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Abstract— In current and next generation of ground tele-
scopes, Adaptive Optics (AO) are employed to overcome the
detrimental effects induced by the presence of atmospheric
turbulence, that strongly affects the quality of data transmission
and therefore limits the actual resolution of the overall system.
The analysis as well as the prediction of the turbulent phase
affecting the light wavefront is therefore of paramount impor-
tance to guarantee the effective performance of the AO solution.
In this work, a layered model of turbulence is proposed, based
on the definition of a Markov-Random-Field whose parameters
are determined according to the turbulence statistics. The
problem of turbulence estimation is formalized within the
stochastic framework and conditions for the identifiability of the
turbulence structure (numbers of layers, energies and velocities)
are stated. Finally, an algorithm to allow the layer detection and
characterization from measurements is designed. Numerical
simulations are used to assess the proposed procedure and
validate the results, confirming the validity of the approach
and the accuracy of the detection.

I. INTRODUCTION

Modern ground based telescopes are usually equipped with
an Adaptive Optics (AO) system [9] with the specific aim of
compensating or at least alleviating the detrimental effects
to imaging introduced by atmospheric turbulence. The AO
system, in fact, commands a set of correction mirrors (or
deformable mirrors) to adapt their shapes to the opposite of
the current value of the turbulent phase: thus, the beams
arriving on the telescope pupil, after passing through the
deformable mirrors, have a residual turbulent phase as close
to zero as possible. A sequence of the AO system’s working
procedure can be summarized as follows:

1) estimation of the current turbulent phase;
2) prediction of the future turbulent phase;
3) computation of the proper control input for the set of

deformable mirrors to allow compensation.
Some remarks are now in order. Firstly, since the control

action is commonly delayed with respect to the related input
because of the time needed for image acquisition and phase
reconstruction [6] [7], the prediction step is of fundamental
importance for the performances of the AO system. Secondly,
the atmosphere is modeled as a linear combination of layers
translating, at different altitudes, over the telescope pupil.
Moreover, in a Multi Conjugated Adaptive Optics (MCAO)
system, used to achieve a larger sky coverage with respect
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to simpler AO systems [5], the atmosphere structure is com-
pletely reconstructed, and each mirror corrects the turbulent
phase associated to one of the atmospheric layers. Hence,
to make the MCAO system effective, a good reconstruction
of the turbulence has to be performed. Finally, the AO (or
MCAO) system shall exploit the knowledge of the turbu-
lence’s characteristics to improve the performances of the
prediction step.

An example of a turbulence realization is shown in Fig. 1,
where a sequence of the so-called phase screens is reported.

Fig. 1. A sequence of phase screens obtained as the output of a stochastic
realization. The picture provides intuition on how the phase screen actually
simulates the presence of a “turbulence pattern” over the telescope pupil.

Given this context, the contribution of this work regards an
innovative technique to estimate the turbulence’s structure.
In particular, we model the atmospheric turbulence as a
multilayer Markov Random Field and we aim at estimating
the number of significant layers, their energy, and their
velocities from the measurement of the turbulent phases.
Integrated with the information about the layer altitudes, this
procedure can improve the performance of the MCAO (or
AO) system.

More in general, the developed identification procedure
can be of interest for other applications where a similar
model applies.

II. PROCESS CHARACTERIZATION

We assume to have a 2D signal transmitted through a
turbulent medium, received by a finite set of sensors disposed
on a discrete domain L, which is supposed to be a grid as
in Fig. 2(a), i.e. a sensor is placed at each node of the grid.
For the sake of simplicity we assume regularity of the grid,
therefore the closest neighbors of each sensor (both along the
horizontal and the vertical directions) are placed at the same
distance ps. All sensors are assumed to take measurements at
a sampling frequency fs = 1/T (T is the sampling period).

Let u and v be two unit vectors indicating two orthogonal
spatial directions, as in Fig. 2(a), and let φ(u, v, t) represent
the total amount of turbulent phase arriving on the point
(u, v) at time t on the telescope aperture plane, where u and
v are the coordinates of the point along u and v.



