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Abstract— This paper is concerned with identifiability of
an underlying high frequency multivariate stable singular AR
system from mixed frequency observations. Such problems
arise for instance in economics when some variables are
observed monthly whereas others are observed quarterly. In
particular, this paper studies stable singular AR systems where
the covariance matrix associated with the vector obtained by
stacking observation vector, yt, and its lags from the first lag
to the p-th one (p is the order of the AR system), is also
singular. To deal with this, it is assumed that the column
degrees of the associated polynomial matrix are known. We
consider first that there are given nonzero unequal column
degrees and we show generic identifiability of the system and
noise parameters. Then we extend the results to allow zero
column degrees corresponding to fast components. In this case,
we first show generic identifiability of the subsystem of the
components with nonzero column degree. Then we show how
to obtain those components of the parameter matrices of the
components corresponding to zero column degree by regression.

I. INTRODUCTION

When one is working with high-dimensional time series
it is very common to encounter situations where some
components of the time series are available at every point of
time whereas others might be unavailable at some points of
time, but still available periodically. This situation commonly
arises in econometric modeling when one is dealing with
GDP data and unemployment data or interest rates. In an
econometric modeling context, the term mixed frequency is
used to refer to the associated multivariate time series.

One way of handling mixed frequency data is the method
of blocking [1], where the authors show that a tall blocked
linear time-invariant system derived from an underlying
unblocked linear system with one or more missing outputs
is generically zero-free. In this paper, we follow a different
approach; we specifically study the method of [2]. Reference
[2] postulates that there exists an autoregressive model
operating at the highest sampling frequency and shows that
the parameters of this model are generically identifiable
from those population second order moments which can
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be observed in principle1. Equivalently, such a model is
identifiable on a superset of an open and dense subset of
the parameter space.

It is worthwhile mentioning here that the covariance
matrix associated with input sequences of an autoregressive
model can be either regular or singular. The terms regular
autoregressive model and singular autoregressive model are
used to refer to the former and latter, accordingly. Moreover,
with recent theoretical advances in the field of econometric
modeling, see [3] and [4], singular autoregressive models
have become more popular in this area. In econometric mod-
eling and forecasting exercises using generalized dynamic
factor models (GDFMs) [5], the latent variable, i.e. those
parts of observed data remaining after removal of contami-
nating additive noise in the measurement, are modeled as an
singular autoregressive model. In this paper we focus on this
type of models.

This paper is in fact a continuation of our work
in [2]. One should note that the results in [2] show
identifiability only on a subset of the parameter space
where Γ, the covariance matrix associated with the
vector Yt =

[
yTt yTt−1 · · · yTt−p

]T
, where yt is the

observation vector and p is the order of the AR system,
is restricted to being nonsingular. Note that Γ is always
nonsingular for regular AR models but can be singular
for singular AR models. In this paper, we show generic
identifiability for singular autoregressive models where the
covariance matrix Γ is singular on a restricted parameter
space , viz. following the reference [6], we assume that
the column degrees of the associated polynomial matrix
are known and consider the parameter space where the
highest degree of each column of the associated polynomial
matrix is bounded by its prescribed column degree. As in
[2] we use a modified version of the extended Yule-Walker
equations proposed by Chen and Zadrozny in [7] to obtain a
sufficient condition for identifiability and then show that this
condition generically holds. If we have identifiability, the
system and noise parameters and thus all second moments
of the observed process can be estimated consistently from
mixed frequency data. Then linear least squares methods
for forecasting and interpolating nonobserved variables can
be applied.

The rest of this paper is organized as follows. First, the

1Second order moments which are observed ’in principle’ are those which
can be consistently estimated from sample statistics when the number of
samples goes to infinity.
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problem formulation is provided. Then we focus on possible
scenarios and study them separately. Considering AR poly-
nomials with prescribed column degrees, we distinguish two
cases: the case where the AR polynomial matrix A(q) has
columns with unequal degree but there is no column with
zero column degree and another case where columns of A(q)
are permitted to have column degree zero. The former case
is studied in Section III and the latter is explored in Section
IV. Finally, Section V concludes.

