , i ∈ {1, . . . , 5}.

of the eigenvectorsv3, v4, . . . ,vk, k < n, associated to the
eigenvaluesλ3(Lsym) ≤ λ4(Lsym) ≤ . . . ≤ λk(Lsym) [12].
In this case, at nodei one computes the sign of thei-th
component of the eigenvectorsv2, v3, . . . , vk, and the
cluster assignment is obtained by interpreting the vector of k
signs as a binary number. The eigenvectorsv3, v4, . . . ,vk

can be determined, for example, by using the (decentralized)
orthogonal iteration algorithm presented in [1], the method
described in [15] or by suitably modifying the power
iteration (13). Recursive spectral partitioning represents an
alternative to “higher-order” eigenvectors. In fact, oncethe
graph has been divided into two clusters, control (15) can
be run again independently on both clusters to compute two
additional vertex-cutsets. This procedure can be repeated
until either a desired number of clusters is found or no
further clusters can be determined [15]. ⋄

V. SIMULATION RESULTS

Simulation experiments have been conducted to illustrate
the theory presented in the previous two sections.

Fig. 1 shows the performance of ourset-point
connectivity controller. The initial position of
the 5 mobile agents is p(t0) = p(0) =
[1, 2, −2, 5/4, 3, 1, −1, −1, 5/2, −1/2]T (marked with
bullets in Fig. 1(a)), we choseσ = 1.8, ǫ = 4 × 10−3,
γ = 10−2, and selected,
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Since the initial algebraic connectivity of the network is
λ2(L) = 0.4610 and we selectedλd

2 = 2.8, the relative dis-
tance between the robots decreases over time (see Fig. 1(a)).
Fig. 1(b) shows the time evolution ofλ2(L) (solid) and the
desired algebraic connectivityλd

2 (dash). Finally, Fig. 1(c) re-
ports the time history of the control inputsui = [ui1, ui2]

T ,
i ∈ {1, . . . , 5} in the first 25 seconds of the simulation.

Fig. 2 shows the performance of ourclustering
controller. The initial position of the 5 agents isp(0) =
[1, 1.85, −1, 0.625, 4, 0.25, −0.25, −0.1, 1.75, −0.15]T

(marked with bullets in Fig. 2(a)), we setσ = 6.5,
Γ = 0.14 I5, k2 = 0.65, k1 = k3 = 4.8125,
and we initialized equations (13) and (16) with
x(0) = [−0.1379, 0.6199, −0.0056, 1.1072, −0.1856]T

and with random vectors zi,j(0), i ∈ {1, . . . , 5},
j ∈ {1, 2}, respectively. Since v2(0) =
[−0.0230, −0.5468, 0.6981, −0.3757, 0.2683]T , the initial
partition of the network is{1, 2, 4}, {3, 5}. Our choice of
vd
2 = [−0.05, 0.8, −1.5, 1.12, −0.55]T , instead, leads to

the vertex-cutsets{1, 3, 5} and{2, 4}. Fig. 2(a) shows the
trajectory of the 5 agents and the initial and final clusters
(indicated with dashed and dotted sets, respectively), while
Figs. 2(b) and 2(c) report the time history of the estimated
Fiedler vectorx (solid) andvd

2 (dash), and the time history
of the normalizedv2 (solid) andx/‖x‖ (dash), respectively.
Note that after about 75 seconds, the actual and estimated
Fiedler vectors coincide. Finally, Figs. 2(d)-(e) show the
time evolution of the control input of the 5 agents and of
the cost functionJ2.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented original algorithms for
controlling the algebraic connectivity and clustering of a
network of mobile agents. We have defined quadratic po-
tential functions depending on the Fiedler vector and on
a smooth approximation of Fiedler value of the Laplacian
of the underlying communication graph, and synthesized
the controls of the single-integrator agents using gradient-
descent methods.

There are several interesting problems that this paper has
not addressed and that will be studied in future works. These
include the determination of convex approximations to the
cost functionsJ1 and J2 with respect to the position of
the agents, the extension of the strategy in Sect. IV for the
generation of multiple clusters, and the validation of our
control policies in the presence of imperfect information.
We also aim at gaining more insight on how to translate
an assigned clustering of the network into a desired Fiedler
vector vd

2 (and vice versa), and we are examining the
possibility to partition the robotic network according to time-
varying external events (e.g., the position of two or more
evasive targets).
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Fig. 2. Clustering control: (a) Trajectory of the 5 agents (the initial and final positions are marked with bullets and squares, respectively): the initial and
final clusters are indicated with dashed and dotted sets, respectively; (b) Time history of the estimated Fiedler vectorx (solid) andvd

2
(dash); (c) Time

evolution of normalizedv2 (solid) and ofx/‖x‖ (dash); (d) Time history of the control inputsui = [ui1, ui2]T , i ∈ {1, . . . , 5}; (e) Time evolution of
the cost functionJ2. Note that in (b) and (c) we used the same colors’ convention as in (a) and (d).
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