We assume the measured signal φ to be zero-mean, sta-
tionary and spatially homogeneous. The covariance between
two values of the signal, φ(u, v, t) and φ(u′, v′, t), depends
only on the distance, r, between the two points:

Cφ(r) = E[φ(u, v, t)φ(u′, v′, t)], (1)

∀(u, v, u′, v′), such that r =
√

(u− u′)2 + (v − v′)2.

(a) (b)

Fig. 2. (a) Coordinates on the domain L. (b) Two points, (u, v) and
(u′, v′), separated by a distance r on the domain L.

In astronomical applications, the spatial statistical charac-
teristics of the atmospheric turbulent phase φ are generally
described by means of the structure function, which measures
the averaged difference between the phase at two points
which are separated by a distance r on the aperture plane,

Dφ(r) =
〈
|φ(r1)− φ(r2)|2

〉
.

The structure function Dφ is related to the covariance func-
tion Cφ(r), as:

Dφ(r) = 2
(
σ2
φ − Cφ(r)

)
,

where σ2
φ is the phase variance.

From the relation between the structure function and the
covariance1, the spatial covariance of the phase between two
points at distance r results

Cφ(r) =

(
L0

r0

)5/3
c

2

(
2πr

L0

)5/6

K5/6

(
2πr

L0

)
. (2)

In order to describe its temporal characteristics, the tur-
bulence is generally modeled as the superposition of a finite
number l of layers, where we indicate with ψi(u, v, t) the
value of the ith layer at point (u, v) and time t: The ith

layer models the atmosphere from hi−1 to hi meter high,

1According to the Von Karman theory, the phase structure function
evaluated at distance r is the following (see [2]):

Dφ(r) =

(
L0

r0

)5/3

c

[
Γ(5/6)

21/6
−
(

2πr

L0

)5/6

K5/6

(
2πr

L0

)]
,

where K·(·) is the MacDonald function (modified Bessel function of the
third type), Γ is the Gamma function, L0 is the outer scale, r0 is a
characteristic parameter called the Fried parameter (see [3]), and the constant
c is:

c =
21/6Γ(11/6)

π8/3

[
24

5
Γ(6/5)

]5/6
.

where hl ≥ · · · ≥ hi ≥ hi−1 ≥ · · · ≥ h0 = 0. Then,
φ(u, v, t) is given by

φ(u, v, t) =

l∑
i=1

γiψi(u, v, t) , (3)

where {γi} are suitable time invariant coefficients. Without
loss of generality we assume that

∑l
i=1 γ

2
i = 1. Interestingly,

the coefficients {γ2
i } have the physical meaning of strengths

(or normalized energies) of the layers.
The layers are assumed to be zero-mean, stationary, char-

acterized by similar spatial characteristics (i.e. all the layers
are spatially described by the same structure function), i.e.

E[ψi(u, v, t)ψi(u
′, v′, t)] = Cφ(r) , i = 1, . . . , l . (4)

Furthermore, they are assumed to be independent, hence

E[ψi(u, v, t)ψj(u
′, v′, t′)] = 0 , 1 ≤ i ≤ l, 1 ≤ j ≤ l,
j 6= i , 1 ≤ u, v ≤ m, 1 ≤ u′, v′ ≤ m.

A commonly agreed assumption considers that each layer
translates in front of the telescope pupil with constant
velocity vi (Taylor approximation [11] [9]), thus (5) holds.

ψi(u, v, t+ kT ) = ψi(u− vi,ukT, v − vi,vkT, t) ,
i = 1, . . . , l (5)

where vi = vi,uu + vi,vv, i = 1, . . . , l, and kT is a delay
multiple of T . In addition, we assume the velocity vectors to
be different for different layers, i.e. vi 6= vj if i 6= j. Finally,
according with [8], we assume that the turbulent phase has
Gaussian statistics.