II. PROBLEM FORMULATION

Consider the following AR system

yt = A1yt−1 +A2yt−2 +A3yt−3 + . . .+Apyt−p + νt, (1)

where yt is an Rn valued random variable. We assume that
yt consists of two parts; the fast components, yft for t ∈ Z,
which are nf -dimensional, and the slow components, yst
which are available for t ∈ NZ for some positive integer
N ≥ 2, which are ns-dimensional, and nf + ns = n. The
innovation νt, which is orthogonal to yt−j , j ≥ 1 is white
noise and its covariance is E[νtν

T
u ] = Σδtu for all t, u,

where δtu is the Kronecker delta, which is 1 for t = u
and 0 otherwise, rank(Σ) = r < n. (Note that the case
rank(Σ) = n implies that Γ is nonsingular and thus this case
is already treated in [2].) We can write Σ = bbT where b is
an n×r matrix. Accordingly, νt = bεt, where E

[
εtε

T
t

]
= Ir.

For given Σ, b is unique up to postmultiplication by an
orthogonal matrix. Moreover, the AR polynomial matrix is
A(q) = I−A1q−· · ·−Apqp where qyt = yt−1 and z = q−1,
so q is the backward shift. Throughout we assume that the
high frequency system (1) is stable, and that we restrict
ourselves to the steady state and thus stationary solutions.

Now it is convenient to define the state variable xt as
below and rewrite the equation (1) in the state space form
as


yt
yt−1

yt−2

...
yt−p+1


︸ ︷︷ ︸

xt

=


A1 A2 . . . Ap

I 0 . . . 0
. . .

. . .
0 0 I 0


︸ ︷︷ ︸

A


yt−1

yt−2

yt−3

...
yt−p


︸ ︷︷ ︸

xt−1

+


b
0
...
0


︸ ︷︷ ︸
B

εt.

(2)
In our previous work [2] we studied identifiability, i.e.

whether the system parameters (A1, . . . , Ap), and noise
parameters Σ can be uniquely determined from those popu-
lation second moments which can be observed in principle,

these being γff (h) = E
[
yft+h

(
yft

)T]
, h ∈ Z; γfs(h) =

E
[
yft+h (yst )

T
]
, h ∈ Z; γss(h) = E

[
yst+h (yst )

T
]
, h ∈

NZ. In reference [2], the main theorem showed identifiability
of the system and noise parameters on a generic set. This
generic set was the set of all stable AR systems where Ap
was nonsingular and the eigenvalues of A had multiplicity
one. The assumption that Ap is nonsingular implies the
property that all column degrees in A(q) are equal to p,
which is restrictive. However, here we study the scenario

where at least one column degree is less than p and thus
Ap is singular (though nonzero). We assume to be given
prescribed column degrees of A(q). The parameters in the
coefficient matrices of A(q) not forced to be zero by the
column degree restriction together with the nr− r(r−1)

2 free
entries of Σ, or b, then define our parameter space.

In the following we consider two possible scenarios which
may happen. First, we study the case where A(q) has
columns with unequal degree but there is no column with
column degree zero. Second, a situation where columns of
A(q) are permitted to have column degree zero is explored.
In the following section the former case is studied and in
Section IV the latter case is investigated.

III. AR SYSTEMS WITH UNEQUAL COLUMN DEGREE IN
A(q)

Throughout the paper, we assume for convenience and
without loss of essential generality that the components of
yt are ordered such that the column degrees of A(q), the AR
polynomial, are decreasing, i.e., pi ≥ pj when i < j where
i and j denotes a column numbers in A(q) and pi and pj
are the corresponding column degrees. Also, in this section
we further assume that pj > 0.

Now, to deal with the situation stated above the following
state space form is studied

xt = Axt−1 + Bεt, (3)

where A is obtained from A by deleting columns corre-
sponding to prescribed zero columns in A1, . . . , Ap and cor-
responding rows. This has been called the quasi companion
form in [6]. Here, xt and B are those entries of xt and B
respectively associated with A. Furthermore, it is easy to
verify that

yt = [A1A2 . . . Ap]xt−1 + bεt. (4)

where [A1A2 . . . Ap] is obtained by taking the first n rows
of A. Note that A1 = A1 since no column degree is
prescribed to be zero; however, Ai, i ∈ {2, . . . , p}, may have
fewer columns than Ai. Since we deleted only prescribed
zero columns, identifiability of the system parameters is
equivalent to identifiability of (A1A2 . . . Ap). In the fol-
lowing, we first show that the parameter matrices Ai and
Σ are generically identifiable from those population second
moments which can be observed in principle.

