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A hierarchical time-splitting approach for
solving finite-time optimal control problems

Georgios StathopouldsTamas Keviczky and Yang Wang)

Abstract—\We present a hierarchical computation approach —over the time index and leads to as many subproblems as
for solving finite-time optimal control problems using operator  the length of the prediction horizon. Each subproblem can
splitting methods. The first split is performed over the time then be solved in parallel and further split into three by

index and leads to as many subproblems as the length of the fi th biective f th lit di i
prediction horizon. Each subproblem is solved in parallel ad ~ S€Parating the objective from the equality and inequality

further split into three by separating the objective from the ~constraints respectively, such that an analytic solutian ¢
equality and inequality constraints respectively, such tat an be achieved for each subproblem. The proposed solution

analytic solution can be achieved for each subproblem. The approach leads to a nested decomposition scheme, which
proposed solution approach leads to a nested decomposition is highly parallelizable. The proposed three-set spijttin

scheme, which is highly parallelizable. We present a numecal . -
comparison with standard state-of-the-art solvers, and povide method does not only solve the particular quadratic program

analytic solutions to several elements of the algorithm, wich ~ (QPS) that appear in the update steps of the time-splitting
enhances its applicability in fast large-scale applicatios. algorithm efficiently, but also provides a compact, staodal

| INTRODUCTION alternative for .solvmg generic QPs.
The paper is structured as follows. Sectioh Il presents
Online optimization and optimal control methods are inthe main idea behind the time-splitting optimal control
creasingly being considered for fast embedded applicgtiorapproach for parallel computations, using the Alternating
where efficient, reliable, and predictable computations inpjrection Method of Multipliers and deriving the exact
volved in calculating the optimal solutions are a necessitygrmulas required for each subproblem and update step. In
The potential use of optimal control in such embeddedectior ] we propose an alternative scheme for solving the
systems promises energy savings and more efficient resoutsps with general polyhedral constraints that arise in the-i
usage, increased safety, and improved fault detection. TBE”tﬁng update steps (or for any other generic QP). The
range of application areas that can benefit from embeddggo splitting schemes are combined in a hierarchical fashio
optimization include the mechatronics, automotive, pssce jn Section[T¥, and numerical experiments are performed in
control and aerospace sectors [1]. The promise of unpreogection[ Y to compare its performance with some advanced

dented performance and capabilities in these applicationsplvers in the literature. Secti@nlVI concludes the paper.
which typically rely on large-volume, real-time embedded

control systems, has fueled recent research efforts t@vard !l. TIME-SPLITTING OPTIMAL CONTROL
fast and parallel optimization solvers. A. Problem Formulation

One of the main research directions aim at develop-
‘N9 spemal-pu_rpos_e optimization s_o!vers_ that _targetdatn problem formulation that arises in typical model predietiv
control or estimation problems arising in optimal control. At

. : . .control applications:

Parallel solutions to systems of linear equations appgarin
in interior-point, and active set methods have been studied . . . 1N/ TR 1
in [2]-[5]. In this work we consider a quadratic finite- minimize Et; (Xt Q%+ Lt) (1a)
time op_t|mal _control probl_em for_dlscrete-nm(_e syst_emsh\mt subjectto  (%,U) € 2i x %, t=0,...,N (1b)
constrained linear dynamics, which appears in typical rhode
predictive control problems [6]. We investigate and depelo X+1= A+ Bl +¢,t=0,...,N—1(1c)

different parallelizable algorithms using operator $il  \yhere the decision variables are the states R", and the
techniques [7], [8] that have recently shown great promose f jnpyts u, € R™ of the system fott = 0,...,N. The indext
speeding up calculations involved in computing optimalisol denotes time, and the system evolves according to linear
tions with medium accuracy [9]-{11]. Our approach relies ogynamics constrainf{lc) wherg € R" is considered to be
a hierarchical splitting up of the specially structuredt®ni 4 known disturbance. Her#| is the prediction horizon and
time optimal control problem. The first split is performedQ € R™" Re R™M are symmetric matrices. The stage cost
1G. Stathopoulos is with Laboratoire d’Automatique, EPFIH-0015 functions in m) are cqnvex quadratlc with=0 a,ndR>. 0. .
Lausanne, Switzerlandseorgios . stathopoulos@epfl.ch The stage-wise state-input pairs are constrained to reside
°T. Keviczky is with the Delft Center for Systems and Control, within polyhedra[(1b) denoted by and %, respectively.
Delft University of Technology, Delft, CD 2628, The Nett@mtls, These are constraint sets defined by linear inequalitigs tha
t.keviczky@tudelft.nl . . . .
3Y. Wang is with Stanford University, Stanford, CA 94305, USA involve states and inputs at the same sample time index.
yangl024@gmail.com

