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A Detailed Study on a DC-Voltage-Based Control Scheme Using a
Multi-Terminal HVDC System for Frequency Control

Yijing Chen1, Jing Dai1, Gilney Damm2, Françoise Lamnabhi-Lagarrigue1

Abstract— This paper investigates a control strategy that
uses a multi-terminal high voltage direct current (HVDC)
system for frequency control. It first describes a DC voltage
control law which, based only on local information, makes
the interconnected non-synchronous systems share their pri-
mary reserves. Then, a sufficient condition for choosing the
controller gains is developed based on Lyapunov theory and
LMI techniques with rigorous mathematical stability proofs.
Simulation results show that the control strategy has achieved
the objective of sharing primary reserves, guarantees the whole
system’s ultimate boundedness and improves the transient and
steady-state performance.

I. INTRODUCTION
Nowadays the world total electricity demand increases

year by year while the existing alternating current (AC)
transmission grids are operated close to their limits. As it
is difficult to upgrade the existing AC grids, high voltage
direct current (HVDC) is considered as an alternative so-
lution. HVDC transmission systems [1] use direct current
for bulk power transmission. They are suitable for long-
distance bulk transmission, underground and submarine cable
transmission, asynchronous interconnection, etc. From an
economic point of view, HVDC transmission systems are
more attractive than their AC counterpart for long-distance
power delivery and high power ratings. On the other hand,
the traditional two-terminal HVDC systems can only carry
out point-to-point power transmission. However, for eco-
nomic and technological reasons, it is necessary to study
the grids connecting several power sources and consumers.
For this, multi-terminal HVDC (MTDC) could be a good
solution. Unfortunately, the results on multi-terminal systems
are rare.

In an AC system the frequency, as an indication of power
balance, is common everywhere on the time scale of a few
milliseconds. With this common frequency, all generating
units within the system can sense a power imbalance and
adjust their power output to counter this disturbance. This
mechanism of restoring power balance is commonly called
primary frequency control, and the region of variation of
generators’ output is referred to as primary reserve. However,
with the current practice of transferring a scheduled power
among the AC areas through HVDC links, the frequencies of
the areas are independent of each other, and thus generators
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in one area are not sensible to other areas’ power imbal-
ances. The advantage of this practice is that a disturbance
in one area does not affect another, and thus the HVDC
link can play the role of a firewall to prevent cascading
failure. However, in the case of a severe power imbalance,
the generating units within the affected area may not be
strong enough to restore the power balance in time, and the
resulting frequency excursion may be so large that invasive
and expensive corrective measures (e.g. load shedding) have
to be triggered. Such undesirable scenarios may be avoided
if the HVDC system can be controlled in real time in such a
way that the interconnected AC areas can share their primary
reserves.

References [2], [3] proposed frequency controllers that
modify the active power transferred by an HVDC link.
However, these proposed controllers require other AC areas’
frequency measurements. Due to the time-delay of infor-
mation communication, the controllers may destabilize the
overall system. To become independent of remote infor-
mation [4] proposes a controller, named the DC-voltage-
based controller, which takes actions only based on local
information, requiring no communication among the AC
areas. However, the theoretical stability proof in [4] is only
valid for the special case of identical parameters of the AC
areas, which is unrealistic in practice. In addition, the choice
of the controller gain in [4] was also rather empirical, and
no proper approach to tuning the controller gain was given.

In this paper, we study a more general case without any
restrictions on AC areas’ parameters. A rigorous stability
analysis is given to ensure safety and reliability. Moreover,
we investigate the feasible region for the controller gains
based on Lyapunov theory (see [5], [6], [7], [8]) and LMI
techniques [9].

The paper is organized as follows: Section II presents an
MTDC system and introduces a simplified model. Section III
describes the control strategy, gives theoretical stability proof
and presents an approach to establish the controller gain that
guarantees the reliability of the system. The performance is
illustrated by simulation results in Section IV. Section V
presents the conclusions.

II. MULTI-TERMINAL HVDC SYSTEM MODEL

In this paper, we consider a special network where each
AC area is connected by only one converter. A simplified
MTDC system consisting of a DC grid, N AC areas, and N
VSC converters, is shown in Fig. 1, where P dci represents
DC power injections to the HVDC grid. If P dci is negative,



AC area i absorbs power from the HVDC grid as a consumer.
Otherwise, AC area i provides power as a supplier.