A. Modified Extended Yule-Walker Equations

Consider the system (4); then it is easy to see that

E[ytx
T
t−1] = [A1 A2 . . . Ap]Γ, (5)

where Γ = E[xt−1x
T
t−1]. Observe that provided Γ and

E[ytx
T
t−1] are known and Γ is nonsingular, we can identify

the parameters Ai easily using (5). However, we have diffi-
culties in directly using (5) because yst is not available at all
times and consequently some entries of the matrices on both
sides of (5) will be missing. In the rest of this subsection we
first show how those population second moments, which can
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be observed in principle, can be used to determine the Ai.
Then, later we use these results to show generic identifiability
of Σ.

To overcome the problem of missing covariance data
we consider equation (4) and postmultiply both sides by
(yft−j)

T , j > 0, the fast components, to obtain our extended
Yule Walker equations as in [2]:

E
[
yt

(
(yft−1)T , (yft−2)T , . . .

)]
= [A1, . . . , Ap]E

[
xt−1

(
(yft−1)T , (yft−2)T , . . .

)]
.

(6)

From equation (3) we obtain for the second multiplicand
on the right hand side

E
[
xty

T
t−j
]

= E
[(
Axt−1 + Bεt

)
yt−j

]T
=

AE
[
xt−1y

T
t−j
]

= · · · = AjE
[
xt−jy

T
t−j
]

= AjΓ
(
In
0

)
.

(7)

We now can define K = Γ

(
Inf

0

)
.

The rightmost matrix in (6) can be written as
(K,AK,A2

K, . . . ). Now as A ∈ R(pn−s)×(pn−s), where
s is the number of prescribed zero columns in (A1, . . . , Ap),
using the well known Cayley-Hamilton theorem, it follows
that this matrix has full row rank if and only if the following
matrix which contains only the first pn − s block columns
has full row rank:

Zf = (K,AK,A2
K, . . . ,Apn−s−1

K). (8)

Now obviously the parameter matrices Ai are identifiable
if the matrix Zf has full row rank.

B. Generic Identifiability

In this paper we follow the same definition of generic
identifiability as in reference [2]. Consider the parameter
space associated with the system (4). Then a property is
said to hold generically on the parameter space if it holds
on a superset of an open and dense subset of the parameter
space. Here, in what follows we first study the generic
identifiability of the system parameters (A1, . . . , Ap) from
those second moments which are observed in principle. Then
later in Subsection III-B.2 the generic identifiability of noise
parameters i.e. the entries of Σ, is examined.

1) Generic Identifiability of the System Parameters: In
this subsection it is shown that Zf has generically full row
rank and thus we have generic identifiability of the system
parameters (A1A2 . . . Ap) for prescribed column degrees.

Lemma 3.1: Let A denote the block matrix defined above
and let A(z) denote the polynomial matrix zpI −A1z

p−1−
· · · − Ap with z = q−1. Suppose that ᾱT = [ᾱT1 . . . ᾱTp ]
where ᾱi has dimension equal to the number of columns of
Ai, is a left eigenvector of A corresponding to eigenvalue
λ. Then ᾱT1 is in the left kernel of A(λ) i.e. ᾱT1 A(λ) = 0.
Conversely, if ᾱT1 6= 0 is such that ᾱT1 A(λ) = 0 for some λ,

and [ᾱT2 0 . . . 0]︸ ︷︷ ︸
α2

= ᾱT1 (λI − A1), [ᾱT3 0 . . . 0]︸ ︷︷ ︸
α3

= ᾱT1 (λ2I −

λA1 − A2), . . ., then ᾱT = [ᾱT1 ᾱT2 ᾱT3 . . . ᾱTp ] is a left
eigenvector of A corresponding to eigenvalue λ; here, the
number of zero entries in αi, i = 2, . . . , p, is equal to the
number of prescribed zero columns in Ai.