The aim of the following sections will be that of develop-
ing a strategy for the estimation of l, the numbers of layers,
and their characteristics, i.e. their velocities {vi} and their
energies {γ2

i }.
III. A MARKOV RANDOM FIELD SPATIAL MODEL OF THE

PROCESS

In this Section we introduce a (discrete) Markov Random
Field (MRF) spatial model for φ. Since we are interested in
a spatial model, which is assumed to be time invariant, here
we consider the time as fixed at a constant value t = t̄. Also,
we assume that φ is a scalar random process, and at each
sampling time we observe only a limited range of its values,
which are in general affected by a zero-mean white-noise
process w.

Some observations are now in order. First of all, since
the spatial statistics of all the layers {ψi} are assumed
to be characterized by (1) as in (4), then each layer ψi
can be modeled as an isotropic homogeneous random field.
Moreover, being the domain L actually discrete, the process
can be spatially modeled as a discrete random field.

We recall that a spatial process y is a MRF if and only
if the Markov property holds for y, that is: Let (ū, v̄) be a
point on the grid L and let N(ū, v̄) be the set of points of L
that are in the neighborhood of (ū, v̄), defined as follows:

N(ū, v̄) =
{

(u, v) ∈ L | 0 <
√

(u− ū)2 + (v − v̄)2 ≤ d̄
}
,



where d̄ is a suitable value. Also, let y(ū, v̄, t) be the value
of the spatial process y on the point (ū, v̄) at time t. The
Markov property for y states that y(ū, v̄, t) is independent on
y(u′, v′, t), (u′, v′) ∈ L − N(ū, v̄) given y(u, v, t)∀(u, v) ∈
N(ū, v̄).

Since it is a reasonable assumption that the covariance (1)
vanishes fast as r increases, then the layers’ random field
models can in fact be well approximated by Markov Random
Fields (see [4]). Furthermore, we assume also the MRFs to
be characterized by Gaussian statistics, that is to be Gaussian
MRFs.

To simplify the study and the notation, hereafter we
consider a 1D case, i.e. the process of interest (ψi) is
described (and moves) only along a line. The generalization
to the 2D case is immediate, leading just to a more complex
formulation of the equations. In the 1D case L reduces to an
interval, whose size is m: L = [1, . . . ,m]. Given the position
ū ∈ L, the neighborhood N(ū) is redefined simply as:

N(ū) =
{
u ∈ L | 0 < |u− ū| ≤ d̄

}
,

and the interval border Lbor = {ū ∈ L | ū ≤ d̄ or ū >
m− d̄} and the internal set Lin = {ū ∈ L | d̄ < ū ≤ m− d̄}
are also introduced.

Since the layers have the same spatial statistical charac-
terization (i.e. zero-mean Gaussian random processes with
covariance (1)), each layer can be described using a sim-
ilar MRF representation. Let ψi(ū, t) be the value of the
ith layer at the position ū ∈ L at time t. Then, if
the sensor array is perfect (i.e. measurements are not af-
fected by noise), at time t the measurement vector provides
[ψi(1, t), ψi(2, t), . . . , ψi(m, t)]

T . As shown in [12], the
value of the MRF at the generic point ū ∈ Lin at time
t, ψi(ū, t), can be expressed as the best linear prediction
of ψi(ū, t) given the values of its neighbors N(ū) plus an
“innovation” process ei(ū, t):

ψi(ū, t) =
∑

u∈N(ū)

a|ū−u|ψi(u, t) + ei(ū, t) , (6)

where {ai} are suitable coefficients which yield the best
(spatial) linear prediction of y(ū, t) given the values of its
neighbors (see, for example, [10] for the computation of
the coefficients of the best linear predictor). Interestingly,
these coefficients show values lower than unity, so that the
maximum for the covariance function is reached in ū = u,
center of the neighborhood.

Furthermore, since the layers are independent on each
other

E[ei(ū, t̄)ej(u, t)] = 0 , (7)

if i 6= j, ∀(t̄, t), while

E[ei(ū, t)ei(u, t)] =

 σ2
e ū = u
−a|ū−u|σ2

e u ∈ N(ū)
0 otherwise

, (8)

with ū , u ∈ Lin.

