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Scalable decay factor and ISS gain for disturbed linear polytopic

discrete-time systems

Gilles Millérioux1,2 and Gérard Bloch1,2

Abstract— In this paper, Input-to-State Stability conditions
are proposed for disturbed linear polytopic discrete-time sys-
tems. The conditions allow to optimize, independently in a
certain extent, both the bounds on the decay rate and on
the ISS gain, two central quantites. Indeed, the decay factor
characterizes the transient behaviour of the state while the
ISS gain characterizes the sensitivity with respect to the
disturbances. The conditions are expressed in terms of tractable
Matrix Inequalities. It is shown that the conditions are more
general than existing ones proposed so far in the literature and
thus less conservative. The conditions hold both for analysis
or synthesis purposes. Two illustrative examples addressing the
problem of polytopic observer design are given.

The concept of Input-to-State Stability (ISS) has been

introduced in [18] for continuous-time systems and is now a

popular tool to tackle problems related to disturbed nonlinear

systems. Roughly speaking, ISS refers to the property that the

state trajectory of a system which is stable when undisturbed

remains bounded when the system is subjected to bounded

disturbances. Such a property is not trivial because it can be

shown that even tiny disturbances may destabilize a stable

unforced system [15] [13].

A discrete-time counterpart of the ISS conditions stated in

[18] has been proposed in [11]. A general treatment of ISS

for nonlinear discrete-time systems can also be found in [9]

[10]. Besides, ISS has been addressed for the special class

of LPV discrete-time systems: a state feedback controller

for norm-bounded disturbed systems is proposed in [14],

the situation when the parameters are not exactly known is

addressed in [6] for output-based feedback control purposes

or in [16] for observer synthesis. The paper [12] presents

conditions for global ISS and stabilization of discrete-time,

possibly discontinuous, piecewise affine systems. The ISS

framework is also particularly interesting for aperiodic con-

trol of sampled data systems. Most of the works are based

on the guarantee that a closed-loop system with plant and

controllers connected through a network is ISS with respect

to measurements errors (see [19] for a valuable reference in

the continuous-time case). In this context, the principle of

event-triggered or self-triggered controls is quite appealing.

The control law is updated once a triggering condition

involving the norm of a measurement error is violated. For

discrete-time systems, an ISS-based approach is described

in [5] to compute an admissible inter-execution time of the

control with an application to Model Predictive Control.
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When considering ISS, two typical quantities play a central

role: the decay factor and the ISS gain. Roughly speaking,

the decay factor characterizes the transient behaviour of the

state while the ISS gain characterizes the sensitivity with

respect to the disturbances. In synthesis perspective, it would

be useful to fix separately both quantities. This is actually a

challenging problem, and, up to now, there is no approach to

achieve a perfect decoupling. For example, in [6], both the

decay factor and the ISS gain depend on a common design

parameter which results from the solution of an LMI-based

optimization procedure. Hence, such an approach suffers

from a lack of flexibility when it comes to synthesis. On

the other hand, the paper [8] proposes an approach to get

minimal ISS gain and transient bound for discrete nonlinear

systems. The approach is based on dynamic programming

but rests on heavy numerical schemes.

In this work, we derive ISS conditions allowing to scale,

separately in a certain extent, the decay rate as well as

the ISS gain. We focus on linear polytopic discrete-time

systems, which include Linear Parameter Varying systems

with polytopic description and switching linear systems. In

Section I, some basic definitions are recalled including the

notion of Input-to-State Stability (ISS) and ISS Lyapunov

functions for polytopic systems. Section II is devoted to the

ISS conditions in terms of Matrix Inequalities. A comparative

study with existing conditions borrowed from the literature

is carried out in Section III. Section IV is devoted to

the problem statement for synthesis purposes. Finally, in

Section V, two examples addressing the problem of polytopic

observer design illustrate the efficiency of the approach.