Proof: Suppose that ᾱT is a left eigenvector of A
associated with eigenvalue λ. Then it is evident that

ᾱT1 A1 + [ᾱT2 0 . . . 0] = λᾱT1 ,

ᾱT1 A2 + [ᾱT3 0 . . . 0] = λᾱT2 ,

...

ᾱT1 Ap−1 + [ᾱTp 0 . . . 0] = λᾱTp−1,

ᾱT1 Ap = λᾱTp .

(9)

In the above equations, in the second summand on the left
hand side, the ᾱi are augmented with zeros so the above
equalities can hold with dimensional consistency. Now if ᾱ1

were zero then all ᾱi would turn out to be zero which would
be a contradiction. Thus, ᾱ1 6= 0. Now, let αi denote the
vector consisting of ᾱi augmented with zeros if necessary to
make its dimension equal to dim yt. Note that we necessarily
have ᾱ1 = α1. Then it is obvious that the following equations
hold:

ᾱT1 A1 + αT2 = λᾱT1 ,

ᾱT1 A2 + αT3 = λαT2 ,

...

ᾱT1 Ap−1 + αTp = λαTp−1,

ᾱT1 Ap = λαTp .

(10)

Thus, it is easy to obtain ᾱ1A(λ) = 0. Conversely, suppose
that ᾱ1A(λ) = 0 holds for some nonzero λ. Then by defining
ᾱi according to the lemma statement, it can be easily verified
that (9) holds and thus ᾱTA = λᾱT .

Theorem 3.2: The set F = {[A,B]|rank([zI −A,B]) =
pn − s,∀z ∈ C}, where s is the number of prescribed zero
columns in (A1, . . . , Ap), is open and dense in the set of all
A,B satisfying the conditions described above and where A
corresponds to a stable A(q).

Proof: The proof is omitted due to page limitation.
Lemma 3.3: Let A and A(z) denote the matrix and the

polynomial matrix defined above, and let c̄ be a right eigen-
vector of A corresponding to eigenvalue λ 6= 0. Partition
c̄ = [c̄T1 c̄

T
2 . . . c̄Tp ]T where c̄i has the same number of entries

as columns of Ai. Then c̄1 6= 0 is in the kernel of A(λ).
Conversely, if c̄1 6= 0 is such that A(z)c̄1 = 0 for some

λ 6= 0 and if ci = λ1−ic̄1 and c̄i denotes the first ni entries
of ci, where ni is the number of columns in Āi, then c̄ =
[c̄T1 c̄

T
2 . . . c̄Tp ]T is the right eigenvector of A corresponding

to eigenvalue λ 6= 0.
Proof: The proof is omitted due to page limitation.

Theorem 3.4: Let A be a matrix obtained from the proce-
dure described above. Furthermore, let Ej denote a column
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vector of length equal to dimA with one in the j-th position
for 1 ≤ j ≤ dim yt and zero elsewhere. Then the pair
(A, ETj ) is observable on a generic subset of the parameter
space.

Proof: The proof is omitted due to page limitation.
A proof of a theorem like the following theorem was

stated in [2]. Here, we modify the previous proof for our
own purpose.

Theorem 3.5: The matrix Zf has full row rank for a set
of generic parameter matrices Āi, i = 1, 2, . . . , p .

Proof: Consider the system (3). Then observe that the
following equality holds:

Γ−AΓAT = BBT . (11)

From (11) we obtain

(zI −A)Γ(z−1I −A)T +AΓ(z−1I −AT
) + (zI −A)ΓAT

= BBT
, (12)

Γ + (zI −A)−1AΓ + ΓAT
(z−1I −AT

)−1

= (zI −A)−1BBT
(z−1I −AT

)−1, (13)

where Γ = E[xt−1 x
T
t−1]. By pre- and postmultiplying (13)

by ET1 and E1 to get

ET1 ΓE1 + ET1 (zI −A)−1AΓE1 + ET1 ΓAT (z−1I −AT )−1E1
= ET1 (zI −A)−1B BT (z−1I −AT )−1E1. (14)