We consider the following finite-time optimal control
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Motivated by the principles of operator splitting methodsubproblem using
(see [12] for details and relevant references), we propose . O O
to split the problem [{1) intoN + 1 smaller stage-wise % =007 W ), ®)
subproblems that can be solved in parallel. This requ”%herex{e R2MM \\e also introduce dual variables to deal

breaking the coupling that appears due to the dynamics. We, the consensus equality constraints:
introduce a copy of each variable that couples the dynamics

equations in order to allow such a splitting into subprotdem
and subsequently impose a consensus constraint on the _ _ L(t-1) .
associated complicating variables and their copies. Haidd » \ associated withx =%, t=1..,N.

to the fo"owing equiva|ent formulation Oi:K]_), where theln order to rewrite the finite-time Optlmal control prOblem i
complicating variables that are used to perform the spijtti & more compact form, we define the following matrices:

o Wt associated withq(t) =%, t=1...,.Nand

are clearly highlighted: Q& 0 0
N R = | 0 R 0|cR@mx@rm  (4q)
minimize %Z}(xt(t)TQ%t)wLut(t)Tqu (2a) 0 0 O
= _ _ _ nx (2n+m)
subjectto (X", u")e 2 x%, t=0,....N (2b) Ro= [-A -B 1]eR ’ (4b)
®© t) () GO _ [ | 00 ] c RI’1><(2I’IJHT’I)7 (40)
%11 =A% B +a, (2¢) )
t=0,....N—-1 Gy = [0 0 I JeRm@m, (4d)
XY = Xini (2d)  We use the AlLternating Direction Method of Multipliers
. t , in order to arrive at a solution
o o) (ADMM) [13], [14] in ord i luti
4+1= %4 (2e) approach that is amenable to parallel implementation.

ZH:xt(t:ll), t=0,...,N—-1, (2f)  The updates involved in the ADMM algorithm include

forming the augmented Lagrangian of the problem and
where the subscript of the decision variablesq”,u" minimizing over the primal variables,t = 0,...,N and
indicates the time index and the superscfiptdenotes the %, t=1,...,N, followed by updating tf;e duaI7 va}iablaﬁ ~
group or subproblem where the variable belongs to. Hencgnd\;, t = 1,....N. The three main steps of the algorithm
each subproblem contains three variables, the currerd state performed in an iterative fashion and are described
and input as well as a prediction of the state for the neXext in detail. We usek to denote the algorithm’s loop
time instant. The introduced complicating variallects as counter. The termination criterion based on primal and dual
a ‘global’ variable that brings the local copig$ " andx"  tolerances are provided and the analytic derivation of the
in agreement, i.ez = xt(tfl) = xt(t). The time-splitting idea formulas in each step is presented in the Appendix.
is graphically depicted in Figuid 1.
Step 1: SolvingN + 1 QP subproblems for the primal
o W dr variables in %
"‘ i 2 Minimization of the augmented Lagrangian over the primal
variablesx results inN + 1 stage-wise quadratic programs

. (QPs):
': L ».-.-.-.«;’ ;‘_"_._._ ,,,,, P :;.' . = '-....,:.,.,., ..... T i - . . . .
x,o ©) ac’l x’g Tr « For the subproblem associated with the time instanat
Uy : : : 0, we need to solve
o : . . L T o - o
L @Lgl) : : ug) minimize (1/2)%8 POXON— p\N/‘nglxo )
o) S AT - +(p/2)lIG1%o — Z]3
Ty - D) Tp. subjectto X3 € %o
@ [ W e - @ . ~
O i - Gofo = Xinit
R S R S Fofo = o -
$ é ~. with variablex.
Z1 Zo 2T « Similarly, we need to solve the following QPs for all
. _ _ o _ _ the other groups of variableg, T =1,... N—1:
Fig. 1. The idea of the time splitting algorithm. Whenevee thynamics
introduce (? %oupling of variables, they are decoupled vidaeksvariable minimize (]_/2))?;' R% — pvﬂl(Gl)”(t — 7:11)
Z=x=x"" +(p/2)[G1% — %415

—pWET (Go% — %)

2)(Go% — %13
B. The time-splitting algorithm subject to ;;(é)/(gt)” 0% Z{(HZ

In order to use a more compact formulation, we will R% =
denote the decision variables inl (2) corresponding to each (6)



« For the subproblem associated with the final time instar@nd we defined the vectors
t =N, we need to solve m o

Vi
minimize  (1/2)X PRy — pz\g/K,Tz(GoiN %) §0 §1 V\;’l
+(p/2)||Gofn — %15 N R _| 7

subjectto X € G Xpri | | Voua .

