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Abstract—In many randomized consensus algorithms, the
constraint of average preservation may not be enforced at every
time step, resulting in an error between the average of the
initial conditions and the current average. We have recently
shown that under mild conditions on the distribution of the
update matrices, the mean square error has an upper bound
inversely proportional to the size of the network. In this work,
we consider the case of consensus with packet losses and inter-
ferences. Using an extension of our results taking correlations
into account, we show that the MSE induced by losses and
interferences can be estimated by such a bound: hence we argue
that larger networks are naturally more robust, in terms of
accuracy, to packet losses and interferences. Our results hold
for general networks, without restrictive assumptions on its
topology.

I. INTRODUCTION
Robustness against link failures, either temporary or per-

manent, has been recognized as a key feature in evaluating
networked control systems. This problem has been formal-
ized in several ways in the context of coordination and con-
sensus algorithms, leading to both probabilistic and worst-
case approaches to switching networks, since the seminal
work in [14]. In this paper, we consider an average consensus
algorithm running on a fixed communication network whose
links may for various reasons occasionally fail to transmit
the information among the nodes. It will be clear that link
failures and consequent message losses prevent the consensus
algorithm from converging –as required– to the exact average
of the initial conditions. We analyze the expected deviation
from the average, providing explicit bounds which depend on
certain features of the network and on the specific algorithm
at hand. These estimates in particular imply that the error
decays to zero when the number of nodes grows.

Contribution and relation with previous works
We consider two models of lossy communication in con-

sensus systems. In Section III we consider a standard linear
consensus algorithm on a network whose links are affected
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by packet losses. The occurrence of a loss is assumed to be
independent among links: this modeling approach is taken
from [7], although our analysis includes more general update
rules. In Section IV we consider an algorithm involving
information broadcast from random nodes, along the lines
of [1], [3]. Such a communication model has been originally
proposed in [5] to study the effect of interferences on
consensus problems. Closely related issues are studied in
[4], [13], [16].
The two above models show important differences. Com-

pared with the former, the latter framework leads to more
correlation between the updates, resulting in a more compli-
cated analysis. In both cases, we show that the mean square
deviation can be explicitly bounded by a quantity which is
inversely proportional to the size of the network. Hence, we
argue that the error induced by losses vanishes as the network
grows larger. Our results are based on the application and
the extension of a general technique, presented in Section II
and recently developed by the authors in the analysis of
related classes of randomized consensus algorithms [9]. An
extension is indeed needed to treat the correlations occurring
in the model between the losses in the interference model
studied in Section IV.
Related results, leading to the same favorable conclusion

on the robustness of some of the systems we consider,
were proved in [7] (for independent losses) and in [5] (for
interference losses), but only under restrictive assumptions
on the topology of the network. These papers assume indeed
certain symmetries in the network structure, namely that
the network is the Cayley graph of an Abelian group: this
assumption leads to results which are insightful but may not
be directly applied to many networks of interest. We refer
the reader to [10] for a discussion on the meaning of this
assumption. In contrast, our results hold irrespective of the
topology, and are thus of immediate and general application.
Note that in this work, noise in communication is modeled

by the loss of data packets. Other modeling approaches
are available in the literature, and have been applied to
consensus: without giving a complete review, we mention
data rate limitations [8], [12], additive analog noise [17],
and bit erasures [2]. Finally, we leave out of the scope of
this paper any issue related to conditions for convergence to
consensus and estimates of the rate of convergence: indeed,
there is a solid literature on these problems, including [6],
[7], [11], [15], to which we refer the interested reader.

Notation and preliminaries
We will use the notion of (weighted directed) graph, which

we define as a pair G = (I, A), where I is a finite set
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whose elements are called nodes and A ∈ RI×I is a matrix
with nonnegative entries. Resorting to more standard graph-
theoretic jargon, we may equivalently think of an implicit
edge set E = {(i, j) ∈ I × I : Aij > 0} and say that i is
connected to j when Aij > 0. We assume that the graphs
have no self-loops, and that Aii = 0 for every i ∈ I. Given a
nonnegative matrix A, we can define an associated Laplacian
matrix L(A) ∈ RI×I as the matrix such that [L(A)]ij =
−Aij if i $= j and [L(A)]ii =

∑
j:j "=i Aij . We also note that

the map A %→ L(A) is a linear operator. Observe that L(A)+
L(A)∗ is positive semidefinite and that L(A)1 = 0, provided
we denote by 1 the vector of suitable size whose components
are all 1. If A is stochastic matrix, that is,

∑
j Aij = 1,

then L(A) = I − A. Assume now 1∗L(A) = 1∗. Then,
there holds x∗(L(A) + L(A)∗)x =

∑
i,j aij(xj − xi)2. If

additionally we denote α = maxi
∑

j Aij , one can show
that L(A)∗L(A) ≤ α(L(A)+L(A)∗) –see [9, Eq. (5)]– and
that

L(A · A) + L(A · A)∗ ≤ α (L(A) + L(A)∗) ,

where the symbol · is used to denote entry-wise product of
matrices, and the inequality is to be understood as the semi-
definite positiveness of the difference.