For the global turbulence φ, (3), it follows that

φ(ū, t) =

l∑
i=1

γi

 ∑
u∈N(ū)

a|ū−u|ψi(u, t) + ei(ū, t)


=

∑
u∈N(ū)

a|ū−u|φ(u, t) + e(ū, t) , (9)

where the global innovation e(ū, t) is expressed as a linear
combination of ei(ū, t), i = 1, . . . , l, that is

e(ū, t) =

l∑
i=1

γiei(ū, t) . (10)

In the remainder of the work, to simplify the study and
avoid border effects, we will assume that the discrete domain
L actually extends indefinitely, thus neglecting Lbor (i.e.
Lbor → 0 and Lin ≈ L). This assumption is well posed if
the domain L results to be much larger than the dimension
of neighborhood N (or equally m� 2d̄).

IV. LAYER DETECTION

The aim of this section is the derivation of an algorithm
for the estimation of the number l of layers, of the linear
combination coefficients {γi}, and of the layer character-
istics, in particular the velocities {vi}: for the 1D case, the
parameters to be estimated are then (l, γ1, . . . , γl, v1, . . . , vl),
whereas the procedure still applies to the more general 2D
case referring to Eqs. (3) and (5), just adding a more complex
notation to the procedure (in this case the parameter set is
(l, γ1, . . . , γl, v1,u, . . . , vl,u, v1,v, . . . , vl,v)).

The rationale behind the detection procedure is that when
the layers move with different velocities the net effect
after some time is to decouple each other neighborhood of
influence related to the markovian property, thus allowing
the distinguishability of the single layers and their parameter
identification. Conversely, if two or more layers show the
same dynamic characteristics (same direction and speed) they
are not singularly observable.

Equations (6), (7), (8) and (10) allow to formulate the
algorithm for the detection of the layers. Three observations
are now in order:
• Since the coefficients {ai} can be computed as those

of the best linear predictor, given the second order
spatial statistical characteristics of the process described
by (1), then e(u, t), u ∈ Lin, can be computed for all
t from (9).

• From (7) and (10), then

E[e(ū, t̄)e(u, t)] =

l∑
i=1

γ2
iE[ei(ū, t̄)ei(u, t)] . (11)

• Since layers are moving with constant velocity, it fol-
lows that

E[ei(ū, t)ei(u+ hviT, t+ hT )] =

= E[ei(ū, t)ei(u, t)] , (12)



for i = 1, . . . , l, h ∈ Z. Thus the above expression is
different from zero only if ū ∈ N(u).

Since in (11) the space-time correlations of e are expressed
as a linear combination of those of the {ei}i=1,...,l, also the
relation (12) can be extended to characterize the space-time
correlations of e.

First of all, from the process homogeneity and the Taylor
assumption [11] , it follows that E[e(ū, t̄)e(u, t)] depends
only on ζ = u − ū and τ = t − t̄. Thus, without loss of
generality, the initial time and position can be chosen as
ū = 0 and t̄ = 0: be c(ζ, τ)

c(ζ, τ) = E[e(0, 0)e(ζ, τ)] ,

and similarly, be ci(ζ, τ)

ci(ζ, τ) = E[ei(0, 0)ei(ζ, τ)] .

According to the discrete MRF assumption, the probability
distribution of the turbulence at ū ∈ L given the values of
u ∈ N(ū) does not depend on u ∈ L−N(ū): In other words,

c(ζ, 0) = E[e(0, 0)e(ζ, 0)] = 0 , if |ζ| ≥ d̄ .
Nonetheless, in practical applications, when the MRF model
is an approximation of a real world random field, this relation
is no longer valid. By introducing

ε = sup |c(ζ, 0)| , if |ζ| ≥ d̄ , (13)

it typically results ε ≥ 0, while, in the ideal MRF case, it
naturally follows that ε = 0. Since all layers share the same
statistical description, this result also holds for the i-th layer.
From aforementioned considerations, ci(0, 0) > ci(ζ, 0) for
every ζ 6= 0, thus c(0, 0)i is a maximum for the correlation
function: ci(0, 0) = σ2

e > ε.
Proposition 1: Be ζ ∈ L−⋃i N(viτ) then |c(ζ, τ)| ≤ ε.