; : (7) iN ZN \7N
with variablexy. Vi

The polyhedral sets, t=0,...,N are defined as The residual matricesyes and Byes and the residual vector

G = 2 X U x X RO (8) Cresare
_ ) ) (G, 0 O 0 0
and the variable > 0 is a parameter of the algorithm. 0 Gy O 0 0
Remark 1:Notice that for the time instari{ the decision 0 G, O 0 0
variables of the QP actually simplify tey= xn and én = 0 0 G 0 0
2N, but we keep the same notation for simplicity (and, | 0 0 G 0 0 | cRT20x(N+D)(2n+m)
without loss of generality). e ) ] '
Step 2: Averaging : : :
The update of the ‘global’ primal variables T=1,...,N is 0 0 0 G 0
derived from a simple quadratic minimization problem, the 0 0 0 G 0
solution of which turns out to be an average of the predicted L0 0 0 - 0 Go |
(xtafl)) and current>(t(t)) state T 0 ... 0]
gt k1 -1 0 0
G
il A t=1....N. ) 0 I 0
2 _ | 0 -l 0 N2nxNn
. . . . . Bres_ E R ?
This intuitively makes sense, since the global variablelman :
obtained by collecting the local (primal) ones and commutin )
. . 0O 0 - —I
the best estimate based on their values. 0 0 .. I
Step 3: Dual update - -
The dual updates can be expressed as andces€ RN is zero.
~kt1 ~ ok+1 1
Wt = Wk Go% 4 44, (102)  The three update steps described above are fully paral-
VA Gl +# t=1,...,N. (10b) lelizable at each iteratiok. AssumingN + 1 processors

are available, then processds would need to execute the
following actions fort =0,... ,N—1:

1) Receive the estlmau{rl K., and from neighboring

Termination criterion processon;; 1 ().
The algorithm terminates when a set pfimal and dual 2) Computex<!
residuals are bgunded by a specm_ed threshold (prl_mal and3) Receive the estimabéj‘ll from neighboring processor
dual tolerances); see [183.2]. The primal and dual residuals M, ; and computez{‘*l @
for the time-splitting algorithm are defined as 4) C(;mputeNthrl and v+l m)

5) Communicate¢*?! to processor$l;_; and M1, and

k k
r‘= i+ BreZyi 11
At + BredZpi (11) Z+1 1 to processofl;_1.
and The above scheme suggests that each procd3gor =

K _pAT ey, 12y L1....,N—1 interacts with the two neighboring processors

pAreSBres(ZS” Zl’;r' (12) M¢_1 and M. ;. Processor$ly and My communicate only

respectively. with processorg1; and My_1, respectively. After updating
The termination criterion is activated when all variables, a gather operation follows in order to coreput

the residuals and check the termination criterion.

€2 < e, |82 < e,
I1l. THREE-SET SPLITTING QP SOLVER

where the tolerances” and e94a are defined as follows: A. Motivation
e —  gabs/N2n (13a) . The time-splitting algorithm_presgn_ted _in the previoussec
tion decomposes the centralized finite-time optimal cdntro

rel ) .
+& max{|| Aresxprill 2, [|BresZprill 2 [|Cresl|A13b)  pronlem so that it can be solved using multiple parallel
gdual — g, /(2n 4 m)(N+ 1) + €| ALvaual|2(13c)  processors. However, the updates for the primal variables



%,t=0,...,N given in [B), [6) and[{7) involve solving a « First global variablez=x' = x' = x'!

