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Balancing time-varying demand-supply in distribution

networks: an internal model approach

Claudio De Persis∗

Abstract

The problem of load balancing in a distribution network under unknown time-
varying demand and supply is studied. A set of distributed controllers which regulate
the amount of flow through the edges is designed to guarantee convergence of the solu-
tion to the steady state solution. The results are then extended to a class of nonlinear
systems and compared with existing results. Incremental passivity and internal model
are the main analytical tools.

1 Introduction

Cooperative control systems have been widely investigated in a variety of different contexts
[16, 12, 15, 3]. Less attention has been devoted to cooperative control in the framework of
dynamical flow networks, with some interesting exceptions [9, 6, 8, 7, 17, 5]. The aim of
this paper is to study a class of cooperative control algorithms in the context of distribution
networks under exogenous inputs.
Main contribution. We analyze and design distributed controllers at the edge which achieve
load balancing in the presence of time-varying demand and supply (exogenous signals). The
role of internal model and incremental passivity is investigated for the problem at hand.
Similar tools have been used for controlled synchronization and leader-follower formation
control in e.g. [18, 3, 15, 10] and references therein. We address a different problem and we
tackle it in a novel way. The load distribution problem is then considered for a more general
class of systems and this allows us to make a comparison with the results of [2] and [9].

Literature review. The literature on the control of flow or distribution networks is wide
and multi-disciplinary. Here we restrict ourselves to a very small portion of it, focusing on a
model which takes into account the amount of stored material at the nodes and mass balance.
This class of systems has been used to model data networks [13] and supply chains [1] for
instance. Our paper focuses on the problem of stabilizing the flow network to a steady state
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9747 AG Groningen, The Netherlands, c.de.persis@rug.nl and Department of Computer, Control and
Management Engineering, Sapienza Università di Roma, Italy. This research is partially supported by an
FWN starting grant.
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solution in the presence of exogenous time-varying demand and supply under the scenario in
which the controllers aim at a uniform distribution of the material among the nodes. This is
a problem which has attracted considerable attention in the area of parallel and distributed
computation [16] and has been recently reconsidered for instance in [5] where input and state
constraints have been taken into account and a connection with [12] has been established.
The work [5] did not consider the presence of external inputs. A large amount of work on
the topic of flow control in the presence of disturbances has been carried out in works such
as [6, 8, 7] where the problem is cast in the robust control framework. The approach in
our paper is based on the theory of output regulation and to the best of our knowledge this
has not been considered before. A similar problem has been tackled in [17] but the authors
restrict themselves to the class of constant disturbances.

The organization of the paper is as follows. The class of systems under study is introduced
in Section 2, the design of the edge regulators is carried out in Section 3 and the extension
to a class of nonlinear system in Section 4. The conclusions are discussed in the last section.

2 Distribution networks and demand supply balancing

Consider the system
ẋ = Bλ+ Pd (1)

with x ∈ R
n the state, λ ∈ R

m the control vector and d ∈ R
q, q ≤ n, a disturbance vector.

The (n × m) matrix B is the incidence matrix of an undirected graph G = (V,E) where
|V | = n, |E| = m. The ends of the edges of G are labeled with a ‘+’ and a ‘-’. Then

bik =







+1 i is the positive end of k
−1 i is the negative end of k
0 otherwise

The system above is a simple model of a flow network [6] and it has been used also to
model data networks [13] and supply chains [1]. The state xi ∈ R, i ∈ I := 1, 2, . . . , n
represents the quantity of material stored at the node i, λk ∈ R, k = 1, 2, . . . , m the flow
through the edge k. The disturbance dj ∈ R represents the inflow or the outflow at some
node.
The available measurements are the differences among the quantities stored at the nodes
namely, z = BTx.
We assume that each disturbance dj is supposed to be generated by the exosystem

ẇj = Sd
jwj

dj = Γd
jwj , j = 1, . . . , q,

where wj ∈ R
pj is the state of the exosystem which describes the evolution of the in-

flow/outflow j and Γd
j , S

d
j are suitable matrices. Considering more general classes of ex-

osystems is left for future research. We give the system above the compact form

ẇ = Sdw
d = Γdw,

(2)
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where w = (wT
1 . . . w

T
q )

T , d = (dT1 . . . d
T
q )

T , Sd = block.diag(Sd
1 , . . . , S

d
q ), Γ

d = block.diag(Γd
1, . . . ,Γ

d
q).