II. RANDOMIZED AVERAGING ALGORITHMS

Given a set of nodes I of finite cardinality N , we consider
a distributed state x(t) ∈ RI evolving according to a
stochastic discrete-time system of the form

xi(t+ 1) =
∑

j∈I

aij(t)xj(t) for all i ∈ I, t ∈ Z≥0, (1)

where the aij(t) ≥ 0 satisfy
∑

!∈I ai!(t) = 1 for all
t ≥ 0, and the matrices A(t) defined by [A(t)]ij = aij(t)
are assumed to be independent and identically distributed
random variables. System (1) is run with the goal for the
state of each node to provide a good estimate of the initial
average 1

N

∑
i∈I xi(0). Note that x(0) is unknown but given,

and that all our results need to be valid for any x(0) ∈ R I .
System (1) can also be conveniently rewritten as

xi(t+1) = xi(t)+
∑

j∈I

aij(t)(xj(t)−xi(t)) ∀ i ∈ I, t ≥ 0,

or in matrix form as

x(t + 1) = x(t) − L(t)x(t) t ∈ Z≥0, (2)

where we remind the reader that Lij(t) = −aij(t) if i $= j
and Lii(t) =

∑
j "=i aij(t). Namely, L(t) = I − A(t) is the

Laplacian matrix of a weighted graph (I, A(t)).
Let x̄(t) = N−1

∑
i∈I xi(t). Our goal in this section is

to study how large is the deviation between x̄(0) and x̄(t)
for any t ≥ 0, and in the limit for t → +∞. First of all, by
conditioning at each time step upon the current state x(t),
we remark that

E[x̄(t+ 1)] =E[E[x̄(t+ 1)|x(t)]]
=N−1E[1∗x(t)− 1∗E[L(t)]x(t)].

Then, the average is preserved in expectation if and only if
1∗E[L(t)] = 0. In view of this result, we restrict our attention
to systems such that 1∗E[L(t)] = 0, that is, systems whose
expected update matrix E[A(t)] is doubly stochastic and
thus average preserving. We are then left with the problem
of studying the second-order moment of x̄(t), that is, the
variance

E[(x̄(t)− x̄(0))2]. (3)

The following general result, proved in [9], provides condi-
tions under which the increase of the deviation is bounded
proportionally to the decrease of the disagreement.
Theorem 1 (Accuracy condition): Let x be an evolution

of system (2), and denote

V (t) =
1

N

∑

i∈I

(
xi(t)− x̄(t)

)2
.

If 1∗E[L(t)] = 0 and there exists γ > 0 such that

E[L(t)∗11∗L(t)] ≤ γ E[L(t) + L(t)∗ − L(t)∗L(t)], (4)

then for every t ≥ 0, there holds

E[(x̄(t)− x̄(0))2] ≤ γ

γ +N
V (0).

If moreover the system converges to consensus, then

E
[
(x∞ − x̄(0))2

]
≤ γ

γ +N
V (0).

In what follows, when the context prevents all ambiguities,
we omit the explicit specification of the index set I in
summations and the dependence on t of the coefficients
aij(t) and corresponding matrices.
The claims collected in the following Lemma will be

useful to verify the condition of Theorem 1; their proof can
be found in [9, Lemma 3].
Lemma 2 (Laplacian stochastic inequalities): Consider

system (2) and let armax be a positive constant such that
almost surely

∑
j:j "=i aij ≤ armax for all i ∈ I.

(i) If 1∗E(L) = 0 and there exists β > 0 such that

E(L∗11∗L) ≤ β E(L+ L∗),

then the condition of Theorem 1 holds for

γ =
β

1− armax
.

(ii) Assume that is aij and akl are uncorrelated when i $= k.
If 1∗E(L) = 0, then the condition of Theorem 1 holds
for

γ =
armax

1− armax
.

