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On the control of the algebraic connectivity and
clustering of a mobile robotic network

Fabio Morbidi

Abstract—In this paper two related problems are studied: —gradient-based control strategy has been designed toairaint
the control of the algebraic connectivity and clustering ofa  the connectivity at all times. The focus of a second stream
network of single-integrator agents. A steepest-descentigd- 4 regearch, has been on the synthesis of (decentralized)

rithm is presented for the first problem, so that a smooth S
approximation of the algebraic connectivity of the underlying controllers that enable each agent to maintagal connec-

undirected communication graph converges to anassigned thlty For discrete-time double integrators, a feasible control
value For the second problem, a new gradient-based control space is computed in [9] for each agent to maintain all
strategy is proposed to automatically partition the mobile  existing pairwise connections: in [10], instead, each agen
robotic network into two predefined groups: our spectral-  yieg to maintain its two-hop communication neighbors. Fi-

clustering method leverages a continuous-time power-it@tion - .
algorithniq on the normagljized Laplacian matrixpwhich pro- nally, in [11], the authors studied the rendezvous and the

vides an estimate of its Fiedler vector at each time instant. formation control problems over dynamic graphs, and by
The results of numerical simulations are provided to illustate  adding appropriate weights to their edges they guaranteed

our theoretical findings. that connectivity is preserved during robots’ motion.
Differently from Fiedler-value maximization which tends
o to increase the cohesion of the agenthystering control
A. Motivation and related work consists of partitioning a network into two (or more) pre-
This paper presents original algorithms for controllinglefined groups of nodes. The intuition behind clustering is
the algebraic connectivityand clustering of a mobile that of separating nodes in different groups according to
robotic network. Connectivity is a critical issue in numeso their “similarities”: in other words, we seek a partition of
problems involving groups of cooperating agents. Since cothe graph such that the edges between different groups have
nectivity is not generally maintained during the execution ofa very low weight (which means that nodes in different
a given coordination task (e.g., rendezvous at a pointgra¢yv Clusters are “dissimilar” from each other) and the edges
methods have emerged in the recent literature to presenvéhin a group have high weight (i.e. nodes within the same
it at all times. The majority of the existing approachegluster are “similar” to each othergpectral clusteringhas
rely on global connectivity criteria such as, notably, the lately emerged as a powerful tool for network decomposition
“algebraic connectivity” or “Fiedler value” of the undeimg  purposes [12], [13]. In its most general form, this method
communication graph (i.e., the second smallest eigenwlue assigns nodes to clusters according to the signs of the com-
the graph Laplacian). In the seminal work by De Gennarponents of the eigenvectors of the (normalized) Laplacian
and Jadbabaie [1], an iterative decentralized supergradigorresponding to increasing eigenvalues. In [14], the@nsth
algorithm is presented for maximizing the connectivity of ahave developed a distributed algorithm for spectral ctirsge
robotic network. In [2], instead, the authors leveraged thef static networksthe algorithm involves performing random
determinant of the reduced Laplacian to define an artificiavalks and neglecting at every step probabilities below a
potential field that drives the agents to configurations awaijireshold value. More recently, in [15], a distributed wave
from the undesired space of disconnected networks. In [3guation-based algorithm that is orders of magnitude rfaste
the same authors used the notion fefconnectivity and than that in [14], has been proposed for the same problem.
tools from hybrid-systems theory to address an analogolizdeed, as pointed out in [16], [17], the clusteringlghamic
problem, while recently, in [4], a new method that relies ometworkscould be highly beneficial in many mobile-robot
the so-called spectral moments has been proposed to achig@lications, e.g., to maxime a mission’s probability of
a desired set of adjacency eigenvalues. In [5], the Fiedlesuccess or economize limited energy resources.
value maximization problem was cast as a semi-defini - T -
program (SDP) and in [6] it has been made distributedlt3‘/§' O_ngmal cor_1tr|bl_Jt_|ons :?\nd organization )
implementable via a non-iterative method that solves local This paper is divided into two parts. In the first part,
SDPs using only the information from the nearest neighborgdopting a formulation similar to that in [2], we propose
In [7], distributed game-theoretic algorithms that worlden @ steepest-descent algorithm to steer the algebraic connec
imperfect information caused by delays in communicatiofivity of a network of single-integrator agents towards a
and robots’ mobility, have been proposed for connectivitpredefined value. By using an exponential-decay model to
maintenance. Finally, in [8], an original estimation progee ~ characterize the connectivity relation between the rotmts
based on dynamic average consensus estimators has b@n contribution consists in approximating the algebraic