The model (1) and the overall exosystem (2) return the closed-loop system

ẇ = Sdw
ẋ = Bλ+ Pw
z = BTx

(3)

where by a slight abuse of notation we renamed PΓd simply as P .
We are interested in the problem of distributing the cumulative imbalance of the network

due to the in- and out-flow among the nodes. More formally the problem at hand is as
follows:
Load balancing at the nodes Find distributed dynamic feedback control laws

η̇k = Φkηk + Λkzk
λk = Ψkηk + Γkzk, k = 1, . . . , m

(4)

such that, for each initial condition (w0, x0, η0), the solution of the closed-loop system (3),
(17) satisfies limt→+∞ z(t) = 0.

In what follows we propose a solution to the problem.

3 Design of regulators at the edges

We focus on flow networks whose underlying graph satisfies the following standing assump-
tion:

Assumption 1 The graph G is connected.

The first result concerns the characterization of a “steady state” solution to the problem:

Lemma 1 Let Assumption 1 hold. For each w solution to ẇ = Sdw, if there exist a function
λw : R+ → R

m and a continuously differentiable function xw : R+ → R
n solution to

ẋw = Bλw + Pw (5)

and
0 = BTxw (6)

then

xw = 1nx
w
∗
, ẋw

∗
=

1T
nPw

n
(7)

and λw =Mw, for some matrix M. If the graph is a tree, then the matrix M is unique.

Proof: From Assumption 1 and (6), one obtains that xw = 1nx
w
∗
, for some function

xw
∗
: R+ → R. Replacing the expression of xw in (5) one has

1nẋ
w
∗
= Bλw + Pw, (8)
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As N (BT ) = R(1n), with N ,R the null space and the range of a matrix, multiplying on

the left both sides of (8) by 1T
n yields ẋw

∗
= 1

T
nPw

n
as claimed. Replace the latter in (8) to

obtain Y Pw = Bλw, Y = 1n
1
T
n

n
− In. By Assumption 1 and without loss of generality (up to

a relabeling of the edges of the graph), Bλw = Baλ
w
a + Bbλ

w
b with Ba full-column rank and

λwa ∈ R
n−1. If a solution λwa to Y Pw = Bλw exists, then λwa = (BT

a Ba)
−1BT

a (Y Pw −Bbλ
w
b ).

Letting λwb = 0 one obtains λwa =Maw, with Ma = (BT
a Ba)

−1BT
a Y P .

If G is a tree, then B is full-column rank and λw = (BTB)−1BTY Pw.
In what follows, we assume that a solution to (5), (6) exists. Moreover, if m > n − 1,

then without loss of generality we assume that the first n − 1 columns of B are linearly
independent and we let the last m− n+ 1 components of λw be identically zero.

Remark 1 From (7), by integration, one has

xw(t) = 1n

(

xw
∗
(0) +

∫ t

0

1T
nPw(s)

n
ds

)

.

Observe that xw depends on the initial condition and strictly speaking cannot be referred
to as a steady state solution. Bearing in mind the interpretation of (1) as a flow network

and of Pw the vector of the inflows and outflows of the network, the integral
∫ t

0
1
T
nPw(s)

n
ds

can be seen as the cumulative imbalance of the network. In other words, if for any given w
a solution to the load balancing problem exists, then the state at each node equals – up to
a constant – the cumulative imbalance of the network.
In the case of a network with no imbalance, i.e. 1T

nPw(t) = 0 for all t ≥ 0, xw is a constant
vector.

Example 1 Consider the graph depicted in Fig. 1. The graph corresponds to system (1)
with

B =





−1 0 1
1 −1 0
0 1 −1



 , P =





1 0
0 −1
0 0





The solutions of (5)-(6) (with w = d) are as follows

ẋw
∗

= d1−d2
3

λw1 = λw3 + 2d1+d2
3

λw2 = λw3 + d1−d2
3
.

A solution is obtained letting λw3 = 0.

We introduce now a system which generates the control signal λw in Lemma 1. Consider
the input λwk associated with the edge k, with k = 1, 2, . . . , m. In general, such input may
depend on all the components of the disturbance vector w. Hence, to generate λwk , the
following system is proposed:

η̇k = Sdηk
uk = Hkηk

(9)

The statement below is immediate.
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Figure 1: The distribution network considered in the Example 1.