Using the results of Theorem 3.2 and Theorem 3.4, it is
obvious that the pairs (A,B) and (A, ET1 ) respectively are
reachable and observable respectively on a generic sub-
set of the parameter space. Thus, (A,B, ET1 ) is minimal
and ET1 (zI − A)−1B has McMillan degree equal to the
dimension of A i.e. pn − s. Since the McMillan degree
remains unchanged under transposition and replacement of a
variable by a Mobius transformation, BT (z−1I −AT )−1E1
has the same McMillan degree. Furthermore, by the stability
assumption of the underlying AR system and considering
the genericity of the pair (A,B), we can conclude that
there is no pole-zero cancelation in the product ET1 (zI −
A)−1B BT (z−1I − AT )−1E12. Thus, the McMillan degree
of the product ET1 (zI − A)−1B BT (z−1I − AT )−1E1 is
equal to 2(np − s). Note that the nonconstant terms on the
left hand side of (14) have the same McMillan degree and
share no common poles. Therefore, ET1 (zI − A)−1AΓE1
has McMillan degree equal to np − s. Due to the fact that
(A, ET1 ) is observable we can easily conclude that the pair
(A,AΓET1 ) is reachable; moreover, A is nonsingular so,
the reachability matrix, see [8], associated with the pair
(A,AΓET1 ) has the same rank as the reachability matrix

2Observe that if the pair (A,B) is generic, so is the pair (A+ BF,B),
for any fixed but arbitrary F of the proper dimension. Moreover, while
the poles of ET1 (zI−A)−1B and ET1 (zI−A−BF )−1B are generically
different, their zeros are the same. Now suppose that there exists a z0 which
is both a zero of ET1 (zI −A)−1B and the reciprocal of an eigenvalue of
A. Then for almost all F the zeros of ET1 (zI − A − BF )−1B will be
distinct to the reciprocal of the eigenvalues of A + BF and there will be
no pole-zero cancelation.

associated with the pair (A,ΓET1 ). Hence, we can readily
conclude that the pair (A, ΓET1 ) is also reachable. Now recall

the definition of K which is K = Γ

(
Inf

0

)
. Based on the

definition of ET1 , it becomes obvious that we proved the
conclusion of theorem for the case where nf = 1 and it
is trivial that the result can be generalized for an arbitrary
value of nf .

Hence, we have shown identifiability of (A1A2 . . . Ap)
and thus of the system parameters (A1, . . . , Ap).

2) Generic Identifiability of the Noise Parameters: In this
part we show generic identifiability of the noise parameters
Σ given that the entries of (A1, . . . , Ap) are identifiable.

Theorem 3.6: The noise parameters Σ are generically
identifiable from those population second moments which
can be observed in principle.

The proof is analogous to the proof of Theorem 2 given
in [2].

Note that for generic identifiability we only needed the
subsystem (Ā, B̄) to be reachable, which is equivalent to Γ̄
being nonsingular, whereas in [2] Γ had to be nonsingular for
identifiability. Thus we have extended the results of [2] to the
case where we have linear dependencies in xt, but we have
prescribed zero columns in (A1, . . . , Ap). Also note that for
prescribed column degrees Γ̄ and Zf are of the same (full)
rank on a generic set.

IV. AR SYSTEMS WITH ZERO COLUMN DEGREE IN A(q)

In the previous section we only considered AR systems
whose columns of their AR polynomial matrix, A(q) had
unequal prescribed column degrees and no column degree
was prescribed to be zero. In this section, we also permit
column degrees of A(q) to be prescribed to be zero. Here,
we first define a subsystem from the AR system (1). We then
discuss generic identifiability of this subsystem, which turns
out to be an AR system, using ideas of the previous section.
Finally, we end this section by explaining how to obtain the
remainder of parameters.

Accordingly, define a subprocess yrt of yt which con-
sists of those components of yt not corresponding to those
columns of A(q) with prescribed zero column degree.