Proof: Since ζ /∈ N(viτ),∀i, ζ is a point outside the
neighborhood of any layer. From (12), ci(ζ, τ) = ci(ζ −
viτ, 0), and from (13) the bound |ci(ζ − viτ, 0)| ≤ ε, ∀i is
set. Hence,

|c(ζ, τ)| =

∣∣∣∣∣∑
i

γ2
i c
i(ζ, τ)

∣∣∣∣∣ =

∣∣∣∣∣∑
i

γ2
i c(ζ − viτ, 0)

∣∣∣∣∣
≤ ε

∑
i

γ2
i = ε .

In practical situations the correlation functions ci(ζ, τ)
appear to be strongly peaked and |ci(ζ, τ)| � ε for some
ζ ∈ N(viτ). We introduce formally the concept with the
following:

Definition 1: Given the neighborhood interval N(viτ) and
a centered subset N̄(viτ) ⊆ N(viτ), the correlation function
ci(ζ, τ) is said to be strongly peaked if:
• |ci(ζ, τ)| > ε 2

γ2
i

if ζ ∈ N̄(viτ);
• |ci(ζ, τ)| ≤ ε if ζ ∈ L− N(viτ).
An instance of strongly peaked correlation function is

shown in Fig. 3.
Definition 2: Layer i is said to be disjoint from layer j,

at time τ if |viτ − vjτ | > 2d̄ for every j 6= i.
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Fig. 3. Example of strongly peaked correlation function. The turbulence
phase covariance function (dashed line) is compared to the spatial innovation
correlation function (solid line) to highlight the strong peakedness of the
latter.

Lemma 1: {ci(ζ, τ)} are strongly peaked. Consider layer
i: If ζ ∈ N̄(viτ) and layer i is disjoint from all others, then
|c(ζ, τ)| > ε.

Proof: Be ζ ∈ N̄(viτ) and layer i disjoint from its
siblings. It follows:

|c(ζ, τ)| =

∣∣∣∣∣∑
i

γ2
i c
i(ζ, τ)

∣∣∣∣∣ =

∣∣∣∣∣∣γ2
i c
i(ζ, τ) +

∑
j 6=i

γ2
j c
j(ζ, τ)

∣∣∣∣∣∣
≥ γ2

i

∣∣ci(ζ, τ)
∣∣−
∣∣∣∣∣∣
∑
j 6=i

γ2
j c
j(ζ, τ)

∣∣∣∣∣∣
≥ γ2

i

∣∣ci(ζ, τ)
∣∣−∑

j 6=i

γ2
j

∣∣cj(ζ, τ)
∣∣

> γ2
i

2ε

γ2
i

− ε = ε .

Let ‖N̄‖ be the width of the interval of strongly-
peakedness, and d̄N̄ = d̄− ‖N̄‖/2.

Definition 3: Layer i is said to be strongly disjoint from
layer j, at time τ if |ζi − ζj | > 3d̄N̄ for every pair(
ζi ∈ N̄(viτ), ζj ∈ N̄(vjτ)

)
.

Remark: In the case of strongly disjoint layers, the
distance between the related neighborhoods is always larger
than d̄N̄.

Proposition 2: Let t̄ be such that all layers are disjoint at
time t̄. Then, for every τ ≥ t̄, if |c(ζ, τ)| > ε, ∃! i such that
ζ ∈ N(viτ).

Proof: Since all layers are disjoint, N(viτ)
⋂
N(vjτ) =

∅ for every pair of layers {i, j}. At the same time, Prop. 1
ensures that in L − ⋃iN(viτ) the value of the covariance
function is bounded by ε. Then, to have |c(ζ, τ)| > ε, ζ must
belong to one and only one N(viτ).