Lemma 2 For any w solution to ẇ = Sdw, there exists a solution ηwk to (9) such that
Hkη

w
k (t) = λwk (t) for all t ≥ 0, where λwk is the kth entry of λw in Lemma 1.

Proof: Choose w(0) as the initial condition of (9), then ηk(t) = w(t) for all t ≥ 0. As
λw = Mw, then it suffice to choose Hk as the kth row of M to have Hkη

w
k (t) = Hkw(t) =

λwk (t) for all t ≥ 0.

Remark 2 From the proof of Lemma 1 it turns out that m− n + 1 components of λw can
be chosen identically zero. The matrices Hk corresponding to these components are then
identically zero as well. Hence, for k = n, n + 1, . . . , m, the system (9) reduces trivially to
uk = 0.

The system (9) is completed by adding control inputs vk1, vk2 to be designed for guaran-
teeing that the response of the closed-loop system converges to the desired response for x.
Hence, we set

η̇k = Sdηk + vk1
uk = Hkηk + vk2, k = 1, 2, . . . , n− 1

(10)

with ηk, vk1 ∈ R
q, vk2 ∈ R, and uk = vk2 for k = n, n+ 1, . . . , m.

We write (10) in the form
η̇ = Sη + v1
λ = Hη + v2

(11)

where η = (ηT1 η
T
2 . . . η

T
n−1)

T , S = In−1 ⊗ Sd, where ⊗ denotes the Kronecker product, and

H =

(

H1

0

)

, H1 = block.diag(H1, . . . , Hn−1).

Observe that by Lemma 2, for any w and provided that v1 = 0, v2 = 0, there exists a
solution ηw to (11) which satisfies

η̇w = Sηw

λw = Hηw
(12)

Theorem 1 Consider the system (1), where B is the incidence matrix of a graph G and d
is a disturbance generated by the system (2).
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Under Assumption 1, provided that Sd
j is skew symmetric for each j = 1, 2, . . . , q, the

dynamic feedback controller (11) with v1 = −H
T
BTx and v2 = −BTx, namely

η̇ = Sη −H
T
BTx

λ = Hη −BTx
(13)

guarantees boundedness of the state of the closed-loop system and asymptotic convergence of

x(t) to 1n(c
′ +

∫ t

0
1
T
nPw(s)

n
ds) for some constant c′.

Proof: Consider the overall closed-loop system

ẇ = Sdw
ẋ = B(Hη + v2) + Pw
η̇ = Sη + v1
z = BTx

Introduce the new variables x̃ = x− xw, η̃ = η − ηw. These satisfy

˙̃x = B(Hη + v2) + Pw −Bλw − Pw

= BHη̃ +B(Hηw − λw) +Bv2
= BHη̃ +Bv2

and
˙̃η = Sη + v1 − Sηw

= Sη̃ + v1.

Introduce the Lyapunov function V (x̃, η̃) = 1
2

(

x̃T x̃+ η̃T η̃
)

. The function V computed along
the solutions of system

˙̃x = BHη̃ +Bv2
˙̃η = Sη̃ + v1

(14)

satisfies V̇ (x̃, η̃) = x̃T (BHη̃+Bv2)+η̃
T (Sη̃+v1). Under the assumption of the skew-simmetry

of S, one obtains V̇ (x̃, η̃) = x̃TBHη̃ + x̃TBv2 + η̃Tv1. Set

v1 = −H
T
BT x̃, v2 = −BT x̃. (15)

Observe that by the connectivity of the graph and the definition of x̃, v1 = −H
T
BTx and

v2 = −BTx. Then V̇ (x̃, η̃) = −||BT x̃||2. Hence, (x̃, η̃) is bounded. By La Salle’s invariance
principle and connectivity of the graph, the solutions to (14) converge to the largest invariant
set contained in {(x̃, η̃) : BT x̃ = 0} = {(x̃, η̃) : x̃ ∈ R(1n)}.
Observe that the system (14) with the inputs v as in (15) becomes

˙̃x = −BBT x̃+BHη̃
˙̃η = Sη̃ −H

T
BT x̃

(16)
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On this invariant set the system (16) satisfies

˙̃x = BHη̃
˙̃η = Sη̃
0 = BT x̃.