Attention is first given to identifying those parameters
associated with yrt . Then later we use a regression to obtain
the rest of the parameters. Note that in general a marginalized
AR process is not an AR process any more, but in the case
of zero column degrees, the components of yrt are. This is
explained in the following very straightforward lemma, for
which the proof is omitted.

Lemma 4.1: Consider the AR process as defined in (1)
and assume that its AR polynomial matrix A(q) has one
or more columns with zero degree. Then the process yrt
obtained from deleting all components of yt associated with
columns of A(q) with zero degree, is an AR process of the
same order as (1).
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To illustrate our approach for dealing with the case where
one or more columns of A(q) have column degree zero, we
first provide the example below. The main results are stated
afterwards.

Example 4.2: Consider the following AR(3) process

yt = A1yt−1 +A2yt−2 +A3yt−3 + bεt,

where yt ∈ R3 and A1, A2 and A3 have the following
structure:

A1 =

 × × 0
× × 0
× × 0

A2 =

 × × 0
× × 0
× × 0

A3 =

 × 0 0
× 0 0
× 0 0

 .

(15)
Based on the above discussion we define

xrt =

 yrt
yrt−1

yrt−2

 =



y
(1)
t

y
(2)
t

y
(1)
t−1

y
(2)
t−1

y
(1)
t−2

y
(2)
t−2


, (16)

where, y(i)
t denotes the i-th compenent of yt. Accordingly,

the state space equation is

xrt = Arxrt−1 + Brεt, (17)

where

Ar =


× × × × × 0
× × × × × 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

 ,Br =


b1
b2
0
0
0
0

 . (18)

The first two rows of Ar are [Ã1 Ã2 Ã3]. Note that the
process yrt can be obtained only by considering the first two
rows of the equation (17).

yrt =

[
y

(1)
t

y
(2)
t

]
+

[
b1
b2

]
εt = Ã1y

r
t−1+Ã2y

r
t−2+Ã3y

r
t−3+b̄εt,

(19)
where b = [bT1 bT2 bT3 ]T , b̄ = [bT1 bT2 ]T , b = [b̄T b̂T ]T . For
future reference, we note that of the 15 parameters appearing
in the Ai, only 10 appear in Ar. We will first deal with their
identification.

Since there still exists a zero column in Ar we can further
reduce the state. Thus, we define

xrt =


y

(1)
t

y
(2)
t

y
(1)
t−1

y
(2)
t−1

y
(1)
t−2

 , (20)

and the related state space model will be of the form

xrt = Arxrt−1 + Brεt, (21)

where

Ar =


× × × × ×
× × × × ×
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

Br =


b1
b2
0
0
0

 . (22)

The first two rows of Ar are [Ă1Ă2Ă3] and there holds:

yrt = [Ă1Ă2Ă3]xrt−1 + bεt. (23)
Consider the generalized version of equation (23) for the

AR(p) case:

yrt = [Ă1 Ă2 . . . Ăp]x
r
t−1 + bεt. (24)

We also need to generalize the state space equation (21);
thus, with a slight abuse of notation we define the state space
model associated with (24) as:

xrt = Arxrt−1 + Brεt. (25)

Then using the same procedure introduced in Subsection
III-A, one can obtain the matrix below associated with the
system (24)(the matrix Kr is defined below)

Zr
f

= [Kr ArKr . . . Ap(n−s1)−s2−1

r Kr], (26)

where s1 is the number of prescribed zero columns in
A(q) and s2 is the number of prescribed zero columns in
Ar.Since not all elements of yrt are available at all times,
we consider those components of yrt that are observed at
every time instant i.e. the fast components, denoting the
associated vector by yr

f

t and then Kr = E[xrt (y
rf

t )T ]. It
is apparent that the parameters in Ai can be determined if
the matrix Zr

f

has full row rank. Similar to Subsection III-
B we are interested in generic identifiability. We follow the
same definition of generic identifiability, but the parameter
space is now associated with (24).

The following result can be proved in a similar way as
Theorem 3.5 and with some slight changes to the argument
provided in the Subsection III-B.1.

Proposition 4.3: The matrix Zrf has full row rank for a
set of generic parameter matrices Ăi, i = 1, 2, . . . , p.