Notation: R, R+ and N: the field of real numbers, the set

of non-negative real numbers and the set of non-negative

integers, respectively. z(i): the ith component of a real vector

z. zT : the transpose of z. |z(i)|: the absolute value of the

real number z(i). ‖z‖ =
√

zT z: the Euclidean norm of z.

{z}: a sequence of samples zk, zk+1, . . . without explicit

initial and final discrete-time k ∈ N. {z}k2
k1

: a sequence of

samples zk1
,. . . ,zk2

. ln
2 : the Hilbert space of right-sided square

summable real vector sequences of vectors of dimension

n. ln
∞: the Banach space of right-sided bounded sequences

z of real vectors of dimension n. ‖z‖2 =
√

∑
∞
k=0 zT

k zk: the

norm on ln
2 . ‖z‖∞ = maxisupk|z(i)k |: the norm on ln

∞. 1: the

identity matrix of appropriate dimension. 0: the zero matrix

of appropriate dimension. XT : the transpose of the matrix X .

X > 0 (X < 0): a positive definite (negative definite) matrix

X . X ≥ 0 (X ≤ 0): a positive semi-definite (negative semi-



definite) matrix X . ‖X‖ =
√

λmax(XT X): the spectral norm

of the matrix X , where λmax is the largest eigenvalue of XT X .

(•): the blocks of a matrix induced by symmetry.

I. PROBLEM STATEMENT

This section recalls some basics on ISS for general non-

linear and for linear polytopic discrete-time systems. All the

definitions and theorems of this section are borrowed from

[9] [10] [16].

A. Preliminaries on ISS for discrete-time systems

Definition 1: A function ϕ : R+ → R+ belongs to class

K if it is continuous, strictly increasing and ϕ(0) = 0, and

to class K∞ if additionally ϕ(s)→ ∞ as s → ∞.

Definition 2: A function β : R+×R+ → R+ belongs to

class K L if for each fixed k ∈ R+, β (.,k) ∈ K and for

each fixed s ∈ R+, β (s, .) is decreasing and lim
k→∞

β (s,k) = 0.

Consider the discrete-time nonlinear systems

xk+1 = f (xk), (1)

xk+1 = fv(xk,vk), (2)

with xk ∈ R
n the state vector, vk ∈ R

dv an unknown distur-

bance input.

Definition 3: The system (1) is called Globally Asymp-

totically Stable (GAS) if there exists a K L function β
such that, for each x0 ∈R

n, the corresponding state trajectory

satisfies

‖xk‖ ≤ β (‖x0‖ ,k),

for all k ∈ N.

Definition 4: The system (2) is said to be Input-to-State

Stable (ISS) with respect to vk if there exist a K L function

β and a K function γ such that, for all input sequences {v},

for each x0 ∈ R
n, the corresponding state trajectory satisfies

‖xk‖ ≤ β (‖x0‖,k)+ γ(‖v‖∞), (3)

for all k ∈ N.

If β can be chosen of the form β (s,k) = dsζ k for some

d ≥ 0 and 0 < ζ < 1, ζ is the decay factor for (1).

The function γ is an ISS gain for (2).

B. Linear polytopic systems

In this paper, we are concerned with linear polytopic

discrete-time systems subjected to additive disturbances

xk+1 = A(ρk)xk + vk, (4)

where xk ∈R
n is the state vector, vk ∈R

n is the disturbance,

and A ∈ R
n×n is the dynamical matrix which depends on

a time varying parameter vector ρk assumed to lie in a

bounded set Ωρ ⊂R
L. The matrix A(ρk) is assumed to admit

a polytopic description

A(ρk) =
N

∑
i=1

ξ (i)(ρk)Ai, (5)

where ξ =
[

ξ (1), . . . ,ξ (N)
]

belongs to the compact set S

S =

{

µ ∈ R
N : µ(i) ≥ 0 ∀i ,

N

∑
i=1

µ(i) = 1

}

. (6)

Owing to the convexity of S , the matrices {A1, . . . ,AN} are

the vertices of a polytope.