Fig. 1. Diagram of an MTDC system with N AC areas.

A. DC grid

Each DC voltage is denoted as Vi. All converters can
independently control their Vi thanks to VSC converter and
PWM technology. The power injected to the DC grid from
AC area i, P dci , satisfies Ohm’s law

P dci =

N∑
k=1

Vi(Vi − Vk)

Rik
, (1)

where Rik is the resistance between AC areas i and k.
Obviously Rik = Rki. If AC areas i and k are not connected
directly, Rik is infinity.

B. AC areas

Each AC area is modeled as an aggregated generator and
a load. The equation of motion of the generator is

2πJi
dfi
dt

=
Pmi − Pli − P dci

2πfnom,i
− 2πDgi(fi − fnom,i) , (2)

where Pmi, Ji and Dgi are the mechanical power input, the
moment of inertia and the damping factor of the aggregated
generator of area i, respectively. fi is the frequency of AC
area i and fnom,i is its nominal value. Pli is the power
consumed by area i’s load. Ji, Dgi and fnom,i are considered
as known parameters.

The primary frequency control is realized by the speed
governor of the generator, which modifies Pmi in response
to a deviation of fi from fnom,i. This dynamics is modeled
as

Tsm,i
dPmi
dt

= P omi − Pmi −
Pnom,i
σi

f − fnom,i
fnom,i

, (3)

where Tsm,i is the time constant of the servomotor, P omi is
the reference value for Pmi, Pnom,i is the nominal power of
the generator and σi is the generator droop.

By combining (2) and (3), the whole system is represented
as

2πJi
dfi
dt

=
Pmi − Pli − P dci

2πfnom,i
− 2πDgi(fi − fnom,i) ,

Tsm,i
dPmi
dt

= P omi − Pmi −
Pnom,i
σi

fi − fnom,i
fnom,i

,

(4)

for i = 1, · · · , N . fi and Pmi are the state variables. By
substituting (1) into (4), Vi explicitly appear in the system
model, and they are considered as the control inputs.

C. Reference operating point

We define the reference operating point as follows. It is
a steady-state defined by specific values of input parameters
Pli, P omi and the variables fi, Pmi, P dci , Vi. Denote by P̄li,
P̄ omi, f̄i, P̄

dc
i , P̄mi, V̄i the reference operating point values.

In this paper, the values of f̄i and P̄mi at the reference
operating point equal their nominal values, i.e.

f̄i = fnom,i , ∀i ∈ {1, 2, ..., N} , (5)

P̄mi = P omi , ∀i ∈ {1, 2, ..., N} . (6)

Since the reference operating point is a steady state, we have

0 =
P̄mi − P̄li − P̄ dci

2πfnom,i
− 2πDgi(f̄i − fnom,i) ,

0 = P omi − P̄mi −
Pnom,i
σi

f̄i − fnom,i
fnom,i

,

P̄ dci =
∑N
k=1

V̄i(V̄i − V̄k)

Rik
.

(7)

V̄i is obtained by solving (7).

III. CONTROL STRATEGY

Consider that the MTDC system initially operates at the
reference operating point. Then, one of its AC areas is
subjected to a disturbance that takes form of a step load
change, i.e. Pli 6= P̄li. It is true that this load change can
be satisfied by the primary frequency control of its own area
(Pmi). However, in case of a large disturbance, if we rely
only on Pmi, the resulting frequency deviation may be so
large that it endangers the correct operation of the system.
Thus, our objective is to improve the transient frequency
profile by calling for other area’s primary reserves so that
the frequency excursions are less pronounced.

A. Control law

The control objective is to regulate each converter’s DC
voltage Vi only based on local measurements fi, i.e. Vi is a
function of fi only. Therefore, a DC voltage based controller
is designed as

Vi = V̄i + αi(fi − f̄i) , (8)

with positive gain αi > 0.
Under this controller, due to the physical coupling of the

HVDC grid (1), the resulting power injected to DC grid P dci
can be regulated by controlling Vi. This method leads our
whole system to achieve the objective of sharing every area’s
primary reserve. However, we are not sure whether fi and
Pmi are ultimately bounded around the reference operating
point under the control law (8) with an arbitrary positive
control gain αi.