Hence, x̃ = 1nx̃∗. Replacing this expression in the equation for x̃ and pre-multiplying both
sides by 1T

n , one obtains ˙̃x∗ = 0, that is x̃∗ is a constant. Hence x̃ = x− xw → 1nc for some
constant c. Bearing in mind the expression of xw obtained in Lemma 1, then one concludes

that x(t) → 1n(c
′ +

∫ t

0
1
T
nPw(s)

n
ds) for some constant c′.

Remark 3 In the case of balanced demand/supply, the state x(t) converges to 1nc
′ for

some constant c′. Observe that 1T ẋ = 0, that is 1Tx(t) = 1Tx(0). Hence, 1Tx(0) =

limt→∞ 1Tx(t) = nc′ implies that x(t) converges to 1n
1
Tx(0)
n

. Hence under the effect of a time-
varying but balanced demand/supply all the components of the state x(t) asymptotically
converge to the average of the initial distribution of material at the nodes.

Bearing in mind the block diagonal nature of the matrices S, H and the definition
z = BTx, the dynamic feedback controller (13) can be decomposed as the following set of
dynamic feedback controllers at the edges:

η̇k = Sdηk −HT
k zk

λk = Hkηk − zk, k = 1, 2, . . . , n− 1
(17)

which only requires the knowledge of the difference between the quantities stored at the two
nodes connected by the edge. As such the proposed controller (13) is fully distributed and
solves the load balancing problem formulated in Section 2, with Φk = Sd,Λk = −HT

k ,Ψk =
Hk,Γk = −1. By Remark 2, for k = n, n + 1, . . . , m for which Hk = 0 the edge controller
becomes a static one, i.e. λk = −zk.

Example 1 (Cont’d) Assume that d1 = α + β sin(ωt + ϕ), with α > β > 0 and d2 = α.
The supply is a periodic fluctuation around a constant value while the demand is a constant.
Then the matrices Sd and Γd in (2) write as

Sd =





0 0 0
0 0 ω
0 −ω 0



 , Γd =

(

1 1 0
1 0 0

)

.

Let λw3 = 0. Then, for k = 1, 2, the matrices Hk which allow to reproduce λwk are

H1 =
(

2
3

1
3

0
)

, H2 =
(

1
3

−1
3

0
)

Then the controllers at the edges 1 and 2 are given by (17) with Sd and Hk as above and

z1 = −x1 + x2, z2 = −x2 + x3.

The controller at edge 3 is the static control law λ3 = −z3 = −(x1 − x3).

7



Remark 4 (Passivity-based reinterpretation) The proof of Theorem 1 can be reinter-
preted as follows. In view of Lemma 1, the system

˙̃x = Bλ̃
z = BT x̃

is the incremental model associated with system (1). Similarly, by Lemma 2, system

˙̃η = Sη̃ +H
T
ṽ

ũ = Hη̃,

where ũ = u − uw and uw := Hηw, is the incremental model associated with the internal
model

η̇ = Sη +H
T
v

u = Hη

The systems are passive with respect to the storage functions V1(x̃) =
1
2
x̃T x̃ and V2(η̃) =

1
2
η̃T η̃

provided that Sd is skew symmetric. The negative feedback interconnection of the two
systems, namely

λ̃ = λext − ũ
ṽ = uext + z,

is passive as well from the input (λext, uext) to the output (z, ũ). The output feedback

(

λext
uext

)

= −

(

K 0
0 0

)(

z
ũ

)

gives asymptotic convergence of the closed-loop system to the largest invariant set where
z = 0.

We discuss briefly the difficulties related to the presence of possible state and input
constraints.
State constraints. Consider a variation of the model (1) in which the positivity constraint
on the amount of material stored at the nodes is enforced. The model becomes

ẋ = (Bλ+ Pw)+x

where (biλ+ piw)
+
xi

is the ith component of the vector (Bλ+ Pw)+x and

(ζi)
+
xi
=

{

ζi if (xi > 0) or (i = 0 and ζi ≥ 0)
0 if (xi = 0 and ζi < 0)

We consider the special case of balanced demand and supply, i.e. 1T
nPw = 0. As a conse-

quence, Pw = −Bλw and
ẋ = ˙̃x = (Bλ̃)+x .
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The function V1(x̃) =
1
2
x̃T x̃, with x̃ = x− 1xw

∗
and xw

∗
> 0, satisfies

V̇1(x̃) = x̃T (Bλ̃)+x .