introduced for tracking the algebraic connectivity and &onnectivity (that ismota differentiable function, in general:
in fact the eigenvalues are not differentiable quantities a
The author was with the Institute for Design and Control otittronical — points where they coalesce [18]), with a smooth symmetric
Systems, Johannes Kepler University, AItenbergerstraﬂXe4640 Linz, penalty functlon Note that although some prev|ous papers
Austria. He is currently with the Networked Controlled Syt (NeCS) . L .
team, Inria Grenoble Rhone-Alpes, 655 Avenue de I'Eurdgentbonnot, in the connectwny—control literature have aCknOWIedgbd

38334 Saint Ismier, FrancEmail: f abi 0. norbi di @nri a.fr nonsmooth nature of the Fiedler value (see, e.g., [19],)[20]

|. INTRODUCTION



to the best of the author’s knowledg® explicit solution where the diagonal matriD = diag(A1) is called the

to this problem has been yet proposed. It is also worttlegree matrix, and is a column vector of. ones. o
pointing out that differently from most of the existing wark  Property 1 (Spectral properties aL):
which merely deal with the maximization of the Fiedler valud_et A\; (L) < X(L) < ... < A, (L) be the ordered

(that leads to the collapse of the agents into a single poirgigenvalues of the Laf)laciah. Then, we have that:
unless e.g., a leader-follower mechanism is adopted [8]), f 1) )\;(L) = 0 with corresponding eigenvectdr. The al-
the first time in this article we synthesize a more flexible  gebraic multiplicity of \; (L) is equal to the number of

set-point controllerof the algebraic connectivity. connected components in the graph

In the second part of the paper, we continue to adopt arg) \,(L) > 0 if and only if the graphg is connected), is
exponential-decay model for describing agents’ inteoacti called thealgebraic connectivityor Fiedler valueof G
and inspired by [14], [15] where the spectral clustering and the associated eigenvector is caltbdracteristic
of a graph withstatic nodesis considered, we propose a valuationor Fiedler vectorof G. o
new gradient-based control strategy @atomatically parti- Definition 3 (Reduced Laplaciai.*): Let

tion a mobile robotic networkinto two predefined clusters. R nx(n—1) | T -
Our approach relies on a continuous-time power iteratioRrth(1) = {P € R |P'P =1, andP"1 = 0},
algorithm on the normalized Laplacian matrix which proyynerel,, ; is the(n—1)x (n— 1) identity matrix. By fixing

vides an estimate of the Fiedler vector (i.e. the eigenvectQomep < Orth(1), we define the reduced Laplacian to be
associated to the Fiedler value) at each time instant, apge (n—1) x (n— 1) symmetric matrix:

bears some resemblance with the eigenstructure-assignmen
techniques routinely used in the field of active-vibration< L* = P"LP. o
trol. Note that in this paper we are not specifically integdst  Property2 (Spectrum oL*): Let0 =\ < Ay < ... <
in decentralizedcontrol strategies, but rather in providing )\, be the ordered eigenvalues Bf Then X, < ... < \,
preliminary proof-of-concepts. Our algorithms, indeednc are the eigenvalues dai*.
be implemented in a distributed fashion by tailoring erigti ~ There exist two matrices which are calletbrmalized
approaches (e.g., that in [8]) to our specific setting: thisaplacianin the literature [21]. This paper deals with the
extension is the subject of ongoing research. normalized LaplaciaLsym, Which is a symmetric matrix.
The rest of this paper is organized as follows. Sect. Il Definition 4 (Normalized LaplaciarLsyn): The normali-
presents some preliminaries on agents’ modeling and spectyed LaplaciarLs,m € R™ " is defined as,
graph theory. The main theoretical results of the work are N /e e 1/o i i
introduced in Sects. Il and IV, which deal with the connec- Lsym 2 D™Y/2LD"2 = 1, - D Y/2AD /2 o
tivity and clustering control problems. Finally, in Sect, V ; .
the theory is illustrated via numerical simulations, and in Property3 (Spectral properties oLsym [21]): Leym has

Sect. VI the main contributions of the paper are summarizegle fgllpwmg spectrall propLernes: ith ei torD/2 1
and possible future research directions are outlined. ) 0 is an eigenvaiué OLsym WIth €igenvectorly = 1.
The algebraic multiplicity of the eigenvalue 0 is equal