Remark 1: We can also be concerned with the case when

ρk in (4) is not available but its estimate ρ̂k ∈Ωρ̂ is. In such a

case, we can define ∆A(ρk, ρ̂k) = A(ρk)−A(ρ̂k) and (4) still

describes the situation by considering ρ̂k instead of ρk and

vk = ∆A(ρk, ρ̂k)xk. As a result, disturbances and uncertainties

can be tackled with a same framework.

Deriving sufficient conditions to guarantee ISS is usually

based on the notion of ISS Lyapunov function.

Definition 5: Let d1,d2 ∈R+, let a,b,c, l ∈R+ with a≤ b

and let α1(s) = asl ,α2(s) = bsl ,α3(s) = csl and γ ∈ K . A

function V : Rn ×R
L → R+ which satisfies

α1(‖xk‖)≤V (xk,ρk)≤ α2(‖xk‖), (7)

V (xk+1,ρk+1)−V (xk,ρk)≤−α3(‖xk‖)+ γ(‖vk‖), (8)

for all xk ∈ R
n, all vk ∈ R

n and all ρk ∈ Ωρ is called an

ISS Lyapunov function for (4).

Theorem 1: [16] If the system (4) admits an ISS Lya-

punov function as in Definition 5, then (4) is ISS with respect

to vk.

II. MAIN RESULT

In this section, we give conditions which guarantee that

(4) is ISS with respect to vk and we derive the corresponding

ISS Lyapunov function. Furthermore, we explicit the decay

factor and the ISS gain.

Theorem 2: If there exist positive definite symmetric

matrices Pi, matrices Gi, real numbers µ > 0, ν > 0 and

λ ∈]0 1[, fulfilling, ∀(i, j) ∈ {1 · · ·N}×{1 · · ·N}, the Matrix

Inequalities




(1−λ )Pi (•)T (•)T

0 µ1 (•)T

GiAi Gi GT
i +Gi −Pj



> 0, (9)

and




λPi (•)T (•)T

0 (ν −µ)1 (•)T

1 0 ν1



≥ 0, (10)

then the system (4) is ISS with respect to vk and

‖xk‖ ≤
√

νλ µ(1−λ )k/2 ‖x0‖+ν ‖v‖∞ . (11)

The decay factor is ζ = (1−λ )1/2 and the ISS gain is linear,

with γ(s) = νs.

The corresponding ISS Lyapunov function is V : Rn ×R
L →

R+, V (xk,ρk) = xT
k Pkxk with Pk = ∑

N
i=1 ξ (i)(ρk)Pi, that

satisfies

V (xk+1,ρk+1)−V (xk,ρk)≤− 1

ν
‖xk‖2 +µ‖vk‖2, (12)

1

νλ
‖xk‖2 ≤V (xk,ρk)≤ µ‖xk‖2, (13)



for all ξ ∈ S , all xk ∈ R
n and all vk ∈ R

n.

Proof 1 (Theorem 2): In the proof, for sake of simplic-

ity, ξ (i)(ρk) will be shortly denoted ξ
(i)
k . The proof comprises

four main steps. For the first step of the proof, assume that

(9) is feasible. Since (P
− 1

2
j GT

i −P
1
2
j )

T (P
− 1

2
j GT

i −P
1
2
j ) > 0, it

holds, as shown in [3], that

GiP
−1
j GT

i > Gi +GT
i −Pj. (14)

This implies that, ∀(i, j) ∈ {1 · · ·N}×{1 · · ·N},
[

(1−λ )Pi (•)T (•)T

0 µ1 (•)T

GiAi Gi GiP
−1
j GT

i

]

> 0.

This is equivalent to, ∀(i, j) ∈ {1 · · ·N}×{1 · · ·N},

N

[

(1−λ )Pi (•)T (•)T

0 µ1 (•)T

PjAi Pj Pj

]

NT > 0,

with N =

[

1 0 0

0 1 0

0 0 GiP
−1
j

]

. Hence, we have that, ∀(i, j) ∈

{1 · · ·N}×{1 · · ·N},
[

(1−λ )Pi (•)T (•)T

0 µ1 (•)T

PjAi Pj Pj

]

> 0.