Observe that x̃T (Bλ̃)+x =
∑n

i=1 x̃i(biλ̃)
+
xi
= x̃T (Bλ̃). This shows that the system

˙̃x = (Bλ̃)+x
z = BT x̃

is passive and the arguments of the previous remark can be used. A formal analysis requires
to take into account the discontinuity of the system. This is not pursued here for lack of
space.

Edge capacity constraints. Constraints on the capacity of the edges can be modeled via a
saturation function replacing λ in (1) with sat(λ). Here, sat(λ) = (sat(λ1) . . . sat(λm))

T and
sat(λk) = min{|λk|, c}sign(λk). Following Lemma 1, let xw, λw be such that

ẋw = Bsat(λw) + Pw

and M such that sat(λw) = Mw. For the problem to be feasible restrict the set of initial
conditions w0 of the exosystem ẇ = Sdw in such a way that ||Mw(t)||∞ < c for all t ≥ 0
([11]). Consider the incremental model

˙̃x = B[sat(λ)− sat(λw)]
= Bsat(λ)− BMw

To tackle the problem, we assume the scenario in which at each edge a dynamic observer
provides ŵ that converges to w asymptotically (or at each edge k there exists an estimator
which generates a local estimate ŵk of w). Consider then the control input

λ = −µ(BTx) +Mŵ
= −µ(BT x̃) +Mŵ,

where µ : R
m → R

m is a map such that each component is a monotonically increasing
function which is zero at the origin. The incremental model writes as

˙̃x = Bsat(−µ(BT x̃) +Mŵ)− BMw
= Bsat(−µ(BT x̃) +Mw +M(ŵ − w))−BMw.

The right-hand side is bounded and the solutions exists for all t ≥ 0. Suppose that each
component of µ is a function whose range is within [− c

4
, c
4
]. Then after a finite time,

sat(−µ(BT x̃) + Mw + M(ŵ − w)) = −µ(BT x̃) + Mw + M(ŵ − w) and the incremental
model evolves as

˙̃x = −Bµ(BT x̃) +BM(ŵ − w).

Consider the projected state y = Qx̃, where Q is an (n− 1)× n matrix such that Q1n = 0,
QQT = In−1 and QTQ = In − 1n1

T
n/n. It yields

ẏ = −QBµ(BTQTy) +QBM(ŵ − w).

9



The unforced system has a globally asymptotically stable equilibrium1; moreover the forcing
term is decaying to zero. Since the response of the system is bounded then the state y
converges to the origin which implies that x̃ converges to R(1n). Then one can proceed as
in the last part of the proof of Theorem 1. The proposed solution relies on the existence of
distributed estimators for w, whose actual design is left as a topic for future research.

4 Flow networks with nonlinear dynamics at the nodes

In the previous section, the dynamics describing the evolution of the storage variable at each
node was given by

ẋi = biλ+ piw, i = 1, 2, . . . , n (18)

where bi and pi are the ith row of the incidence matrix B and P respectively. Consider
now a different case of a flow network in which the way material accumulates at the node is
described by a non-trivial dynamics, namely

ẋi = fi(xi) + biλ+ piw, i = 1, 2, . . . , n (19)

with vector of measurements yi ∈ R
m given by

yi = bTi xi.

The nonlinear system (19) allows us to put the results of the paper in a broader context
and compare them with those in [2], [9] (see the end of the section). Observe that for
k = 1, 2, . . . , m, yik is either xi, −xi or 0. The sum of the outputs yi over all the nodes
returns the vector of relative measurements z,

z = BTx =

n
∑

i=1

yi.

Each system
ẋi = fi(xi) + biλ+ piw
yi = bTi xi, i = 1, 2, . . . , n

(20)

is assumed to be incrementally passive.

Assumption 2 There exists a regular2 storage function Vi : R× R× R+ → R+ such that

∂Vi
∂t

+
∂Vi
∂xi

(fi(xi) + biλ+ piw)+

∂Vi
∂x′i

(fi(x
′

i) + biλ
′ + piw) ≤ (yi − y′i)

T (λ− λ′).