The results above hold independently of the network topol-
ogy. They are however mainly motivated by situations where
the system converges to consensus, and convergence to con-
sensus does depend on the network topology. In particular,
convergence is guaranteed almost surely if and only if the
graph corresponding to E(L) is connected.
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III. SYNCHRONOUS CONSENSUS WITH PACKET LOSSES

In this section we analyze the effect of random temporary
link failures, and consequent message losses, in classical
linear consensus algorithms. In this purpose, we need to
introduce the nominal consensus algorithm, model the phe-
nomenon of packet losses, and propose an adaptation of the
nominal consensus algorithm to lossy communication.
Let us start with a doubly stochastic consensus matrix Q

adapted to the given graph G = (I, E). This matrix defines
a nominal discrete-time consensus algorithm

x(t+ 1) = Qx(t) t ≥ 0,

which can be equivalently rewritten as

x(t + 1) = x(t) − L(Q)x(t) t ≥ 0,

where L(Q) denotes the Laplacian associated to the stochas-
tic matrix Q.
We then assume to model the unreliability of actual

communication links by a stochastic process, according to
which each link has an independent probability (1 − p) of
failure at every time. More formally, we associate to each
time t ∈ Z≥0 a matrix S(t) ∈ {0, 1}I×I such that the entries
Sij(t) are independent across t, i, j, with P(Sij(t) = 1) = p
for all i, j, t. This loss process should be interpreted in the
following way: if Sij(t) = 1, then the link between i and
j is active at time t; otherwise, the link is failing at time t,
and the transmitted data are lost. Note that this definition is
meaningful only if (i, j) ∈ E: otherwise, the values of S ij

have no effect.

A. A simple compensation rule
There is a natural and simple way to cope with the data

loss described above. Let i be an agent: whenever she does
not receive an expected incoming message, she uses her own
value in place of the lost message. This compensation rule,
which results in increasing the weight which is given to self
information, is referred to as biased compensation rule in
[7]. More general compensation rules will be studied later
on. Under this compensation model, the resulting consensus
algorithm is defined as

x(t+ 1) = x(t)− L(Q · S(t))x(t) t ≥ 0 (5)

where · denotes entrywise product. This evolution can clearly
be framed in the context of Section II by writing L(t) =
L(Q ·S(t)). The following Lemma, proved in the Appendix,
shows how to compute the relevant moments of L(t) for the
purpose of applying Theorem 1.
Lemma 3: If L(t) = L(Q · S(t)) as defined in (5), then

E[L(t)] = pL(Q)

E[L(t)∗L(t)] = p2L(Q)∗L(Q)

+ p(1− p)(L(Q ·Q) + L(Q ·Q)∗)

E[L(t)∗11∗L(t)] = p(1− p)(L(Q ·Q) + L(Q ·Q)∗).

We now directly obtain the following result.
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Fig. 1. Simulation of the mean square error (3) at convergence as a
function of N for cycles and random geometric graphs. Rings are defined
as (I,E) such that I = {0, . . . , N − 1} and (i, j) ∈ E if |i − j| = 1
mod N ; random geometric graphs are defined by generating for each node
a uniform random variable in the square [0, 1]2, and connecting two nodes
if their Euclidean distance is below a constant times

√
log(N)/N . For

each graph, the nominal Q is defined with Metropolis weights qij =
(1 + max{di, dj})−1 , where di and dj are the degrees of i and j.
Expectation is sampled by averaging over 1000 runs, assuming p = 0.8.

Proposition 4 (Biased compensation): The algorithm (5)
satisfies the conditions of Theorem 1 with

γ =
q

1− q
(1 − p),

where we denote q = maxi
∑

j "=i Qij .
Proof: Using Lemma 3, we see that γ must satisfy

p(1− p)(L(Q ·Q) + L(Q ·Q)∗) ≤
γ
(
p(L(Q) + L(Q)∗)− p2L(Q)∗L(Q)

− p(1 − p) (L(Q ·Q) + L(Q ·Q)∗)
)

If, according to the properties stated in the Preliminaries, we
notice that L(Q)∗L(Q) ≤ q(L(Q)+L(Q)∗) and L(Q ·Q)+
L(Q · Q)∗ ≤ q (L(Q) + L(Q)∗) , we see that a sufficient
condition for γ is to satisfy
(
(1 − p)q − γ(1− qp− (1 − p)q)

)
(L(Q) + L(Q)∗) ≤ 0,

which holds when γ ≥ q(1−p)
1−q since L(Q) +L(Q)∗ ≥ 0.