B. Choice of control gains

In this part, we give a detailed analysis for choosing the
control gain αi to guarantee ultimate boundedness of fi and
Pmi under (8).

To simplify our problem, at first, we shift the reference
values to the origins by introducing the following new
variables: P̃ dci = P dci −P̄ dci , P̃li = Pli−P̄li and Ṽi = Vi−V̄i.

Equation (1) can be expressed in these new variables as

P̃ dci =

N∑
k 6=i

(Ṽ 2 + 2ṼiV̄i − ṼiṼk − ṼiV̄k − ṼkV̄i)
Rik

. (9)

We write (4) in terms of the new variables by combining
(7) and (9)

˙̃
fi = −a1if̃i + a2iP̃mi − a2iP̃li − a2i·(∑N

k 6=i
Ṽ 2
i + 2ṼiV̄i − ṼiṼk − ṼiV̄k − ṼkV̄i

Rik

)
,

˙̃Pmi = −a4if̃i − a5iP̃mi ,
(10)

where a1i =
Dgi

Ji
,a2i = 1

4π2Jifnom,i
, a4i =

Pnom,i

Tsm,iσifnom,i
,

a5i = 1
Tsmi

. It is noted that a1i, a2i, a4i, a5i are strictly
positive, and that the control input Ṽi explicitly appears in
the system.
P̃li can be considered as a nonvanishing perturbation

which is uniformly bounded if a load demand imbalance
exists, i.e. Pli − P̄li 6= 0. We think of the system (10) as a
perturbation of the nominal system:

˙̃
fi = −a1if̃i + a2iP̃mi − a2i·(∑N

k 6=i
Ṽ 2
i + 2ṼiV̄i − ṼiṼk − ṼiV̄k − ṼkV̄i

Rik

)
,

˙̃Pmi = −a4if̃i − a5iP̃mi .
(11)

We know that, if the origin of the nominal system (11) is
asymptotically stable under the control law, then the per-
turbed system (10) is ultimately bounded around the origin.
Thus, the problem becomes to investigate a feasible region
for αi such that the nominal system (11) is asymptotically
stabilized around the origin under (8). In the following part,
two methods are used to get a feasible region for αi by means
of analyzing the stability of the nonlinear system (11).

1) First approach - Linearization of injected DC power
flow : The first approach is to analyze the stability of the
nonlinear system via linearization.

Linearizing (9) around the reference operating point leads
to

P̃ dci =

N∑
k 6=i

2V̄i − V̄k
Rik

Ṽi −
N∑
k 6=i

V̄i
Rik

Ṽk

=

N∑
k 6=i

V̄i − V̄k
Rik

Ṽi +

N∑
k 6=i

V̄i
R̄ik

Ṽi −
N∑
k 6=i

V̄i
R̄ik

Ṽk . (12)

Let f̃ = [f̃1, f̃2, · · · , f̃N ]T , P̃m = [P̃m1, P̃m2, · · · , P̃mN ]T ,
P̃ dc = [P̃ dc1 , P̃ dc2 , · · · , P̃ dcN ]T , Ṽ = [Ṽ1, Ṽ2, · · · , ṼN ]T .

Equation (12) written in vector form becomes

P̃ dc = diag(V̄i)LṼ + diag(V̄i)diag(

N∑
k 6=i

1

Rik
)Ṽ

− diag(

N∑
k 6=i

V̄k
Rik

)Ṽ , (13)

where L ∈ RN×N is the weighted Laplacian matrix describ-
ing the topology of HVDC grid, defined as

[L]ik =


− 1

Rik
: k 6= i ,∑N

j 6=i
1

Rij
: k = i .

Let V = diag(V̄i), R = diag(
∑N
k 6=i

1
Rik

), VR =

diag(
∑N
k 6=i

V̄k

Rik
). The nominal system (11) is expressed in

matrix form as[
˙̃
f
˙̃Pm

]
=

[
−A1 A2

−A4 −A5

] [
f̃

P̃m

]
−
[
A2(V L+ V R− VR)

0

]
Ṽ ,

(14)
with

Ṽ =
[
Aα 0

] [ f̃
P̃m

]
, (15)

where A1 = diag(a1i), A2 = diag(a2i), A4 = diag(a4i),
A5 = diag(a5i), Aα = diag(αi).