1Take V (y) = yT y

2
; then V̇ (y) ≤ 0 and V̇ (y) = 0 is identically zero if and only if BTQT y = 0. This

implies that y = 0. In fact if this were not true, that is BTQT y = 0 and y 6= 0, then QBBTQT y = 0 as well
and this would contradict that y 6= 0 since QBBTQT is a non singular matrix.

2See [14] for a definition.
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Remark 5 (A class of incrementally passive systems) Consider the linear dynamics
at the node (18) and the function Vi =

1
2
(xi−x′i)

2. Then the right-hand side of the inequality
above becomes

(xi − x′i)(biλ+ piw)− (xi − x′i)(biλ
′ + piw)

= (xi − x′i)bi(λ− λ′)
= (bTi (xi − x′i))

T (λ− λ′)
= (yi − y′i)

T (λ− λ′)

which satisfies the dissipation inequality in Assumption 2.
Suppose that the dynamics fi are equal to ∇Fi, with Fi a twice continuously differentiable
and concave function. Then the static nonlinearity −fi(xi) is incrementally passive, that is

(xi − x′i)(fi(xi)− fi(x
′

i)) ≤ 0.

As a matter of fact fi(xi)− fi(x
′

i) = ∇Fi(xi)−∇Fi(x
′

i) = ∇2Fi(ξi)(xi −x′i) for some ξi lying
in the segment connecting xi, x

′

i. By concavity, ∇2Fi(ξi) ≤ 0 and therefore (xi −x′i)(fi(xi)−
fi(x

′

i)) ≤ 0. Hence any system (20) with fi(xi) = ∇Fi(xi) and Fi defined as before satisfies
Assumption 2.

Lemma 1 is replaced by the following:

Lemma 3 For each i = 1, 2, . . . , n, for each w solution to ẇ = Sdw, there exist a function
λw : R+ → R

m and continuously differentiable bounded functions xwi : R+ → R that satisfy

ẋwi = fi(x
w
i ) + biλ

w + piw, i = 1, 2, . . . , n

0 =

n
∑

i=1

bTi x
w
i

(21)

only if there exists a solution xw
∗
: R+ → R defined for all t ≥ 0 to

ẋw
∗
=

1T
nf(x

w
∗
)

n
+

1T
nPw

n
, (22)

where f(x) = (f1(x) . . . fn(x))
T . If this is the case, then

xwi = xw
∗
, i = 1, 2, . . . , n,

λw =

(

λwa
λwb

)

=

(

M1f(x
w
∗
) +M2w
0

)

with λwa ∈ R
n−1, λwb ∈ R

m−n+1, and M1,M2 suitable matrices.

Proof: The second equality in (21) and Assumption 1 implies that xwi = xw
∗
for all i.

Replacing the latter in the first equality implies that necessarily xw
∗
must be a solution of

the inhomogeneous differential equation

ẋw
∗
=

1T
nf(x

w
∗
)

n
+

1T
nPw

n
.

11



Suppose that a solution xw
∗
exists for all t and let xwi = xw

∗
for each i. Then the second

equation in (21) is satisfied by the connectivity of the graph and the properties of the
incidence matrix. Since xwi = xw

∗
for all i, it is seen that the first equation in (21) is satisfied

if and only if there exists λw such that

Y [f(xw
∗
)− Pw] = Bλw, with Y =

1n1
T
n

n
− In.

By connectivity of the graph, the rank of B is n−1. If the graph has n−1 edges (i.e. it is a
tree), then B is full-column rank and, provided that a solution λw to the previous equation
exists, it is given by λw = (BTB)−1BTY (f(xw

∗
) − Pw). If the graph has more than n − 1

edges, then without loss of generality (up to a relabeling of the edges of the graph) we can
partition B as (Ba Bb)

T with Ba full-column rank. Then, provided that a solution to the
previous equation exists, it is given by λwa = (BT

a Ba)
−1BT

a [Y (f(xw
∗
) − Pw) − Bbλ

w
b ]. One

particular solution is obtained for λwb = 0 and λwa = (BT
a Ba)

−1BT
a Y (f(x

w
∗
)− Pw).