Thus, from the above proposition, it readily follows that
the parameter matrices Ăi are generically identifiable from
those population second moments which can be observed in
principle.
Now similarly to the previous section, we study the generic
identifiability of the noise parameters associated with the
system (24). Let Σ be the noise covariance matrix corre-
sponding to b. Then using a similar argument as in the proof
of Theorem III-B.2, one can prove that Σ is generically
identifiable from those population second moments which
can be observed in principle.
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In the rest of this paper, we show how to obtain those
system and noise parameters associated with the suppressed
parts of the process yt due to having columns with zero
degree in A(q). (In the previous example, there are 5 such
parameters appearing the last rows of the Ai).

Proposition 4.4: Suppose that those columns of A(q) with
zero column degree are only associated with fast components
of the process and we denote these components by yr̄t .
Then the system and noise parameters associated with yr̄t ,
called (Â1, Â2, . . . , Âp) and b̂bT respectively, are generically
identifiable via regression.

Proof: We are starting from

yr̄t = [Â1, Â2, . . . , Âp]x
r
t−1 + b̂εt, (27)

where yr̄t contains all those components of yt which we
deleted when forming yrt and Âi is obtained from Ai by
deleting all prescribed zero columns and taking only the rows
associated with yr̄t , b̂ consists of the rows b corresponding to
the components of yr̄t . xrt−1 is the vector of all components
of (yt−1, . . . , yt−p) which do not correspond to zero columns
in A(q). We first obtain the system parameters Âi.

E
[
yr̄t x

rT
t−1

]
= [Â1, Â2, . . . , Âp]E

[
xrt−1x

rT
t−1

]︸ ︷︷ ︸
Γ
r

+b̂E
[
εtx

rT
t−1

]︸ ︷︷ ︸
0

.

(28)
The matrix Γ

r
is generically nonsingular, which can be seen

as follows. Because of the stability assumption, we have that
E
[
xrt−1x

rT
t−1

]
= Γr =

∑∞
j=0AjrBrBTr AjTr . As easily seen

for Γ
r

there similarly holds

Γ
r

=

∞∑
j=0

Aj
rBrB

T
r A

jT
r = (Br,ArBr,A

2
rBr, . . . )


BT

r

BT
r A

T
r

BT
r A

2T
r

...

 .

(29)
Now the reachability matrices on the right hand side are of

full rank since we showed in Subsection III-B.1 Theorem
3.2 that generically (Ar,Br) is reachable. Hence, Γ

r
is

generically full rank, so we have shown generic identifiability
of (Â1, Â2, . . . , Âp).

It is left to show that the missing elements of Σ, viz. b̂bT

are generically identifiable. By postmultiplying both sides of
(27) by yt and taking expectations we obtain

E
[
yr̄t y

T
t

]
= [Â1 Â2 . . . Âp]E

[
xrt−1y

T
t

]
+ b̂E

[
εty

T
t

]︸ ︷︷ ︸
b̂bT

,
(30)

where we (generically) know all the covariances in
E
[
xrt−1y

T
t

]
, which can be easily seen when we split yt into

yrt and yr̄t . Thus, the term b̂bT becomes available.

V. CONCLUSIONS

In this paper, we have built on our work in [2] and have
demonstrated that vector autoregressions with prescribed
column degrees are generically identifiable on a restricted
parameter space from covariance data in which significant

information is missing, corresponding to the fact that some
system outputs are not available every time instant. We
were considering two cases. In case 1, we assumed to be
prescribed nonzero unequal column degrees and we showed
generic identifiability of the system and noise parameters.
Then we showed generic identifiability for the case of zero
column degrees by dividing the problem into two steps:
In step 1 we only treated the subsystem of components
corresponding to column degrees unequal to zero which
had exactly the form of a system considered in case 1
and therefore had generic identifiability of this subsystem.
Then we obtained the system parameters corresponding to
components with zero column degree by regression and
the noise parameters by taking expectations. Here, we only
considered the scenario where those columns with zero
degree are only associated with the fast part of process. Thus,
as a part of our future works we will study a general scenario
where columns with zero degree can be either associated with
the fast part of the process or the slow part or both.
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