QP at each iteration of the algorithm. Even though several

fast interior point solvers exist for this purpose (see,e.g. « Second global variablez=h—Hx{")

[15]), these are mostly suitable for only a limited number of

variables. Although recently more computationally efiitie  « First set of dual variables? 7' 7" associated with
schemes that scale better with the problem size have been z=x =x' =x"', respectively.

developed, they are restricted to cases where simple box

constraints are considered [8], [10], [16]. In order to auhi « Second set of dual variableg:aSsociated witly =h—
fast computations in an embedded control environmentrothe ~ Hx!!
generic solution methods would be preferred. Using the above sets of variables probldml (14) can be

In this section we propose an alternative scheme fqgstated in the equivalent form
solving the QPs with general polyhedral constraints that

arise in the previous section. We propose to perform yet minimize }x'TMx' +q'x +r (15a)
another type of splitting approach, which splits the state- _ |

input variables of the QP in three sets. One set involves subjectto  AX' =b (15b)
the variables that appear in the objective function, anothe y=h—Hx" y>=0 (15¢)
set includes those that appear in the dynamics equality X =xl =x =2 (15d)

constraints, and the last set contains variables from the
inequality constraints. In this way, we solve three simplewith variablesx',x!! x! .ze R",y € RP. The dual variables
subproblems instead of the single general QP. Since seveaa¢ of dimensiong &€ R",§ € RP.
variables are shared among the subproblems, their sodution o _
must be in consensus again to ensure consistency. C. The proposed three-set splitting algorithm
The proposed algorithm consists of iterative updates to the
An important element of the proposed method is théhree ADMM steps similarly to the case of the time-splitting
introduction of an extra slack variable, which allows toapproach in SectionI[3B, namely one for the (local) primal
get an analytic solution for the subproblem associatedariablesx',x! x"", one for the (global) primal variables
with the inequality constraints. Using this variable, thez andy and one for the dual variables,?' 2" and y:
projection on any polyhedral set can be practically reemitt We provide the algorithm’s steps below along with some
as a projection onto the nonnegative orthant. Besides thitarifying comments. The analytic derivations are preseént
feature, the proposed splitting exploits structure in the the Appendix.
resulting matrices and thus modern numerical linear akyebr
methods can be employed for speeding up the computationsStep 1: Solving three subproblems for the primal
variables x', x!' x!!
In all three cases we have to solve simple, unconstrained
B. Problem setup QPs. The updates are:

We consider a QP of the form e L
X) =M+pl) " (p(Z+(Z))—q (16)
minimize  1x"Mx+q"x+r (x) ( ) Hp(Z+(2) ) —a)

subject to Ax=b (14) | AT I1yk+1 X (F)K
Hx < h, [F,JA OH(X\); ]{p( +b())

with decision variablece R", whereM € S}, ge R", r€R, wherev is the dual variable associated with the equality
AcR™" beR™ HeRP" heRPandS] is the cone of constraintAX' = b, and
positive semidefinite matrices of dimension

| an

k+1 _ -

In order to apply a variable splitting idea for this problem (x") = (H'H+1) 1(HT(h*Yk*Yk) +
we first replicate all variables appearing [inl(14) three ime X (3 k 18
introducing three different sets for which we must ensure +(2") ) (18)

consensus. Furthermore, we use a slack variable to remof/

. T . .
the polyhedral constraint and transform it into a projettio ﬁg _matnceslvl +plandH .H JTI are symmgtnc positive
. . , efinite due to the regularization terms. This means that,
operation onto the nonnegative orthant. We define the fol- : . . .
. . ) instead of directly inverting the matrices, we can save com-
lowing sets of variables:

putational effort by taking the Cholesky factorizatiorg.j.

« First set - objectivex write the matrix as a product of a lower triangular matrix
) . and its transpose (see, e.g., [17]). Furthermore, the xnatri
« Second set - equality constraini: pl AT 7. .
A O is a KKT matrix andpl = 0. Hence we can

« Third set - inequality constraints." exploit its structure and use block elimination to solve the
KKT system (see [18, App. C]). The resulting matrices can



be pre-factorized and then used in every solve step. The riglrigure[2.
hand sides are the only parts that change in the update loop.