Proposition 4 implies that the deviation is decreasing with
the size N , and the decrease is at least as fast as N−1.
This fact is consistent with previous results on the topic [7],
and is confirmed by simulations run on sequences of graphs
with increasing N , as shown in Fig. 1. We also remark from
simulations in Fig. 2 that the bound in Proposition 4 captures
well the dependence of the deviation on the loss probability
p. Note that the value q appearing in Proposition 4 is the
maximal sum of weights given simultaneously by a node to
all her neighbors. The denominator 1 − q corresponds thus
to the smallest weights that a node gives to herself, i.e. the
smallest self-confidence.
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Fig. 2. Simulation of the mean square error (3) at convergence as a function
of p on random geometric and cycle graphs with N = 20 and Metropolis
weights (qij = (1+max{di, dj})−1). The mean is sampled by averaging
over 1000 realizations. These results suggest that the bound in Proposition 4
qualitatively captures how the mean square error depends on p.

B. Other compensation rules
We must note that the update rule proposed in (5) is by

far not the only possible one. Indeed, the updating agent
may compensate the data loss by using any combination
of the available data (incoming messages and own state).
An example is provided by the balanced compensation rule
introduced in [7] as

L(t) = I − diag((S(t) ·Q)1)−1(S(t) ·Q),

which distributes the weights of the nodes for which the
information is missing on all other nodes, proportionally to
their initial weights.
In this subsection, we consider the most general class

of compensation rules coping with the loss process S(t),
which we describe as follows. Every agent i may choose any
vector (Lij)j∈I , provided it satisfies the following natural
assumptions: 0 ≤ Lij(t) ≤ 1 if i $= j; (ii) Lij(t) = 0 if
Sij(t)Qij = 0 and i $= j; and (iii)

∑
j Lij(t) = 0. In order

to analyze this class of rules, we may resort to the assumption
of independence which we made on the underlying data loss
process S(t).
Proposition 5 (Any compensation): For any compensa-

tion rule against independent random losses satisfying the
natural assumptions above and such that 1∗E[L(t)] = 0 and
Lii(t) ≥ −1+ ε for every i ∈ I and t ≥ 0, the statement of
Theorem 1 holds true with

γ =
1− ε

ε
.

Proof: In view of the independence of the losses on
different links, the update rules which are taken by two
different agents are statistically independent, that is, L ij(t)
is independent from Lkl(t) whenever i $= k. Then, the

result follows from Lemma 2(ii) noticing that in this case
armax = 1− ε.
This result is interesting as it shows us that, for any network
and under a very mild assumption on the compensation rule,
the error due to packet losses is at most inversely proportional
to the size of the network, and thus goes to zero for large
networks. Observe also that the bound is again inversely
proportional to the minimal self-confidence ε of the nodes.
Remark 1 (Limitations of Prop. 5): The result in Propo-

sition 5 is very general thanks to the fact that it does not
use any information about the process S(t), except the in-
dependence between components. As a consequence, it may
be looser than bounds available on specific compensation
models. Indeed, in the case of (5), ε = 1−q and Proposition 5
implies γ ≥ q

1−q . This bound is looser than the one in
Proposition 4, and does not capture the role of p in the
performance.

IV. COLLISION BROADCAST GOSSIP ALGORITHM
We now consider the more complex case of packet

losses caused by interferences between multiple broadcasted
messages. The idea is that nodes occasionally broadcast
their state, and that interferences result in the loss of all
incoming information for a node when two or more of her
neighbors are simultaneously broadcasting, or when the node
is broadcasting herself.
More particularly, consider a symmetric bi-directional

network G. At each time step, each node j may broadcast
her state xj(t) to all her neighbors with a probability
p, independently of the other nodes. If a node i is not
broadcasting her state at time t, and if exactly one of her
neighbors, j, broadcasts her state, node i updates her state
to xi(t + 1) = xi(t) + qi(xj(t) − xi(t)). In all other cases,
node i receives no information, and x i(t+ 1) = xi(t).
This algorithm has been introduced and studied for regular

graphs and a uniform qi = q in [5]. For general graphs,
qi must depend on p and on the degree d i in order to
guarantee that the protocol preserves the average on ex-
pectation, i.e., that 1∗E(L) = 0. A sufficient condition for
the latter condition to hold is the symmetry of expectations
E(aij) = E(aji). Observe that aij(t) = qi if j broadcasts
at time t while neither i nor any of her di − 1 other
neighbors broadcasts at the same time, which happens with a
probability p(1− p)di , and aij(t) = 0 otherwise. Therefore,
we have E(aij) = qip(1 − p)di . Taking qi = q0(1 − p)−di