By definition c(ζ, τ) can be expressed as a linear combina-
tion of ci(ζ, τ). Remarkably, from the previous observations



and the fact that the distance among layers |viτ − vjτ |
increases with time, it follows that for sufficiently long τ
the elements in the linear combination (11) acts separately.
The influence of each layer on c(ζ, τ) is visible in a location
spatially separated from the others, which makes the turbu-
lent layers potentially distinguishable from each other. These
considerations allow us to define the interval N̄(viτ) as the
influence interval of layer i at time τ . Viceversa, |c(ζ, τ)| is
greater than ε only if there is at least a layer, i, such that
ζ ∈ N(hviT ) for some integer number h. Thus, since the
velocities of different layers are assumed to be different, the
time covariances of the spatial prediction error e, provides a
simple method to detect the layers.

The detection problem is now to obtain {vi} starting from
values of c(hviT, hT ), and the solution follows a two-step
approach:
• first, to distinguish the influence intervals associated to

the layers;
• then, to estimate {vi} as that corresponding to the

maximum |c(ζ, τ)| in the influence intervals of layer i
(when separated from those associated to other layers).

Lemma 2: If layers are strongly peaked and layer i is
strongly disjoint from the others at time τ̄ , then it is possible
to determine a closed interval [ζa, ζb] such that N̄(viτ) ⊆
[ζa, ζb].

Proof: From the strong-peakedness it follows that:

max
{
ζ2 − ζ1

∣∣ ζj ∈ N(viτ̄), c(ζj , τ̄) > ε, j = {1, 2};
c(ζ, τ̄) ≤ ε, ∀ζ such that ζ1 < ζ < ζ2

}
≤ d̄N̄ .

Since layer i is strongly disjoint then for any j 6= i: |ζi−ζj | >
d̄N̄ for every pair (ζi ∈ N(viτ), ζj ∈ N(vjτ)).

Thus ζa and ζb can be obtained as follows:

ζb = min
{
ζ
∣∣ζ ≥ viτ, c(ζ, τ̄) > ε, ζ̄ − ζ > d̄N̄,

∀ζ̄ > ζ such that c(ζ̄, τ̄) > ε
}
,

and

ζa = max
{
ζ
∣∣ζ ≤ viτ, c(ζ, τ̄) > ε, ζ − ζ̄ > d̄N̄,

∀ζ̄ < ζ such that c(ζ̄, τ̄) > ε
}
.

We introduce in this context the notion of distinguishabil-
ity as follows.

Definition 4: Layer i is said to be distinguishable from
layer j, at time t̄ if its velocity vi and energy γi can be
estimated with a suitable upper bound on the estimation
errors.

The following proposition gives sufficient conditions for
the detection of layers.

Proposition 3: If layers are strongly peaked and strongly
disjoint from each other at time τ̄ , then all the layers can be
detected. For each layer, the estimated velocity v̂i satisfies
the following:

|v̂i − vi| ≤ d̄/τ̄ . (14)

Furthermore, if τ̄ vi ∈ L then layer i is distinguishable from
all the other layers and the following inequality holds for the
estimated energy γ̂2

i :

|γ̂2
i − γ2

i | ≤ ε/σ2
e . (15)

Proof: Since layers are strongly disjoint, at time τ̄ we
can distinguish l̂ = l intervals where the correlation function
shows values greater than ε, and associate each of these
intervals to one layer. Consider the i-th interval and be the
local maximum value of |c(ζ, τ̄)| attained at ζ̄. This is mainly
due to the contribution of the i-th layer, that is ζ̄ = v̂iτ̄ . It
follows that:

v̂i = ζ̄/τ̄ .

On the other hand, it may happen that due to asynchronous
sampling the maximum error in detecting ζ̄ is d̄. Hence, the
error bound on the velocity estimation is given by:

|v̂i − vi| ≤ d̄/τ̄ .
As for the energy, it stands:

∣∣c(ζ̄, τ̄)
∣∣ =

∣∣∣∣∣∣γ2
i c
i(ζ̄, τ̄) +

∑
j 6=i

γ2
j c
j(ζ̄, τ̄)

∣∣∣∣∣∣ .
If τ̄ vi ∈ L, then the maximum for

∣∣ci(ζ̄, τ̄)
∣∣ is σ2

e , while
there is an upper bound on the second term sum given by ε.
Therefore, the estimated value is:

γ̂2
i =

∣∣c(ζ̄, τ̄)
∣∣/σ2

e ,

and
|γ̂2
i − γ2

i | ≤ ε/σ2
e .