<&

Il. PRELIMINARIES to the number of connected components in the graph.
Consider a team of > 2 mobile agents modeled as single 2) Lgym is @ symmetric positive semidefinite matrix and
integrators,p;(t) = w;(t), i € {1,...,n}, wherep;(t) = it has n nonnegative real-valued eigenvalués =
[pi1(t),...,pia()]T € RY, d € {2, 3}, denotes the position A (Lsym) < ... < A\u(Lgym) < 2. If G is a bipartite
of agenti andu;(t) = [us (), . .., uq(t)]” € R its control graph, then\,, (Lsym) = 2.
input at timet. The dynamics of the team can be rewritten 3) tr(Lsym) = n for any graphg. o
in a compact form as, Definition 5 (Spectral clustering of grapf): The signs
p(t) = u(t), (1) of then components of the Fiedler vectos of Lsym, define

A - in . apartition of the connected graphinto two vertex-cutsefs

where p(t) = [pi(¢),...,p,(1)]" € R™ andu(t) = For example, ifv, = [0.35, 0.7, 0.06, —0.2, 0.12, —0.7]7,
[uf(t),...,ul@®)" e R, then the graphG is partitioned into the vertex-cutsets

Note that then-agent network defined by (1), gives rise{1, 2, 3, 5} and {4, 6}, according to the sign pattern. o
to a graphG(p(t)) = (V, E), whereV = {1,...,n} is the Through all the paper, we will assume that the components
set of nodes or vertices indexed by the mobile agents ang,, i # h, of the weighted adjacency matrix are defined
E = {{i, j} | j € N(i)} is the set of edges, wher¥ (i) according to the followingosition-dependent Gaussian sim-
denotes the set of neighbors of agénin the undirected ilarity function,

communication network. n llpi(t) — pr(t)|]?
Definition 1 (Weighted adjacency matriX): Then x n ain(p(t)) = exp (T) 5
weighted adjacency matriA = [a,3] is defined as,
, ) where]| - || denotes the standard Euclidean norm and param-
i — {ahi >0 if heN(), eterc > 0 controls the width of the neighborhoddsn this
! 0 otherwise way, by suitably moving the: agents, we are ultimately

able to control the algebraic connectivity and clusteririg o

Since self-loops are not allowed, we defing = 0, Vi € the robotic network.

{1,2,...,n}. o
Definition 2 (Weighted Laplacian matrik): LAs pointed out in [12, Sect. 8.5], the normalized Lapladagm offers
The Weighted Laplacian matrix is defined as, distinctive advantages over the standard Laplagidor spectral clustering.

2For the sake of simplicity, as in [2], we dwt consider here a threshold
L=D-A, value on||p;(t) — px(t)|| over which an edge ceases to exist.



Il. SET-POINT CONNECTIVITY CONTROL gradient vectoV,, ®.(—L*) in (6), as,
The first problem studied in this paper is that of connec- ( ) 8. (~L*) T 51+
o= [o () )

tivity control.

Problem1 (Set-point connectivity control) et the initial oL Opin @)
configurationp(t,) of the n agents be arbitrary. Design the 0P (—L*) Tor\1"
control inputsuy, .. ., u, of the agents, so that the quadratic tr oL O pid

cost function,

Let nowO(n—1) denote the group afz — 1) x (n — 1) real
orthogonal matrices. Then, by leveraging the results in, [23
we have that,

Ji =7 (A(L) = )2, )

is minimized, wherey is a positive gain and4 > 0 repre-

sents thalesired algebraic connectivityf the network. < oo (—L*) , . T
Note that the cost function (2) can be equivalently rewrit- oL R diag(IT(-L",¢)) R", (8)
ten as (cf. Property 2), i
where R € O(n — 1) is such that RTL*R =
Ji =7 (Amin(L) — )\g)2 = (Amax(~L*) + )\g){ diag A(L*)), beingA(L*) € R™~! the vector of eigenvalues
of L* in nondecreasing order. Moreovef](—L*,¢) =
where\pin(-) and A\pax(-) denote the minimum and maxi- [II; (—L*,¢), ..., II,,_1(—=L*,¢)]T, where
mum eigenvalue of a matrix, respectively. o M(L)/e
Since the cost functionmax(—L*) is nondifferentiablen ,(~L*,¢) = . ke{l,...,n— 1}
general (in fact, the gradient ofnax(—L*) does not exist v € (L) /e’

when the maximum eigenvalue efLL* is not simple, i.e., it y
has algebraic multiplicity greater than one), in the rerimagjn Noiglthatﬂk(:L ) > .0’ k €{l,...,n —1}, and that
of this section we will use itsmoothed versiota symmetric k=1 1k (=L", €) = 1. Finally, observe that,

exponential penalty function [22, p. 293]) OL* _pr oL

i k(L) I pij I pij
*\ A _ R\ T
®.(-L7) = eln (Z exp( - ))’ ®) where®,; € R"*" is given in equation (10) at the top of