Step 2: Averaging and projection If we rewrite the generalized inequality constraints appea
The update forz is ing in the problem formulation as
18 ikl ® O o
Zl(Jrl:éZ(Xl) s (19) (Xt au[ )E(é@HIXIth t:07"'7N7 (24)
1=

then the QPs can be written in the form described[Qy (14),
where we consider the following relations:

Y= (h=H ) -5 (20) . For%, Eq.(®):

Thez-update is an averaging over the three sets of the primal

while fory it is

variablesx',x!! x!', while they-update is the solution of a M Po+ pG1 Gy,
proximal minimization problem (see Appendix), resultimg i q = —pGl(z+)
a projection onto the nonnegative orthant, denoted-hy. 21~T~ ~7T~
Step 3: Dual update _ ro= (p/2azn+p02,
The update for the dual variablesi§ A = (Go,Fo),
_ . . _ b (Xinit» Co)
7 DR ¢ W (Y Py TN TR 21 o
)= @)~ ) 2 = @ H o= [H 0],
Similarly, the update foy is h = ho
kel o 1 1y k+1
F =gyt —h+H ") (22) . Forg, t=1,...,N—1, Eq.®):
Termination criterion
The primal and dual tolerance8" and 9" are given b
! ) | R M = R+p(GiGo+GlGy),
I I ans re ~ ~ ~ ~
e = ﬁB Vé’”yﬁpﬁf Hm}ax{”Afes(X XX q = —p(GY(Z+W)+GC] (21 +¥i1),
) 25 2 ’ 5 5 5lg 7 5 AR/
gdual galarg\s/%+£rel||:§;sl'es(zl,zll,zlll Dl r= (0/2(F1Z1+7 %)+ p(W 1z +W 2),
(23) A =k,
The residual matricesyes and Bres and the residual vector b = «,
Cres Al€ H — [ Ht O } ,
I 0 O -1 0 h h.
01 O -1 0
Aes=1 0 o | |+ Bes=| | o « For%y, Eq. @):
0 O H 0 |
and oon M = Ry+pG{Go,
C = ? ) 9y ) 5 ~
es= ) q = —pGg(2n+),
where Ares S R(3n+p)><3n, Bres S R(3n+p)><(n+p) and Cres € r (p/Z)ZLZN +PW1[\—12N7
R3n+p_
A = 0
Remark 2:For the QP corresponding to the last sample b
timet = N (@), the algorithm simplifies to splitting into two = 0
sets (objective and inequality constraints), since theee a H = [ Hv O ],
no dynamics equality constraints. The updates and residual h hy.

follow directly from the more generic case presented above.
For each iteration of the time-splitting algorithm, theg@r
IV. HIERARCHICAL TIME-SPLITTING OPTIMAL set splitting algorithm runs in an inner loop until it conges.
CONTROL The quality of this convergence, i.e., the choice of the ptim
It is a natural idea to combine the two splitting algorithmsand dual tolerances of the inner lodp](23) will affect the
(time-splitting and three-set splitting) that were intugéd quality of the global solution.
in the preceding two sections in order to speed up the A method that enables substantial speedup of the algorithm
solution of the finite-time optimal control probleni](1).is warm starting. Since the three-set splitting algorithith w
This can be accomplished via a nested decompositionn for every iteration of the time-splitting algorithm, we
scheme, where we employ tlileree-set splittingalgorithm can warm-start each QP with its previous solution. In this
to solve the QP (5)[6) anfl(7) appearing in Step 1 of theay, we can achieve a significant reduction in the number
time-splittingalgorithm. The idea is graphically depicted inof iterations needed for the convergence of the inner loop.
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'

time splitting

split
.......... 3-setsp||tt|ng EEERRREE P 3-setsplltt|ng EERERRREE 5aet splitting
Subproblem (QP) Subproblem (QP) Subproblem (QP)
at t=0 ol att=1 . : at t=N

SRiit SRt AAR

Solve Solve Solve Solve Solve Solve Solve Solve
*| Subproblem | Subproblem Il Subproblem Ill { | Subproblem | Subproblem II Subproblem Il } « « « « .« . Subproblem | Subproblem Il
att=0 att=0 att=0 b att=1 att=1 att=1 att=N att=N

consensus it consensus : . consensus

Solution . Solution . Solution
at t=0 - att=1 . : at t=N

Global Solution

Fig. 2. Structural representation of the hierarchical tspétting solution approach to the finite-time optimal t@h problem. The outer subproblems at
t=0,1,...,N refer to [3), [6) and[{7), respectively. The solutions of tiested subproblems enumerated by I, Il and 1l correspor{d@ [17) and[(T8).
Notice that only 2 subproblems have to be solved for the lest tnstantt = N.