Assume to be provided of nτ covariances of e, that is
{c(ζ, τ)}, τ ∈ {τmin, τmin+T, . . . , τmax}. Then, the previous
considerations and propositions suggest an algorithm for the
layer detection:

Algorithm 1 Detection of the layers

• Be S the set of the indexes of the already detected
layers. At t = 0, S = ∅.

• At τ = τ̄ , evaluate {c(ζ, τ̄)} for each ζ ∈ L.
• If ∃ζ̄ and ∃! j ∈ S such that:

– ζ̄ ∈ [−d̄+ v̂jT, d̄+ v̂jT ],
– c(ζ̄, τ̄) is the maximum in

[
−d̄+ ζ̄, d̄+ ζ̄

]
– c(ζ̄, τ̄)/σ2

e > γ̂2
j ,

then update already detected layers with v̂j = ζ̄/τ̄ ,
γ̂2
j = c(ζ̄, τ̄)/σ2

e .
• Else if ∃ζ̄ such that:

– c(ζ̄, τ̄) > ε,
– |ζ̄ − v̂j τ̄ | ≥ 2d̄+ 1, ∀j ∈ S
– c(ζ̄, τ̄) is the maximum in

[
−d̄+ ζ̄, d̄+ ζ̄

]
then add a new layer i to S with v̂i = ζ̄/τ̄ , γ̂2

i =
c(ζ̄, τ̄)/σ2

e .

Remark: Due to the finite base approximation inherent
in the detection procedure and data noise, normalization of



the learnt energy values may be needed after detection of
all layers in order to ensure that

∑
i γ̂

2
i = 1. In actual fact,

the net effect of noise is to alter the threshold induced by
ε, therefore to guarantee the same accuracy in the parameter
detection a larger number of samples is required.

V. SIMULATIONS

Simulations are organized as follows. First, in Subsec-
tion V-A Algorithm 1 is applied to a 1D case. Then, a more
realistic situation is considered in Subsection V-B where it
is presented the estimation of the layers characteristics of a
2D atmospheric turbulence for the AO system.

The turbulence phase has been simulated using the algo-
rithm described in [1].

A. Detection of the layers: 1D simulations

Even if the main goal is that of applying the proposed
algorithm to 2D signals, we first present a 1D example to
give some intuition of the obtained results.

We consider a 4-layer turbulence case (i.e. l = 4), with
the following values for the parameters: v1 = −3.125, v2 =
−5.750, v3 = −7.375, v4 = −8.143, γ2

1 = 0.310, γ2
2 =

0.300, γ2
3 = 0.200, γ2

4 = 0.190. The system is simulated
for N = 5000 temporal instants. Fig. 4 shows the estimated
ĉ(ζ, τ), τ = {1, 3, 6}. In Table I we summarize the results:
vi and γi corresponds to the true values of the parameters,
v̂i and γ̂i are the estimated ones. Notice that the algorithm
first allowed the correct estimation of the number of layers,
i.e. l̂ = l. The velocities are written in [pixels/frame].

TABLE I
DETECTION OF 1D LAYERS.

layer 1 layer 2 layer 3 layer 4

vi −3.125 −5.750 −7.375 −8.143

v̂i −3.120 −5.750 −7.380 −8.140

γ2i 0.310 0.300 0.200 0.190

γ̂2i 0.319 0.282 0.183 0.216

B. Detection of the turbulent layers: 2D simulations

Since the layers usually move slowly over the telescope
pupil, here we consider three cases of layer detection where
the layers translate less than a pixel per frame. To make this
possible we have simulated the layers at a sub-pixel scale: A
10× 10 matrix of sub-pixels has been used to simulate each
pixel in L. In the simulations of this sub-section we set the
parameters to σw = 0 and the number of samples, N , used
to estimate the temporal covariances used in Algorithm 1 to
N = 5000. When σw is different from zero, a larger number
of samples N is needed to obtain results comparable with
those reported in this sub-section.