= the next page. By .coIIec_ting equations (6)-(10) together, w
wheree > 0 is a smoothing parameter ang (L*) denotes ©btain the control input in (5). =
the k-th eigenvalue ofL*. Note that (3) is aC*>® convex

function with respect to-L* and it possesses the following

P2Pre,P jc{l,...,d}, (9

IV. CLUSTERING CONTROL

uniform approximation property tmax(—L*), The second problem studied in this paper is formulated as
follows (recall Def. 5).
0 < & (—L*) — Apax(—L*) < eln(n —1), Ve >0, Problem2 (Clustering control): Let the initial configura-
tion p(tp) of the n agents be arbitrary. Design the control
from which it follows thatlim. | ¢ ®.(—L*) = Amax(—L*).  inputs uy, ..., u, of the agents, so that the following

The next proposition provides a solution to Problem lquadratic cost function,
Our idea simply consists in considering INT J
Jo = (va —v5)" T'(va—vj), (11)

o * d * d
J1 =7 (Amax(-L") + )‘2) = hm 7 (2e(=L7) + A3 ) ' is minimized, wherel' € R™*" is a symmetric positive-
(4) definite gain matrix,v, € R" is the Fiedler vector of the
as an artificial potential function, and in using it to define aormalized LaplaciarLsym, and v§ € ker(\a(Lsym)I,

steepest-descent control law for each of thagents. Lsym) is ann-dimensional vector that specifies tdesired
Proposition1 (Solution to Problem 1)Problem 1 is clusteringof the network. o

solved if the following control input is applied to agent ~ The next proposition, an extension of Theorem 1 in [8],

fore | 0: is instrumental in presenting the main result of this sec-

. tion (Prop. 3). It introduces acontinuous-time power-
= —27(®(-L*) + M) [tr(RdiagI) R"P* @11 P), jteration algorithm for estimating the Fiedler vectovs

. Tol o of Lsym at each time instant. For the sake of conciseness,
, r(Rdiag I R P* ©;g P)} ' (5) the proof is omitted.
where R, diagIl), P, ©,1, ..., ©,, are matrices whose Proposition2 (Continuous-time power iteration disyn):

Let § € R" be such that diag) = D'/2. Given any initial
conditionx(¢y) and positive gaing;, ko andks, as long as
vI'x(to) # 0, the conditions,

L L 12
—Vp, Jl—hm Vp 'Y( (= L*)+>\d) ki > ko —5 H5H2 A2 (Lsym), k3 > ko Aa(Lsym), (12)

_ hm QV( (- L*>+)\d)v B.(~L"), (6) are necessary and sufficient for the following system,

explicit expression is given in the proof below.
Proof: ConsiderJ; in (4) as a potential function and
define the control of ageritas follows:

. T x|
whereV,, J; denotes the gradient of; with respect top;. =" (_ 00" + k2 Lsym + ks { — 1 )%,
By using [22, Th. B.17], we can rewrite thédimensional (13)



_lp1-pil? _lp1-p,il?

—(plj—pij)e 202 0 (Plj—pij)e 202 e 0 .- 0
_lIpa—p,l2
1 0 R (R A N 0
0 = — lIpi—p1 12 n Ipi—py 2 Ipi-pnl? |- (10)
2 _ P P11 — i _ i n
97 (pij —p1j)e 202 > (pij — prj)e 202 (pij — pnj)e 202
k=1
ki
0 0 0 0
_lpn—p;l? _lpn—pil?
L 0 o0 (pnj *Pij)e 202 N | *(pnj*pij)e 202

to converge to an eigenvectos corresponding to\x(Lsym),  Where
satisfying|[va|| = \/ (1= 12 Ao(Lsym))- B 9 1 [( " ipi-mgl? ) 1/2 _lpi—pl?
Ze ( i