V. NUMERICAL RESULTS Tim Davis's sparse package [21]-[23] (see also [8]). The

We consider three, randomly generated, numerical efhite-time optimal control problem was solved only once
amples to illustrate the performance of the algorithm. Th@nd all the primal and dual variables were initialized at
examples vary in terms of the number of decision variz€ro. However, the inner algorithm was warm-started at
ables involved. The systems considered are linear and tim@\ery iteration of the outer algorithm to the values acqlire

invariant. We impose constraints on the difference betwedfPm the previous iteration. No relaxation or any other
two consecutive states at each time instant of the form variance of the iterations was used. The numerical results

are summarized in Tablé I, where the computation times are

Xi — X%i-1 < dX, reported in ms.
wherexi €R,i=1,....,n,,t=0,...,N and box constraints We can observe that, in the case of the small system, even
on the inputs, i.e., when solving the problem on a single thread, the computation

times are smaller than those of CVX. As the problem scales,

[telleo < Umax, t=0,...,N—1. the computations have to be parallelized in order to gain
By adjusting the level of the disturbancein several time @ significant advantage. More specifically, we expect the
instances, we ensure activation of the constraints aloag tfollowing speedup factors: 13 and 31 times faster in the case
horizon. of the small problem (for the corresponding tolerancescet t

For the simulations, we used an Intel Core i7 processdi0 * and 107 respectively). For the medium-sized problem

running at 1.7 GHz. We compared a C-implementation dhe speedups are by a factor of 10.5 and 24.6, and a factor
our algorithm with using CVX [19], a parser-solver thatof 5.4 and 11.7 for the large-scale problem, respectively.
uses SDPT3 [20]. For our method, the tolerances for both In addition, we could observe that the factorization times
the outer and inner algorithms are set&® = 1074 and are negligible in all cases, since the matrices being faretdr
gdual— 10-3, The parametep was set after some simple are not large. Concerning the three-set splitting algorjth
tuning. The linear systems appearing [(n](16).] (17) (1®nly the average computational times are indicated over all
were solved by first factorizing the matrices off-line, gsin iterations required to solve the problem.



[ small | medium | large | APPENDIX

statesn 10 20 50
inputsm 10 10 40 Derivation of the time-splitting algorithm updates
horizon lengthN 10 30 60 . o
total variables 220 900 5200 We solve the relaxed version of the convex optimization
0 15 25 50 problem [2) by formulating the augmented Lagrangian with
active box constraints 5 6 20 respect to the additional equality constraints, using tlee m
active inequality constraints 2 2 4 trices and vectors defined il (3) arld (4). The augmented
| CVX solve time | 2430 3529 | 19420 | [agrangian can be written as
| factorization time [ 318] 95 | 30 |
Tolerance 10%
3-set (average) iterations 21.80 17 15.95 Lo (%, Xinit, We, Vi, 2, Vi) i= (25)
3-set (average) solve time 0.75 1.38 9.15 N /q
time-split. iterations 250 241 389 % <_)th P&+l (it)) + Vg (o — Xinit)
time-split. solve time (single thread) 1880 | 10023 | 215888 = 2
time-split. solve time |{ threads) || 188 334.1 3598 N—1
Tolerance 10° + Z} vl (F&% — )
3-set (average) iterations 13.14| 13.27 12.32 t=
3-set (average) solve time 0.49 1.18 7.34 N-1 P
time-split. iterations 156 | 128 224 + Z} (* P, 1(Gif — Zn) + 5 |G1% — Z+1I\%)
time-split. solve time (single thread) 780 4304 99525 t=
time-split. solve time |l threads) || 78 143.47 | 1659 N o o a2
* estimated parallel computation times +tZL ( — pW; (Go% —7) + 2 [Go% — % ”2)
TABLE |

The dual variablesy € R", t =0,...,N are associated with

HIERARCHICAL TIME-SPLITTING OPTIMAL CONTROL COMPUTATIONAL the equality constraints. We define the indicator function f