Remark 6 If the inflow and outflow are balanced, i.e. 1T
nPw = 0, then the solution xw

∗
to

(22) exists for all t and is bounded. In fact, consider the system

ẏ =
1T
nf(y)

n

and the radially unbounded function V (y) = 1
2
y2. Then

V̇ (y) = y
1T
nf(y)

n
=

n
∑

i=1

yfi(y)

n
.

By the incremental passivity property of −fi, yfi(y) ≤ 0 for all i and this implies V̇ (y) ≤ 0.
Hence every solution to the system above is bounded and so is xw

∗
.

Remark 7 In the case the dynamics at the nodes are all the same, i.e. fi = fj for all i, j,
then the expression of λw simplifies as

λw =

(

λwa
λwb

)

=

(

M2

0

)

w.

This descends from the proof, since by definition of the matrix Y , Y f(xw
∗
) = 0.

In the remaining of the section we assume that a solution to (21) exists.
The parallel interconnection of the n subsystems (20) with input λ and output z =

∑n

i=1 yi
returns an incrementally passive systems. Formally

Lemma 4 The parallel interconnection

ẋ1 = f1(x1) + b1λ+ p1w
. . .

ẋn = fn(xn) + bnλ+ pnw

z =

n
∑

i=1

bTi xi,
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denoted as
ẋ = f(x) +Bλ+ Pw
z = BTx

(23)

is such that the storage function V (x, x′) =
∑n

i=1 Vi(xi, x
′

i) satisfies

∂V

∂x
(f(x) +Bλ+ Pw) +

∂V

∂x′
(f(x′) +Bλ′ + Pw)

≤ (z − z′)T (λ− λ′).

The proof is straightforward and is omitted. Consider now systems of the form

η̇k = φk(ηk, vk)
uk = ψk(ηk), k = 1, 2, . . . , n− 1,

(24)

with the following two additional properties:

Assumption 3 For each k = 1, 2, . . . , n− 1, there exists regular functions Wk(ηk, η
′

k) such
that

∂Wk

∂ηk
φ(ηk, vk) +

∂Wk

∂η′k
φ(η′k, v

′

k) ≤ (uk − u′k)(vk − v′k).

Assumption 4 For each k = 1, 2, . . . , n − 1, for each w solution to ẇ = Sdw, there exists
a bounded solution ηwk to η̇k = φk(ηk, 0) such that λwk = ψk(η

w
k ).

Assume that the system

η̇wka =
1T
nf(η

w
ka)

n
+

1T
nPη

w
kb

n
η̇wkb = Sdηwkb

is forward complete. Initialize the system as ηwka(0) = xw
∗
(0) and ηwkb(0) = w(0). Then

ηwka(t) = xw
∗
(t) and ηwkb(t) = w(t) for all t ≥ 0. Hence λwk = M1kf(ηka) + M2kηkb, k =

1, 2, . . . , n − 1, where M1k and M2k are the kth rows of M1 and M2 respectively. On the
other hand, λwk = 0, k = n, n+ 1, . . . , m. An expression for φk, ψk, k = 1, 2, . . . , n− 1 is

φk(ηk, 0) =





1T
nf(ηka)

n
+

1T
nPηkb
n

Sdηkb



 ,

ψk(ηk) =M1kf(ηka) +M2kηkb.
In the special case of nodes with the same dynamics (fi = fj = f̄ for all i, j) ψk(ηk) simplifies
as M2kηkb and a system that satisfies Assumptions 3 and 4 is

η̇k = Sdηk +MT
2kvk

uk = M2kηk,

13



with storage function Wk(ηk) = 1
2
ηTk ηk. Collect the systems (24) into a system with state

variable η = (ηT1 . . . η
T
n−1)

T , input v = (v1 . . . vm)
T and output u = (u1 . . . um)

T , namely

η̇ = Φ(η, v)
u = Ψ(η)

(25)

with Φ(η, v) = (φT
1 . . . φ

T
n−1)

T , Ψ(η) = (ψ1 . . . ψn−1 0
T )T . The system is incrementally passive

from v to u with storage function W (η, η′) =
∑n−1

k=1 Wk(ηk, η
′

k).
The following holds:

Theorem 2 Let Assumptions 1-4 hold. Suppose that a solution to (21) exists and xw
∗

is
bounded. Consider the systems (23), with input λ and output z, and (25), with input v and
output u, interconnected via the relations v = −z + vext, λ = u+ λext.
The interconnected system is incrementally passive from the input (λText v

T
ext)

T to the output
(zT uT )T . Moreover, the feedback (λText v

T
ext)

T = (−KzT 0T )T , with K a positive definite
diagonal matrix, guarantees limt→+∞ z(t) = 0.