Note that in order to accommodate the continuous-time) ;. ~ 242 277 P1j = Pij) *
power iteration orl in [8, Th. 1] to the normalized Laplacian " "
Lsym We had to modify the so-calledi&flation step(cf. the (Ze “P—Pkﬁ) 1/2 Z - pieel®
first term on the right-hand side of (13)), as follows: p P (pij = Prj ’
k k k#i k#i
x=——=DVuTDd/*)Tx = -2L66Tx.  (14) e e
n n len pkuz 1/2 _lea=p, 21T
From a geometric viewpoint, system (14) drives to (k 16 ) (pnj = pis) e ’ } ’
ker(D'/21), i.e., the space spanned by the elgenvectors " 172 T
Vo, ..., vy, Of Lsym In the case of repeated elgenvalues8 _ 9D~ LD‘1/2 L ((’)D LD‘1/2)
)\Q(Lsym) = ... = A\ (Lsym) < )\7+1(Lsym) Prop 2 is 8])1] apij 8pij
still valid. In this case, as shown in [8], all trajectories L D-1/2@,. D-1/2
with vI'x(tg) # 0 converge to an equilibrium point on the Y ’
r-dimensional manifold, ©,; € R"™" is given in (10) above, and
M={a=la,..al” | lal = \/n(1 - X(Lym), DV2 _
¢1=0, ¢=0, Vi>r}. 31%‘;‘
. . - - —ppli2\—3/2 p1—pil®
However, for the existence ofinique cutsthat divide ——2 d|ag<<z — e e ) (p1j — pij) € el
the network into two clusters, we henceforth assume that2? 2
)‘Q(Lsym) 7é )‘3 (Lsym)v (Cf [15]) o . n \Ip1 pk 12 3/2 n _lIpi—ppl?
Remark1 (On the fulfillment of the conditions in (12)): ---,*<Z€ ) Z Pij — Pkj) 202,
Note that the conditions in (12) can be satisfied also with k=1 k=1
a partial knowledge of the network topology. In fact, we o ! e
have thath\s(Lsym) < tr(Lsym) = n (recall Property 3.3), _len—pp2N\T3/2 o\ —len—pil®
from which it follows that the conditions in (12) are fulfide ’ (Z e 2 ) Pnj = Pij) 2 )
if we simply choosek; > ko (n/||d])?, ks > kan. o k=1

We are now in a position to present our solution to Proof: ConsiderJ; in (11) as a potential function, and
Problem 2. As in Sect. lIl, we will leverage a gradient-basedefine the control input of agerntas follows:
method to define the control input of theagents. 9vs dvel.r
Proposition3 (Solution to Problem 2)Problem 2 is w; = —Vp, Jo=—2((v2 —v3)"T [ ]) .

solved if the following control input is applied to ageit dpin 9 pid
T T In order to explicitly compute this control, we need to know
u = —2(x=v§)" T [zi1,...,24) , (15) v, and the partial derlvatlveg"ﬁ . 6"2 , at each time

wherex € R" in (15) is obtained from integration of equa- g\stant In pla1c:3e Ol\f‘/’IQ' we canf usedltsf estlrrr:abe prowde_d
tion (13) at each time instant, amd,; € R”, j € {1,...,d}, 0y €quation (13). Moreover, if we define the vectar; =

is obtained from integration of the following linear time- Bpl"j € {1,...,d}, and compute the partial derivative with
varying system, respect top;; of both sides of (13), we obtain the linear

k 2k time-varying system in (16), which gives us an estimate of
i = — (_1 867 + ky Loym + _3 xx7! g¥z ..., £ at each time instant. |

Remark?2 (On the computation of multiple clusterdy:
ks x> 11 ) - <2k1 Xy 6T+ ky 5Lsym) «. the control input in (15) is applied to system (1), the roboti
n ") n dpij dp;; /- network is partitioned into two desired clusters. Addiabn
(16) clusters can be computed from the sign of the components
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Fig. 1. Set-point connectivity contro(a) Trajectory of the 5 agents (the initial and final positicare marked with bullets and squares, respectively);
(b) Time history ofA2(L) (solid) and desired algebraic connectivit§ (dash); (c) Time evolution of the control inputs = [u;1, ui2]T, i € {1,...,5}.