By substituting (15) into (14), the closed-loop system is[
˙̃
f
˙̃Pm

]
= A

[
f̃

P̃m

]
, (16)

where A =

[
−A1 −A2(V L+ V R− VR)Aα A2

−A4 −A5

]
.

A Lyapunov-based method is used to find a feasible region
for Aα. Choose a Lyapunov function W as

W = f̃TA4f̃ + P̃TmA2P̃m . (17)

The derivative of W is

Ẇ =− f̃TFαf̃ − 2P̃TmA5A2P̃m , (18)

where Fα = 2A1A4 + Aα(LV + RV − VR)A2A4 +
A4A2(V L+V R−VR)Aα. Furthermore, Fα is a symmetric
matrix.

If there is a region for Aα to make Fα positive definite,
the closed-loop system (16) is asymptotically stable. Thus,
our problem becomes to find a feasible region for α such
that Fα > 0, which is a linear matrix inequality (LMI). The
objective is now to find a diagonal Aα in order to rely only
on local measurements. For this, we solve Aα > 0 ,

2A1A4 +Aα(LV +RV − VR)A2A4

+A4A2(V L+ V R− VR)Aα > 0 .
(19)

The above LMI problem can be solved for typical values. As
seen in (19), the feasible region for Aα is determined by all
the AC areas parameters and the reference operating point.



2) Second approach - Nonlinear system: It is well known
that we can approximate the nonlinear system (11) by its
linearized system (14) only in a neighbourhood of the origin
[5]. Thus, to study the global behaviour of the system under
the control law, we use a second approach to investigate
directly the stability of the nonlinear system.

The same Lyapunov function as the linear case is chosen

W =

N∑
i=1

a4if̃
2
i +

N∑
i=1

a2iP̃
2
mi . (20)

We write (9) in vector form

P̃ dci = diag(Ṽi)LṼ + diag(Ṽi)LV̄ + diag(V̄i)LṼ , (21)

where V̄ = [V̄1, · · · , V̄N ]T .
The system (11) can be rewritten as[

˙̃
f
˙̃Pm

]
=

[
−A1 A2

−A4 −A5

] [
f̃

P̃m

]
−
[
A2

0

]
· (diag(Ṽi)LṼ

+ diag(Ṽi)LV̄ + diag(V̄i)LṼ ) , (22)

with the control law: Ṽi = αif̃i, i.e. diag(Ṽi) = Aαdiag(f̃i).
Then the closed-loop system is[

˙̃
f
˙̃Pm

]
=

[
−A1 A2

−A4 −A5

] [
f̃

P̃m

]
−
[
H1(f̃) 0

0 0

] [
f̃

P̃m

]
−
[
H2(f̃)

0

]
, (23)

where H1(f̃) = A2Aαdiag(f̃i)LAα + A2diag(V̄i)LAα and
H2(f̃) = A2Aαdiag(f̃i)LV̄ .

The derivative of Lyapunov function is

Ẇ =− 2f̃TA1A4f̃ − f̃TA4H1f̃ − f̃THT
1 A4f̃

− f̃TA4H2 −HT
2 A4f̃ − 2P̃TmA5A2P̃m , (24)

where

f̃TA4H1f̃ =

N∑
i=1

a4ia2i(αif̃
2
i +V̄if̃i)

 N∑
k 6=i

αif̃i − αkf̃k
Rik

 ,

(25)

f̃TA4H2 =

N∑
i=1

a4ia2iαif̃
2
i

 N∑
k 6=i

V̄i − V̄k
Rik

 . (26)

We rewrite Ẇ as

Ẇ = −M1 −M2 − 2P̃TmA5A2P̃m , (27)

where{
M1 = f̃TA1A4f̃ + f̃TA4H1f̃ + f̃THT

1 A4f̃ ,

M2 = f̃TA1A4f̃ + f̃TA4H2 +HT
2 A4f̃ ,

which, written in total sum square form, becomes

M1 =

N∑
i=1

a4i

(
a1if̃

2
i + 2a2i(αif̃

2
i + V̄if̃i)· N∑

k 6=i

αif̃i − αkf̃k
Rik

 , (28)

M2 =

N∑
i=1

a4if̃
2
i

a1i + 2a2iαi

 N∑
k 6=i

V̄i − V̄k
Rik

 . (29)