The results of the simulations are reported in Table II,
III and IV: vi,u, vi,v and γi corresponds to the true values
of the parameters, v̂i,u, v̂i,v and γ̂i are the estimated ones.
The velocities are expressed in [subaperture/frame], and we
remind that the subaperture size is 0.4[m].
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Fig. 4. In black line ĉ(ζ, τ), τ = {1, 3, 6} estimated by the sample
covariances. In gray line the detected layers.

TABLE II
DETECTION OF 2D LAYERS. CASE I.

layer 1 layer 2 layer 3 layer 4

vi,u 0.2160 0.3910 0.6120 0.7950

v̂i,u 0.2162 0.3913 0.6122 0.7949

vi,v 0 0 0 0

v̂i,v 0 0 0 0

γ2i 0.3100 0.3000 0.2000 0.1900

γ̂2i 0.3112 0.3007 0.2005 0.1876

Also, in Figs. 5–6, the identification error related to layer
velocities and energies respectively, is compared with the
corresponding theoretical bound as from Prop. 3.

The results obtained with the proposed method are quite
encouraging: Indeed in all the considered cases the number
of layers has been correctly detected, i.e. l̂ = l, and the
values of the estimated parameters are quite close to the true
ones.

VI. DISCUSSION AND CONCLUSION

In this work, we consider the turbulence modeling prob-
lem for AO system in ground telescopes. The problem of
turbulence estimation is formalized within the context of
stochastic dynamical systems, and a multilayer MRF model

TABLE III
DETECTION OF 2D LAYERS. CASE II.

layer 1 layer 2 layer 3 layer 4

vi,u 0.2160 −0.1910 0 0

v̂i,u 0.2162 −0.1905 0 0

vi,v 0 0 0.1100 0.2870

v̂i,v 0 0 0.1111 0.2881

γ2i 0.4100 0.2500 0.2000 0.1400

γ̂2i 0.4137 0.2495 0.1973 0.1395



TABLE IV
DETECTION OF 2D LAYERS. CASE III.

layer 1 layer 2 layer 3 layer 4 layer 5

vi,u 0.1300 −0.0710 0 0 0.0800

v̂i,u 0.1321 −0.0714 0 0 0.0800

vi,v 0 0 0.0560 −0.0870 0

v̂i,v 0 0 0.0556 −0.0877 0

γ2i 0.2700 0.2300 0.2000 0.1600 0.1400

γ̂2i 0.2505 0.2332 0.1968 0.1620 0.1576
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Fig. 5. Layer velocity identification error vs velocity error bound, for the
presented 2D cases (highlighted with different markers and colors).
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Fig. 6. Layer energy identification error vs energy error bound, for the
presented 2D cases (highlighted with different markers and colors).

is derived, whose parameters are determined according to
the turbulence statistics. Also, the conditions for the iden-
tifiability of the turbulence structure (in terms of numbers
of layers, energies and velocities) are stated. Given these
results, a procedure to identify the model main parameters
is designed, in order to perform the layer detection from
a set of acquired data. Numerical simulations are used to
assess the proposed algorithm and confirm the validity of
the method and the accuracy of the results.

The approach is formally developed through propositions
and proofs that support its general validity. In fact, although
motivated by the AO application, the methodology can be
of interest for the estimation of the properties of other
phenomena that can be modeled by a multilayer MRF.

As for the future developments,, it is of interest to design
a strategy to detect layers online, when they appear to be
distinguishable. The rationale is as follows: As soon as a
peak emerges, |c(ζ, τ)| > ε, a new layer i is set, and its
velocity vi and energy γi are provisionally detected; if the
peak remain consistent as time evolves, the detection is
refined with further observations. On the other hand, though,
it may happen that the peak under assessment is generated by
the superposition of two or more layers, that will appear to
be distinguished in the future: In this case, the procedure will
provide correct detection only at a later stage, after gathering
further information. The formalization of this approach, as
well as the relaxation of the strongly-peakedness hypothesis,
are currently under investigation, in order to state sufficient
conditions for a correct layer detection. Finally, Activity to
employ the algorithm with real large telescope data is under
consideration.
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