of the eigenvectorss, vy, ..., vk, k < n, associated to the (marked with bullets in Fig. 2(a)), we set = 6.5,
eigenvaluesh\s(Lsym) < Aa(Lsym) < ... < Ag(Lsym) [12]. T' = 0.14I5, k2 = 0.65, k1 = ks = 4.8125,
In this case, at node one computes the sign of theth and we initialized equations (13) and (16) with
component of the eigenvectors;, vs, ..., vk, and the x(0) = [-0.1379, 0.6199, —0.0056, 1.1072, —0.1856]T
cluster assignment is obtained by interpreting the vedtér o and with random vectors z; ;(0), i€ {1,..., 5},
signs as a binary number. The eigenvectvagsw;, oV jedl, 2}, respectively. Since (19

can be determined, for example, by using the (decentra)llzepl—o 0230, —0.5468, 0.6981, —0.3757, 0.2683]*, the |n|t|aI
orthogonal iteration algorithm presented in [1], the methopartition of the network |s{1 2,4}, {3 5}. Our choice of
described in [15] or by suitably modifying the powervd = [-0.05, 0.8, —1.5, 1.12, —0.55]T, instead, leads to
iteration (13). Recursive spectral partitioning représean the vertex-cutset§l, 3, 5} and {2, 4}. Fig. 2(a) shows the
alternative to “higher-order” eigenvectors. In fact, ortbe trajectory of the 5 agents and the initial and final clusters
graph has been divided into two clusters, control (15) cafindicated with dashed and dotted sets, respectively)lewhi
be run again independently on both clusters to compute twkigs. 2(b) and 2(c) report the time history of the estimated
additional vertex-cutsets. This procedure can be repeatEidler vectorx (solid) andv¢ (dash), and the time history
until either a desired number of clusters is found or nef the normalizedv, (solid) andx/||x|| (dash), respectively.

further clusters can be determined [15]. o Note that after about 75 seconds, the actual and estimated
Fiedler vectors coincide. Finally, Figs. 2(d)-(e) show the
V. SIMULATION RESULTS time evolution of the control input of the 5 agents and of

Simulation experiments have been conducted to illustraff€ COSt function/,.
the theory presented in the previous two sections.

Fig. I shows the performance of ouset-point VI. CONCLUSIONS AND FUTURE WORK
connectivity  controller = The initial  position of . - .
the 5 mobile agents is p(to) - p(0) — In this paper we have presented original algorithms for

1,2, -2,5/4,3,1, -1, -1, 5/2, =1/2]T (marked with controlling the algebraic connectivity and clustering of a
bullets |n Fig. 1(3)) we chose — 1.8, ¢ = 4 x 10-3, network of mobile agents. We have defined quadratic po-

~ = 1072, and selected, tential functions depending on the Fiedler vector and on
a smooth approximation of Fiedler value of the Laplacian
—V/2/15 0 0 —V6/3 of the underlying communication graph, and synthesized
V3/10  V2/2 0 0 the controls of the single-integrator agents using grddien
P=|-,2/15 0 V2/2 V66 | . descent methods.
—/2/15 0 —V2/2 V66 There are several interesting problems that this paper has
VA0 32 0 0 not addressed and that will be studied in future works. These

include the determination of convex approximations to the
Since the initial algebraic connectivity of the network iscost functions.J; and J, with respect to the position of
A2 (L) = 0.4610 and we selectedd = 2.8, the relative dis- the agents, the extension of the strategy in Sect. IV for the
tance between the robots decreases over time (see Fig. 1(gPneration of multiple clusters, and the validation of our
Fig. 1(b) shows the time evolution 0k (L) (solid) and the control policies in the presence of imperfect information.
desired algebraic connectivify (dash). Finally, Fig. 1(c) re- We also aim at gaining more insight on how to translate
ports the time history of the control inputs = [u;1, u;2]7, an assigned clustering of the network into a desired Fiedler

i € {1,...,5} in the first 25 seconds of the simulation. ~ vector v§ (and vice versa), and we are examining the
Fig. 2 shows the performance of ouclustering possibility to partition the robotic network according tme-
controller. The initial position of the 5 agents ig(0) = varying external events (e.g., the position of two or more

[1, 1.85, —1, 0.625, 4, 0.25, —0.25, —0.1, 1.75, —0.15]T evasive targets).
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Fig. 2. Clustering contral (a) Trajectory of the 5 agents (the initial and final posiicare marked with bullets and squares, respectively):ritialiand
final clusters are indicated with dashed and dotted setpectgely; (b) Time history of the estimated Fiedler vecio(solid) andvg (dash); (c) Time
evolution of normalizedvs (solid) and ofx/||x|| (dash); (d) Time history of the control inputs; = [u;1, u;2]T, i € {1,...,5}; () Time evolution of
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