TIME RESULTS FOR DIFFERENT SIZE PROBLEMS the polyhedral Segt C R2n+m as
sy J 0 %ke%
4 (%) _{ o otherwise
VI. CONCLUSIONS The augmented Lagrangian is minimized (and maximized)

over the primal (and dual) variables in an iterative manner,
for each iteration of the algorithm.
In this paper, we proposed an algorithm that solves a cen-
tralized convex finite-time optimal control problem making By treating the dynamics and inequality constraints as
use of operator splitting methods, and, more specificall)éxpncit and minimizing with respect t&,"t =0,....N, we

the Alternating Direction Method of Multipliers. The irdli  end up with the stage-wise QHS (5] (€), (7).
problem is split into as many subproblems as the horizon

length, which then can be solved in parallel. The update o&"is given by solving

The resulting algorithm is composed of three steps, in-
cluding one where several QPs have to be solved. In this 2™ = afqmin(fPV{(T(Glitkfll*?t)
respect, we proposed another method, based again on opera- 4
tor splitting, that is applicable to QPs of any size, involyi + g||Gl>~<tkjll— Al
polyhedral constraints. This algorithm exploits the stuoe T gl e P il mio
of the problem, leading to fast solutions. — P (Gox™ *Zt)JFEHGOXtJr *ZtHz)

The combination of the proposed algorithms results in a — argmin Py — Gy K2 - P k(12
nested decomposition scheme for solving the aforemerdione QZ (ZHZt ther + %l 2” tllz
finite-time optimal control problems over several parallel P o ~ P~
rocesaors. | P P + Sla - GoR w3 - Sk

. . ) G ok+1 G ”‘k+17\7k7v\*,k
Our numerical experiments suggest that the proposed hier- sk+1 0% T+ —V t o
: e st o= , t=1...N26)

archical decomposition approach provides significant dpee 2

up in computational time required for medium accuracy Rearranging the terms ifiL{25) and completing the squares

solut|ons.f0r the class of problems considered. In our Ritur, o before, the dual updates for and\v; result by solving
work we intend to perform an even more extensive compar-

ison with very recent tailor-made computational tools, andgk+1 _ argma><(e||v~vt *Go>~<tk+1+7f+l|\§f B||V~Vt|\%)
implement the algorithm on a parallel computing platform to ! W 2 2 7
obtain more accurate and representative computational timvk“ ><P . kil | skl 2 P e 2)
= argmax = ||\ — G — =V
measurements. t 9% 2” i —Gi% T+ 23 2” ]2



The dual updates are ACKNOWLEDGMENTS

\Ntk+l \i\',tl(_G0~k+l+z:<+l (27)
gt F—GRHL+ 2 t=1,....T. (28)

The main part of this work was carried out at Stanford.
The authors would like to thank Stephen Boyd and Brendan

Substituting [2I7) and[(28) intd (26) results g% +

U+l =0, for all t. Hencez"* can be simplified to
k+1+ Gl)(tk+%

iﬂ _

2 )

This result shows tha is the variable that enforces consen- [2]

sus uponxt(t) and xt(“ , the value of which is the average
of the two.

t=1,...,N. [1]

(3]
Derivation of the three-set splitting algorithm updates
The augmented Lagrangian fér {15) can be written as

I—p (Xa Za ya za 577 V) = (29)

%XITMXI +q'X +r+vT(AX' —b)
I _ pll

*P;Z‘T(X ZHX*ZHz

— " (A= Fix" —y)+ 2 IR—Fix" —yiZ+1,, re).

As before, the dual variable is associated with the equality [8]
constraints. We define the indicator function of the nonneg-
ative orthant for a variablg € R as [9]
[ x x>0

o { o otherwise

The function applies componentwise for vector variables. [0

The augmented Lagrangian is a smooth, quadratic
function with respect to the variables, x!' x| hence the
updates can be derived from taking the gradient equal !
zero. This yields the solutiong (16, {17) and](18).

(4]

(6]
(7]

I{X€R+} =X+

Grouping the terms that involvefrom (29) we obtain ~ [12]
Il
21— argmin( § 2 1z— ) (2412 ) =
or ,;2” (x) @)1 a3
10 k+1 ik
+1 (2
4l 32 ( ?) ) (30)
[14]
Maximizing (29) overz’i = 1,11, 11l results in
oy K1 P P - i\ k+1
()" =argmax -ZZIE+ 517 - () 2 E)
Hence, the update fat,i=1,11,Ill is
: : . [16]
@)= @) - )T F =, (31)
Similarly, the update foy s [17]
Vk+1:)7k+yk+l—h+H (x”')kH. 18]
Taking the sum of the dual variables '= 1,11, 11l from [19]
and substituting intd (80) simplifies tzaipdate and we
g p p
obtain
L k+1 [20]
PR
[21]

Hence, the global variable is the average of the three
estimates ok.

O’Donoghue for helpful discussions.
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