Proof: The feedback interconnection of incrementally passive systems is incrementally
passive ([14], Lemma 1). Hence

ẋ = f(x) +Bλ+ Pw
z = BTx

η̇ = Φ(η, v)
u = Ψ(η)

λ = u+ λext
v = −z + vext

is incrementally passive from the input (λText v
T
ext)

T to the output (zT uT )T . The storage
function U is given by the sum V + W where V,W are the functions defined above (in
Lemma 4 and after (25), respectively).
Let λext = −Kz, vext = 0. The system becomes

ẋ = f(x) +B(Ψ(η)−KBTx) + Pw
η̇ = Φ(η,−z)
z = BTx

For a given solution w to ẇ = Sdw, let xw, λw be as in Lemma 3 and ηw as in Assumption 4.
The functions xw and ηw are a solution to the equations above with input (λText v

T
ext)

T = 0
and output (zT uT )T = (0TλwT )T . In fact

ẋw = f(xw) +BΨ(ηw) + Pw
= f(xw) +Bλw + Pw

η̇w = Φ(ηw, 0)
0 = BTxw.

14



As in [14], by the incremental passivity of the feedback system and the existence of a solution
(xw, ηw) of the feedback system such that z(t) = 0, any other solution (x, η) with input
(λText v

T
ext)

T = (−KzT 0T )T satisfies

V̇ ((x, η), (xw, ηw)) ≤

((zT uT )− (0T λwT ))

(

−Kz(t)
0

)

= −zTKz.

Bearing in mind the regularity of U and boundedness of xw, this yields boundedness of x.
In view of the time-varying nature of the system, to infer convergence of z to zero, one can
resort to Barbalat’s lemma. This guarantees convergence under the assumption that ż is
bounded. This in turn requires ẇ bounded, which is the case here since S is skew symmetric.

Corollary 1 If (i) fi = f̄ for all i = 1, 2, . . . , n, (ii) there exists a twice continuously
differentiable convex function F (x) such that ∇F (x) = f̄(x) and (iii) 1T

nPw = 0 for all
t ≥ 0, then the controllers

η̇k = Sdηk −MT
2kzk

λk = M2kηk − zk, , k = 1, 2, . . . , n− 1,

and λk = −zk, k = n, n+ 1, . . . , m, guarantee limt→+∞ z(t) = 0.

The closed-loop system given in the corollary above takes the form

ẋ = ∇F (x) +Bλ + Pw, z = BTx
η̇ = Sη −MT

2 z, λ = M2η − z ,

where we are assuming that m = n − 1 for the sake of simplicity. This system can be
compared with similar ones appeared in the recent literature ([2], [9]), where models of the
form

ẋ = ∇F (x) +Bλ, z = BTx
η̇ = z, λ = −ψ(η)

with ψ a non-decreasing monotonic non-linearity (such as a saturation function), were stud-
ied. The presence of the non-trivial dynamics S in our controller is due to the time varying-
nature of the external input. In [2], ∇F (x) has a unique equilibrium at the origin and the
system ẋ = ∇F (x) + Bλ is strictly passive. In [9] it is shown that if the components of
the vector field ∇F (x) have different equilibria, ∇F (x) is strongly concave and ψ introduces
saturation constraints, then the system’s response exhibits state clustering.

5 Conclusions

We have presented an internal model approach to the problem of balancing demand and
supply in a class of distribution networks. Extensions to nonlinear systems have also been
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discussed. Further research will focus on a detailed investigation of state and input con-
straints and more complex models of demand and supply. The fulfillment of the internal
model principle has to be understood for more general classes of nonlinear systems than
those in Corollary 1. This will shed light on the relation between the results in this paper
and the saddle-point perspective of [9]. Compared with other papers where the robustness
to time-varying inputs is studied using a frequency domain approach ([4]), our state space
approach allows us to consider more general classes of cooperative control systems.
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