Multiplying the above matrix inequality by ξ
(i)
k and sum-

ming, multiplying by ξ
( j)
k+1 and summing yields

[

(1−λ )Pk (•)T (•)T

0 µ1 (•)T

Pk+1A Pk+1 Pk+1

]

> 0,

with Pk = ∑
N
i=1 ξ

(i)
k Pi and Pk+1 = ∑

N
j=1 ξ

( j)
k+1Pj, or equiva-

lently, by Schur’s formula,
[

(1−λ )Pk 0

0 µ1

]

−
[

AT Pk+1

Pk+1

]

P
−1
k+1 [ Pk+1A Pk+1 ]> 0.

Hence, for all xk ∈ R
n and all vk ∈ R

n, it holds that

(

xT
k vT

k

)

M

(

xk

vk

)

≤ 0,

with M =
[

AT Pk+1A− (1−λ )Pk (•)T

Pk+1A Pk+1 −µ1

]

. This implies

that, for all xk ∈ R
n and all vk ∈ R

n,

(Axk + vk)
T
Pk+1(Axk + vk)− (1−λ )xT

k Pkxk ≤ µvT
k vk.

This can be rewritten as

V (xk+1,ρk+1)− (1−λ )V (xk,ρk)≤ µvT
k vk, (15)

or equivalently

V (xk+1,ρk+1)−V (xk,ρk)≤−λV (xk,ρk)+µ‖vk‖2, (16)

with V (xk,ρk) = xT
k Pkxk = xT

k (∑
N
i=1 ξ

(i)
k Pi)xk.

Now, let us proceed to the second step of the proof. On one

hand, the feasibility of (9) implies that, ∀(i, j) ∈ {1 · · ·N}×
{1 · · ·N},

[

µ1 (•)T

Gi Gi +GT
i −Pj

]

> 0,

which in turn implies that

[

µ1 (•)T

Gi GiP
−1
j GT

i

]

> 0 and so

GiP
−1
j GT

i −Giµ
−1GT

i > 0. Since for all i ∈ {1, . . . ,N}, Gi is

invertible, since for all j ∈ {1, . . . ,N}, Pj is positive definite

and µ > 0, we infer that

Pj < µ1. (17)

Multiplying respectively left and right by xT
k and xk, we have

that

V (xk,ρk)≤ µ‖xk‖2. (18)

On the other hand, assume that (10) is feasible. Using Schur’s

formula, (10) can be rewritten as
[

λPi − 1
ν 1 0

0 (ν −µ)1

]

≥ 0. (19)

The feasibility of (10) or equivalently of (19) for all i ∈
{1, . . . ,N} implies that λPi − 1

ν 1 ≥ 0 and thus

Pi ≥
1

νλ
1. (20)

Multiplying respectively left and right by xT
k and xk gives

V (xk,ρk)≥
1

νλ
‖xk‖2. (21)

As the third step of the proof, it’s a simple matter to see

that the consideration of (16) and (21) proves (12) while the

consideration of (18) and (21) proves (13).

Finally, as the fourth step and to complete the proof, we

proceed to explicitly compute the ISS gain and decay factor.

Let us assume that (10) or equivalently (19) is feasible for

all i ∈ {1, . . . ,N}. Multiplying successively (19) by ξ
(i)
k and

summing, and by ξ
( j)
k+1 and summing yields

[

λPk − 1
ν 1 0

0 (ν −µ)1

]

≥ 0.

Hence, for all xk ∈ R
n and all vk ∈ R

n, this implies that

λV (xk,ρk)≥
1

ν
‖xk‖2 − (ν −µ)‖vk‖2. (22)

We also assume that the LMIs (9) are feasible. Thus, (15)

holds and we get that

V (xk+1,ρk+1)≤ (1−λ )V (xk,ρk)+µ‖vk‖2. (23)

Applying (23) successively leads to

V (xk,ρk) ≤ (1−λ )kV (x0,ρ0)+

µ ∑
k−1
l=0 (1−λ )k−l−1‖vl‖2

≤ (1−λ )kV (x0,ρ0)+
µ
λ ‖v‖2

∞.