Thus, we have

M1 +M2

=

N∑
i=1

a4i

2a1if̃
2
i + 2a2i

 N∑
k 6=i

V̄i − V̄k
Rik

αif̃
2
i

+ 2a2i

 N∑
k 6=i

1

Rik

α2
i f̃

3
i − 2a2iαi

 N∑
k 6=i

αkxk
Rik

 f̃2
i

+2a2i

 N∑
k 6=i

1

Rik

 V̄iαif̃
2
i


−

N∑
i=1

2a4ia2iV̄i

 N∑
k 6=i

αkf̃kf̃i
Rik

 . (30)

Arithmetic geometric mean inequality yields∣∣∣∣∣αkf̃kf̃iRik

∣∣∣∣∣ ≤ 1

2

(
αkf̃

2
i

Rik
+
αkf̃

2
k

Rik

)
. (31)

Substituting (31) in (30) yields

M1 +M2

≥
N∑
i=1

a4i

2a1if̃
2
i + 2a2i

 N∑
k 6=i

V̄i − V̄k
Rik

αif̃
2
i

+ 2a2i

 N∑
k 6=i

1

Rik

α2
i f̃

3
i − 2a2iαi

 N∑
k 6=i

αkf̃k
Rik

 f̃2
i

+2a2i

 N∑
k 6=i

1

Rik

 V̄iαif̃
2
i


−

N∑
i=1

a4ia2iV̄i

 N∑
k 6=i

αkf̃
2
i

Rik
+
αkf̃

2
k

Rik

 . (32)

The last term in (32) can be written as
N∑
i=1

a4ia2iV̄i

 N∑
k 6=i

αkf̃
2
i

Rik
+
αkf̃

2
k

Rik


=

N∑
i=1

a4i

a2iV̄i

 N∑
k 6=i

αk
Rik


+ αi

 N∑
k 6=i

a4ka2kV̄k
a4iRki

 f̃2
i . (33)



Therefore,

M1 +M2

≥
N∑
i=1

a4i

2a1i + 2a2i

 N∑
k 6=i

V̄i − V̄k
Rik

αi

+ 2a2i

 N∑
k 6=i

1

Rik

α2
i f̃i − 2a2iαi

 N∑
k 6=i

αkf̃k
Rik


+ 2a2i

 N∑
k 6=i

1

Rik

 V̄iαi − a2iV̄i

 N∑
k 6=i

αk
Rik


−αi

 N∑
k 6=i

a4ka2kV̄k
a4iRki

 f̃2
i . (34)

Thus, a feasible region for αi is that,

Ωαi
=

αi ∈ R

∣∣∣∣∣∣2a1i + 2a2i

 N∑
k 6=i

V̄i − V̄k
Rik

αi

+ 2a2i

 N∑
k 6=i

1

Rik

α2
i f̃i − 2a2iαi

 N∑
k 6=i

αkf̃k
Rik


+ 2a2i

 N∑
k 6=i

1

Rik

 V̄iαi − a2iV̄i

 N∑
k 6=i

αk
Rik


−αi

 N∑
k 6=i

a4ka2kV̄k
a4iRki

 ≥ 0

 . (35)

Therefore, for any αi ∈ Ωαi
, we have Ẇ < 0,∀[f̃ , P̃m] 6= 0

and as a conclusion, the nonlinear system (11) is asymp-
totically stable. Moreover, once αi are determined, we can
get an estimate of the region of attraction Ωc for the state
variables:

Ωc =

[f̃ , P̃m] ∈ R2N

∣∣∣∣∣∣
∑
k 6=i

−αif̃i + αkf̃k
Rik

≤ a1i

αia2i

−

 N∑
k 6=i

V̄i − V̄k
Rik

−
 N∑
k 6=i

1

Rik

 V̄i

− V̄i
2αi

 N∑
k 6=i

αk
Rik


− 1

2a4ia2i

 N∑
k 6=i

a4ka2kV̄k
Rik

 , i = 1, · · · N.


(36)

It is not easy to use (35) and (36) directly to get a
feasible region due to their complicated expressions. Though
a feasible region can be easily found by the linear method
(19), we can only approximate the nonlinear system (11) by
its linearization in a small neighbourhood of the origin, of
which we do not know the size. Thus, when determining the
gains αi, we need to combine these two methods together.