for every i, for an arbitrary q0 for which qi < 1 for all i,
we obtain E(aij) = q0p, for any i, j connected by an edge
in G, which clearly satisfies the symmetry condition. This
rule requires the nodes to know p and their degrees, but the
degree can easily be estimated, and a uniform p would be
known to every node.
Analyzing such a system is challenging because the simul-

taneous updates can be numerous, and correlated. Indeed,
if i receives a message from j, every other neighbor of
j will also be sent that message. As a result, if a node &
has also sent a message to a neighbor k of j, node k will
not receive any message. This translates into a correlation
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between aij and ak!, even though the corresponding edges
do not share any common node. Theorem 1 has so far been
particularized to classes of systems with few simultaneous
updates, and to systems where update coefficients could be
separated in mutually uncorrelated groups of small sizes
(see Lemma 2(ii) on uncorrelated updates, and [9] for more
examples), which is not the case here. In what follows, we
propose a new particularization of Theorem 1 to systems
with weak correlations, and then apply it to the Collision
Broadcast Gossip Algorithm.
Proposition 6 (Weak correlations): Consider system (2)

and suppose that 1∗E(L) = 0. Define for every i, j, k, l the
covariance σij,kl = E(aijakl)−E(aij)E(akl). If there exists
a ρmax ≥ 0 such that

∑
k,l |σij,kl| ≤ ρmaxE[aij ] for all i, j,

and a positive constant armax such that
∑

j:j "=i aij ≤ armax
for all i ∈ I, then Theorem 1 holds true for

γ =
ρmax

1− armax
. (6)

Our proof of Proposition 6 requires the next Lemma, which
follows from Cauchy-Schwarz inequality.
Lemma 7: Let S be a finite set, and k, x, y functions S →

R taking at α ∈ S the respective values kα, xα, yα. Then
∣∣∣∣∣
∑

α∈S

kαxαyα

∣∣∣∣∣ ≤
√∑

α∈S

|kα|x2
α

√∑

α∈S

|kα| y2α.

Proof of Proposition 6: Observe that x∗L∗11∗Lx =
(1Lx)2 =

(∑
i,j aij(xj −xi)

)2
. Moreover, since 1∗E(L) =

0, there holds E[L∗11∗L] = E[L∗11∗L]−E[L∗]11∗[L], and
therefore x∗E[L∗11∗L]x =

E




∑

i,j

aij(xj − xi)




2

−




∑

i,j

E(aij)(xj − xi)




2

=
∑

i,j,k,l

(E(aijakl)− E(aij)E(akl)) (xj − xi) (xl − xk)

=
∑

i,j,k,l

σij,kl (xj − xi) (xl − xk) .

Applying Lemma 7 to the latter summation (on the index
α = (i, j, k, l)) leads to x∗E[L∗11∗L]x ≤

√ ∑

i,j,k,l

|σij,kl| (xj − xi)
2
√ ∑

i,j,k,l

|σij,kl | (xl − xk)
2.

By relabeling the second factor, and taking into account the
symmetry σij,kl = σkl,ij , we obtain

x∗E[L∗11∗L]x ≤
∑

i,j,k,l

|σij,kl| (xj − xi)
2 .

The existence of ρmax implies then that x∗E[L∗11∗L]x is
bounded by

∑

i,j

ρmaxE(aij) (xj − xi)
2 = ρmaxx

∗E (L+ L∗)x.

The result then follows from Lemma 2 (i).
Remark 2: Since aij ∈ [0, 1], one can prove that σij,kl ≤

1
4Eaij . Therefore, when no coefficient a ij is correlated with

more than C−1 other coefficients, Proposition 6 can always
be applied with ρmax = C/4.
We now apply this new result to the Collision Broadcast

Gossip Algorithm described at the beginning of this section.
Let dmax be the largest degree in G. For any i, j, aij ≤ qi =
q0(1 − p)−di ≤ q0(1− p)−dmax . Moreover, for a given i, at
most one coefficient aij(t) (j $= i) can be positive at the
time. Therefore, there holds