(24)

From (24) and (22), we get that:

1

ν
‖xk‖2 ≤ λ (1−λ )kV (x0,ρ0)+µ‖v‖2

∞ +(ν −µ)‖vk‖2.

Finally, by using again (18) and taking the square root, the

inequality

‖xk‖ ≤
√

νλ µ(1−λ )k/2‖x0‖+ν‖v‖∞ (25)

is obtained. This inequality shows that (4) is ISS with respect

to vk. Furthermore, in view of Definition 4, we can infer that



the ISS gain is linear with γ(s) = νs and that the decay factor

is (1−λ )1/2. �

It is worth pointing out that the Matrix Inequalities (9)-

(10) are really tractable. Indeed, for the nonlinearity due

to the product λPi in (9), the range of λ ∈]0,1[ is known

and bounded. Hence, a simple line search (gradient method

or bisection), following the same line as [1] in a different

context, can be used. A simple gridding can also be used. If

so, (9)-(10) can be solved for every prescribed “gridded” λ
and boil down to Linear Matrix Inequalities. Such a remark

is central when it comes to synthesis.

III. COMPARATIVE STUDY

In this section, we show that the conditions proposed in

this paper are less conservative than the ones provided so

far in the literature, and we recall the condition, proposed

in [4] [7], which is known, to the best of our knowledge,

as the less conservative one for polytopic LPV discrete-time

systems.

Theorem 3: If there exist positive definite symmetric

matrices Pi, matrices Gi, a real scalar σe ≥ 1, fulfilling

∀(i, j) ∈ (1, . . . ,N)× (1, . . . ,N), the Matrix Inequalities









GT
i +Gi −Pj (•)T (•)T (•)T

0 1 (•)T (•)T

GiAi 1 Pi (•)T

Gi 0 0 σe1









> 0, (26)

then the system (4) is ISS with respect to vk and

‖xk‖ ≤
√

σe(1−
1

σe

)k/2 ‖x0‖+σe ‖v‖∞ . (27)

The proof is given in [4] [7]. It is shown that (26) ensures

the existence of an ISS Lyapunov function V : Rn ×R
L →

R+, V (xk,ρk) = xT
k Pkxk with Pk = ∑

N
i=1 ξ

(i)
k (ρk)Pi which

verifies for all xk ∈R
n, all vk ∈R

n and all ξ ∈S of (4), the

following conditions

‖xk‖2 ≤V (xk,ρk)≤ σe ‖xk‖2 , (28)

V (xk+1,ρk+1)−V (xk,ρk)≤−‖xk‖2 +σe ‖vk‖2 . (29)

The existence of V fulfilling (28) and (29) is sufficient to

obtain (27).

The following Proposition aims at showing that the condi-

tions (9)-(10) of the proposed Theorem 2 are less conserva-

tive than (26) of Theorem 3.

Proposition 1: For the triplet (ν ,λ ,µ) = (σe,
1

σe
,σe), the

inequality (25) reduces to the inequality (27). Furthermore,

the solution of (26) is also a solution of (9)-(10).

Proof 2: The first part of Proposition 1 is straightforward

and proved by a simple substitution. For the second part, we

must first notice that (26) can be equivalently, by permuting

rows and columns, rewritten as





Pi (•)T (•)T (•)T

0 σe1 (•)T (•)T

GiAi Gi GT
i +Gi −Pj (•)T

1 0 0 1



> 0. (30)

By Schur’s formula, (30) turns into
[

Pi −1 (•)T (•)T

0 σe1 (•)T

GiAi Gi GT
i +Gi −Pj

]

> 0. (31)

To prove that the feasibility of (31) implies the feasability

of (9), it is sufficient to first prove that, whenever (31) is

fulfilled, there always exists λ = 1
σe

and µ = σe such that

[

(1−λ )Pi (•)T (•)T

0 µ1 (•)T

GiAi Gi GT
i +Gi −Pj

]

−

[

Pi −1 (•)T (•)T

0 σe1 (•)T

GiAi Gi GT
i +Gi −Pj

]

≥ 0.