TABLE I
PARAMETER VALUES OF EACH AC AREA (’-’ MEANS DIMENSIONLESS).

Parameter Area Unit1 2 3 4 5
fnom 50 50 50 50 50 Hz
P o
m 50 80 50 30 80 MW

Pnom 50 80 50 30 80 MW
J 2026 6485 6078 2432 4863 kg m2

Dg 48.4 146.3 140.0 54.9 95.1 W· s2

δ 0.02 0.04 0.06 0.04 0.03 -
Tsm 1.5 2.0 2.5 2 1.8 s
Pl 100 60 40 50 40 MW

In general, the feasible region obtained by linear method
is larger than the nonlinear method. At first, we use linear
method to get a feasible value for αi, then we put it into (35)
and (36) to see if this value satisfies the nonlinear method’s
condition to stabilize our system in the domain of interest,
i.e. f̃i ∈ [−1, 1] for i = 1, · · · , N . If this is not the case,
we choose a smaller value for αi and verify if it satisfies
(35) and (36). We repeat this procedure until a proper α∗i
appears.

The feasible region of the controller gain α given in this
paper depends on the choice of Lyapunov function. The one
used in this paper was chosen for two reasons. First, as
can be seen in (18), there is no cross term (f̃T P̃m), which
greatly simplifies the calculation. Second, the feasible region
thus obtained is not so small. However, the feasible region
of the controller gain is only a sufficient condition, which
guarantees ultimate boundedness of the closed-loop system.
Thus, with an α outside this feasible region, the system does
not necessarily become unbounded.

IV. SIMULATIONS

The controller studied in the previous section is tested
by computer simulations. The simulated example concerns
an MTDC grid of 5 AC areas, whose parameter values are
presented in Table I. The system is supposed to initially
operate at the reference operating point. Then at time t = 2 s,
the load demand of AC area 2 has a step increase by 30%.

Figs. 2 and 3 illustrate the frequency and the mechanical
power response without any controller, i.e. αi = 0. In Fig.
2, the minimum value of f2 is less than 49 Hz, which is
beyond frequency safety range 50±1 Hz, and the final value
is 49.5615 Hz. The peak value of Pm2 is nearly 106 MW
and the final value is nearly 97.6 MW.

Figs. 4 and 5 illustrate the frequency and the mechanical
power response when the controller is implanted. Table II
shows the values for α calculated by LMI techniques. The
proposed α are in their feasible region that can make sure
that the system is stable. Note that, the minimum value of
f2 is between 49.4515 Hz and 49.452 Hz which is in the
safety range and the final value f2 is 49.7299 Hz. Pm2 has a
peak value of nearly 92.5 MW, and is stabilized at 91 MW.
The above results show that our controller makes a signif-
icant improvement for frequency not only in the transient
performance but also in the steady-state performance.
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Fig. 2. Frequencies of 5 AC areas without any controller.
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Fig. 3. Mechanical power inputs of 5 AC areas without any controller.

0 10 20 30 40

49.5

49.6

49.7

49.8

49.9

50

50.1

50.2 Frequency deviation (Hz)

 

 

1
2
3
4
5

Fig. 4. Frequencies of 5 AC areas with controller.
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Fig. 5. Mechanical power inputs of 5 AC areas with controller.

TABLE II
VALUES OF αi CALCULATED BY LMI.

α1 α2 α3 α4 α5

1700 397 185 548 868

V. CONCLUSIONS

In this paper, we addressed the problem of developing a
controller that shares primary reserves between the AC areas
connected by a multi-terminal HVDC system. In the case of
a power imbalance, the controller reduces the burden of the
affected AC area by making the other AC areas collectively
react to that disturbance. For this, we study a control law
which is only based on local measurements and does not
need communication, thus avoiding the disadvantages caused
by time-delay. For this control law, a sufficient condition
is found to determine a feasible region for the controller
gain, which guarantees that the multi-terminal HVDC grid is
ultimately bounded. Simulation results shows that these local
controllers achieve the objective of sharing primary reserve
and keep the system ultimately bounded.

In our case, we just consider one AC area connected to
one converter. In the future, we can extend our system by
connecting an AC area with several converters. In this case,
more than one DC grid are involved in frequency regulation.
We need to study how to modify the controller to achieve
the objective of sharing primary reserves while maintaining
the stability of the system.
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