∑
j aij(t) ≤ q0(1 − p)−di , and

the latter quantity is a valid armax for the denominator in (6).
We now compute a value of ρmax. Observe that aij is

determined by the broadcast “decisions” of j, of i, and of all
other neighbors of i. It depends thus on the (independent)
broadcast events at all the nodes at distance less than or
equal to 1 from i, and no other nodes. As a consequence,
if i and k are distant by 3 or more on the network G, the
coefficients aij and akl depend on no common event and
are uncorrelated. The number of coefficients correlated to
aij is thus the number of (directed) edges leaving nodes at a
distance less than 3 from i. There are at most d2

max(dmax−1)
such edges. Indeed, i has at most dmax neighbors, and at
most dmax(dmax−1) neighbors of neighbors, and each node
is incident to at most dmax edges. Remark 2 implies then that
1
4d

3
max is a valid ρmax. Using Proposition 6 and the value of

armax that we have computed above, we obtain the following
result, which establishes that the Collision Broadcast Gos-
sip Algorithm is asymptotically unbiased on networks with
bounded or sufficiently slowly growing degrees.
Proposition 8 (Collision Broadcast): If the Collision

Broadcast Gossip Algorithm is implemented with a
broadcast probability p and coefficients qi = q0(1 − p)−di

for each node i on a network with degrees bounded by
dmax, then Theorem 1 holds true for

γ =
1

4

d3max

1− q0(1− p)−dmax
.

This analysis of the error is confirmed by simulations in
Fig. 3. Note that for the sake of simplicity of exposition, we
have used the conservative approach of Remark 2 that allows
us to just compute a bound on the number of coefficients to
which aij may be correlated. More accurate bounds could
be obtained by a more precise estimation of ρmax.

V. DISCUSSION AND CONCLUSION

In this paper, we have provided estimates of the mean
square error due to packet losses in consensus algorithms,
which are consistent with the trends observed experimentally.
These results rely on general bounds that we have recently
proved, and on an extension of these bounds that takes
correlations into account. Under the assumption that the
algorithms converge to consensus, our results imply that
the effect of packet drops on the mean square error of the
consensus value decreases no slower than the inverse of the
network size. In the limit for N → ∞, we thus claim that
packet losses have negligible effects, but we want to stress
that our bounds hold for any network size. Since they also
hold for any topology, we conclude that they are relevant
for network analysis in practical cases. It would of course
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Fig. 3. Simulation of the mean square error (3) as a function of N for
cycle and random geometric graphs (cf. caption of Fig. 1 for more details).
Expectation is sampled by averaging over 1000 runs. On RGGs we set
p = 0.2 and qi ≤ 0.9 for all i ∈ I; on cycles we set p = 0.3 and
qi ≤ 0.5.

be interesting to design “auto-correcting” algorithms, which
are able to effectively compensate for the loss of packets.
However, that would come at the price of more complicate
dynamics. Instead, in this paper we have provided conditions
under which there is limited need for such a design and
implementation effort.
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APPENDIX
Proof of Lemma 3: First of all, we note that E[S(t)] =

p11∗, implying by linearity that E[L(Q · S(t))] = pL(Q).
The assumption of statistical independence between the
entries of S implies that assuming i $= j and k $= l it holds

E[aijakl] =
{
E[a2ij ] = pQ2

ij if i = k and j = l

E[aij ]E[akl] = p2QijQkl otherwise

These formulas can be used to compute E[x∗L∗Lx]

=E
[∑

i

(∑

j

aij(xi − xj)
)2]

=E
[∑

i

(∑

j

aij(xi − xj)
∑

k

aik(xi − xk)
)]

=
∑

i

∑

j,k

E[aijaik](xi − xj)(xi − xk)

=
∑

i

∑

j,k

p2QijQik(xi − xj)(xi − xk)

+
∑

i

∑

j

(
−p2Q2

ij + pQ2
ij

)
(xi − xj)

2

=p2x∗L(Q)∗L(Q)x

+ p(1− p)x∗ (L(Q ·Q) + L(Q ·Q)∗) x.

Similarly, E[x∗L∗11∗Lx]

=E
[(∑

i,j

aij(xi − xj)
)(∑

k,l

akl(xk − xl)
)]

=
∑

i,j,k,l

E [aijakl] (xi − xj)(xk − xl)

=
∑

i,j,k,l

p2QijQkl(xi − xj)(xk − xl)

+
∑

i,j

(
−p2Q2

ij + pQ2
ij

)
(xi − xj)

2

=p2x∗L(Q)∗11∗L(Q)x

+ p(1− p)x∗ (L(Q ·Q) + L(Q ·Q)∗)x

=p(1− p)x∗ (L(Q ·Q) + L(Q ·Q)∗)x,

where we have used 1∗L(Q) = 0 for the last equality.
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