It is equivalent to show that there always exists λ = 1
σe

and µ = σe such that (1− λ )Pi ≥ Pi − 1 and µ − σe ≥ 0,

or equivalently

1 ≥ λPi (32)

and

µ ≥ σe. (33)

The inequality (33) is clearly fulfilled if µ = σe. As for

inequality (32), since (31) is assumed to be fulfilled, one

has
[

σe1 GT
i

Gi GT
i +Gi −Pj

]

> 0, (34)

which, following the same line of reasoning as in the first

step of the proof of Theorem 2, is equivalent to
[

σe1 Pj

Pj Pj

]

> 0, (35)

or equivalently

Pi < σe1. (36)

And yet, (36) implies (32) for λ = 1
σe

.

Next, it must be proved that, for λ = 1
σe

, µ = σe and ν =
σe, (10) is also fulfilled, or equivalently, by Schur’s formula,

[

λPi − 1
ν 1 0

0 (ν −µ)1

]

≥ 0 (37)

is fulfilled with λ = 1
σe

and µ = σe.

First, let us notice that the inequality (ν−µ)1≥ 0 is obvious.

Next, from (31), we can infer that

Pi > 1. (38)

Besides, for ν = σe and λ = 1
σe

, it holds that λPi − 1
ν 1 =

1
σe
(Pi − 1) and so, with (38), (37) is clearly fulfilled. That

completes the proof. �

Now, we go further by showing that the solution of (9)-(10)

always gives a decay rate and an ISS gain lower than the

solution of (26).

Proposition 2: There always exist δ1 ≥ 0, δ2 ≥ 0 and

δ3 ≥ 0 such that λ = 1
σe

+δ1, µ = σe −δ2 and ν = σe −δ3

are solution of (9)-(10)

The interpretation of Proposition 2 is the following. δ1 > 0

corresponds to better decay rate (faster transient time) and

δ3 > 0 corresponds to a better disturbance rejection. As a

result, considering the optimal solution of Theorem 3, we



can find out a better decay rate (if δ1 > 0) and a better ISS

gain (if δ3 > 0).

Proof 3: Assume that (26) is feasible. Hence, (9) is also

feasible with the triplet (ν ,λ ,µ) = (σe,
1

σe
,σe) as previously

shown. Then, there always exists a positive semi-definite

matrix Pε = diag(ε11n,ε21n,0)Pi (1n stands for the identity

matrix of dimension n) such that
[

(1− 1
σe
)Pi (•)T (•)T

0 σe1 (•)T

GiAi Gi GT
i +Gi −Pj

]

> Pε ,

which is equivalent to
[

(1− 1
σe

− ε1)Pi (•)T (•)T

0 σe1− ε2Pi (•)T

GiAi Gi GT
i +Gi −Pj

]

> 0.

Hence, (9) is feasible with λ = 1
σe

+ε1. Taking into account

(36), (9) is feasible with µ = σe −σeε2. As a result, δ1 =
ε1 ≥ 0 and δ2 = σeε2 ≥ 0.

For this special setting, the inequality (10), or equivalently

(37), must still hold. Consider the upper left diagonal block

with λ = 1
σe
+δ1 and consider δ3 defined as ν = σe−δ3. The

inequality is fulfilled whenever δ31≤σe1− 1

( 1
σe

+δ1)
P−1

i . Tak-

ing into account (38), it follows that δ3 ≤ σe − ( 1
σe

+δ1)
−1

is still admissible.

Finally, let us focus on the lower right diagonal block of

(37) with ν = σe −δ3 and µ = σe −δ2. The inequality (ν −
µ)1 ≥ 0 is still feasible whenever δ3 ≤ δ2. As a result, δ3 is

clearly positive and must fulfill δ3 = min(σeε2,σe− 1

( 1
σe

+δ1)
)

�

IV. OBSERVER DESIGN

In this section, we consider a synthesis problem and more

specifically an observer design. A quite similar treatment

holds for control but is not addressed here due to the limited

size of the paper. We consider LPV systems of the form
{

xk+1 = A(ρk)xk +Buk +wd
k

yk =Cxk +Duk +Hwo
k ,

(39)

where xk ∈ R
n is the state vector, uk ∈ R

m is the control

input vector, yk ∈ R
p is the output vector. A ∈ R

n×n is the

dynamical matrix depending on the possibly time varying

parameter vector ρk ∈ R
L, C ∈ R

p×n is the output matrix,

B ∈ R
n×m is the input matrix. Disturbances are splitted into

the disturbance wd
k ∈ R

n acting on the dynamics and the

disturbance wo
k ∈ R

dwo acting on the output. The dependence

of A(ρk) with respect to ρk is assumed to be polytopic. We

should point out that the extension to LPV systems with

time varying matrices B, C and D can be carried out with

little effort (see a possible approach in [17] for example).

For the purpose of state reconstruction of (39), we propose

the following polytopic observer
{

x̂k+1 = A(ρk)x̂k +Buk +L(ρk)(yk − ŷk)
ŷk =Cx̂k +Duk,

(40)

where L is a time varying gain matrix depending on ρk

L(ρk) =
N

∑
i=1

ξ (i)(ρk)Li, ξ ∈ S , (41)

and where the ξ (i)(ρk) in (41) coincide, for every discrete

time k, with the ones involved in the polytopic decomposition

of A(ρk).
It’s a simple matter to derive, from (39) and (40), the

reconstruction error ek = xk − x̂k

ek+1 = (A(ρk)−L(ρk)C)ek + vk, (42)

with vk = wd
k −L(ρk)w

o
k .

We aim at computing the gain L to guarantee both stability

(with possible performance guarantees) and robustness with

respect to vk. To this end, restating Theorem 3 and Theorem 2

for synthesis purpose yields the following design problems.

Let us stress that Matrix Inequalities (43) and (44) are ob-

tained from the ones involved in Theorem 3 and Theorem 2

after, as usual, replacing Ai by Ai−LiC, changing the variable

Fi = GiLi which gives the solution Li = G−1
i Fi (let us recall

that Gi is invertible).

Problem 1 (Theorem 3)

min
σe,Gi,Pi,Fi i, j∈{1,...,N}

Jσe = σe

s.t.





GT
i +Gi −Pj (•)T (•)T (•)T

0 1 (•)T (•)T

GiAi −FiC 1 Pi (•)T

Gi 0 0 σe1



> 0. (43)

It is clear that minimizing Jσe does not allow to minimize

independently the decay factor and the ISS gain, see (27).

Problems 2 (Theorem 2)

min
λ ,ν ,µ,Gi,Pi,Fi i, j∈{1,...,N}

Jλ ,ν =−λ ,ν

or min
λ ,ν ,µ,Gi,Pi,Fi i, j∈{1,...,N}

Jν ,λ=λ0
= ν

or min
λ ,ν ,µ,Gi,Pi,Fi i, j∈{1,...,N}

Jλ ,ν=ν0
=−λ

s.t.

[

(1−λ )Pi (•)T (•)T

0 µ1 (•)T

GiAi −FiC Gi GT
i +Gi −Pj

]

> 0 (44)

and
[

λPi (•)T (•)T

0 (ν −µ)1 (•)T

1 0 ν1

]

≥ 0. (45)

If min Jλ ,ν is considered, clearly, the decay factor and

the ISS gain can be simultaneously minimized and can be

different in magnitude. The consideration of min Jν ,λ=λ0

or min Jλ ,ν=ν0
corresponds respectively to the problems of

minimizing the ISS gain for a prescribed decay rate λ = λ0

or minimizing the decay rate for a prescribed ν = ν0.

V. EXAMPLES

Let us compare, on two examples, the solutions of Prob-

lem 1 and Problems 2 to highlight the benefit of Theorem 2

compared to Theorem 3.



A. Example 1

Let us consider the system investigated in [2], the airpath

of a turbocharged Spark Ignition engine. Here, we focus

on the subsystem from which the air flow trapped into the

cylinders can be estimated. The state space realization of the

discretized model obeys the form (39) with

A(ρk) =
[

1 ρk

0 1

]

, B(ρk) =
[ −ρk ρk ρk

0 0 0

]

,

and ρk is a time-varying parameter lying in the range

[ρmin ρmax] = [− 3.3453 − 0.0174] which clearly admits

a polytopic description with two vertices A1 and A2 corre-

sponding respectively to ρmin and ρmax.

For the state reconstruction of xk, a polytopic observer of the

form (40) is proposed and (42) is obtained.

First, let us solve min Jσe . The optimal solution is given by

σe = 13401 with observer gains L1 = [2.8856 − 0.5637]T

and L2 = [1.0101 − 0.5779]T .

Next, let us solve min Jλ ,ν . The best ISS gain corresponds

to ν = 595.93, λ = 7.3 10−3 and µ = 595.92. The gains are

given by L1 = [2.4 −0.42]T and L2 = [1.007 −0.42]T . As

expected, ν < σe and λ > 1/σe = 7.46 10−5, considering the

discussion on conservativeness of (9)-(10).

Now, let us set ν = σe = 13401. The solution of min Jλ ,ν=σe

is λ = 0.02 which is clearly greater that 1/σe = 7.46 10−5.

It means that for the best ISS gain obtained with Theorem 3,

with the new condition proposed in this paper, a much better

decay rate can be obtained with Theorem 2.

B. Example 2

Let us consider the example given in the paper [6] which

addresses the issue of output-based controller design for

discrete-time LPV systems with uncertain parameters. A

separate design of state observers and input-to-state stabi-

lizing state is proposed. Here, we only consider the observer

synthesis step. The state space realization of the LPV system

obeys the form (39) with

A(ρk) =

[

0.25 1 0
0 0.1 0
0 0 0.6+ρk

]

, B =





1

0

1



 ,

C = [1 0 2], D = 0, H = 0

and ρk ∈ [0,0.5]. A polytopic description involving two

vertices A1, for ρk = 0, and A2, for ρk = 0.5, can be obtained.

The observer proposed in [6] is designed by solving

min Jσe . The optimal solution is given by σe = 5.8277 with

observer gains L1 =
[

−0.0835 −0.0011 0.3870
]T

and L2 =
[

−0.0835 −0.0011 0.7094
]T

. Next,

let us solve min Jλ ,ν . We get the solution

ν = 3.0097, λ = 0.44, µ = 3.0096 that leads to the

observer gains L1 =
[

0.0573 0.0013 0.2398
]T

,

L2 =
[

0.0418 0.0013 0.4498
]T

. Again, we have that

ν < σe and λ > 1/σe = 0.1716.

Now, let us set ν =σe = 5.8277. The solution of min Jλ ,ν=σe

is λ = 0.8 which is clearly greater that 1/σe = 0.1716. It

means that for the best ISS gain obtained with Theorem 3,

with the new condition proposed in this paper, a much

better decay rate can be obtained with Theorem 2..

VI. CONCLUSION

We have derived ISS conditions for disturbed linear poly-

topic discrete-time systems. The conditions provides scalable

decay rate and ISS gain. They are expressed in terms

of tractable Matrix Inequalities. A comparative study has

shown that the conditions are more general than the ones

available so far. Benefiting from an increase of flexibility, the

conditions are suitable for reducing the bounds for analysis

purposes but also to improve the performances for control or

state reconstruction perspectives. A similar treatment applies

in the context of uncertain systems.
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