
 

This is an electronic reprint of the original article. This reprint may differ from the original 
in pagination and typographic detail. 

 
Finding an LFT uncertainty model with minimal uncertainty

Häggblom, Kurt Erik

Published in:
2013 European Control Conference (ECC)

DOI:
10.23919/ECC.2013.6669799

Published: 01/01/2013

Link to publication

Please cite the original version:
Häggblom, K. E. (2013). Finding an LFT uncertainty model with minimal uncertainty. In 2013 European Control
Conference (ECC) (pp. 1107–1113). IEEE. https://doi.org/10.23919/ECC.2013.6669799

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

This document is downloaded from the Research Information Portal of ÅAU: 19. May. 2024

https://doi.org/10.23919/ECC.2013.6669799
https://research.abo.fi/en/publications/e1a2fdd3-68ad-4a58-933f-3cf24e5dc0a8
https://doi.org/10.23919/ECC.2013.6669799


  

  

Abstract— In this paper, we present a procedure for finding 
the best LFT uncertainty model by minimizing the  -infinity 
norm of the uncertainty set with respect to a nominal model 
subject to known input-output data. The main problem is how to 
express the data-matching constraints for convenient use in the 
optimization problem. For some uncertainty structures, they can 
readily be formulated as a set of linear matrix inequalities 
(LMIs), for some other structures, LMIs are obtained after 
certain transformations. There are also cases, when the 
constraints result in bilinear matrix inequalities (BMIs), which 
can be linearized to enable an efficient iterative solution.  
Essentially all LFT uncertainty structures are considered. An 
application to distillation modeling is included. 

I. INTRODUCTION 

For robust control design, a model with information about 
the model uncertainty is very useful. A standard model type 
for this purpose is a model consisting of a linear nominal 
model augmented by an uncertainty description in the form of 
a linear fractional transformation (LFT). 

Up till recently there was no clear consensus as to what 
constitutes a control-oriented uncertainty set [1]. According 
to [2], it is essential that the identification methods deliver 
optimal uncertainty sets, including a nominal model, rather 
than an uncertainty bound around a prefixed nominal model.  
Thus, the uncertainty set should be minimized over both the 
nominal model and the uncertainty bound, as done, e.g., in 
[3]. For an LFT type of uncertainty, it has recently been 
shown that the ∞  norm of the uncertainty is a rigorous 
measure of the worst-case degradation of the stability margin 
for a system under feedback control irrespective of the 
particular type of uncertainty structure [4]. 

If experimental input-output data are known, the uncer-
tainty set can be minimized and an optimal nominal model 
can be determined by matching the uncertainty description to 
input-output data. Solutions have already been developed for 
additive uncertainty [3] and output-multiplicative uncertainty 
[5], but a general procedure for arbitrary LFT uncertainty 
models has been lacking. The alternative approach of model 
matching, where an uncertainty set is minimized and an 
optimal model is determined to enclose a set of known 
models, has also been considered for additive uncertainty [6] 
as well as multiplicative types of uncertainty [7]. However, it 
has been mathematically proved that model matching cannot 
provide a smaller uncertainty bound than input-output 
matching when the same input-output data has to be satisfied 
[7]. 
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In this paper we present a procedure for finding the best 
LFT uncertainty model by minimizing the ∞  norm of the 
uncertainty with respect to a nominal model subject to known 
input-output data. Essentially all LFT uncertainty structures 
are considered. An application to distillation modeling is 
included. 

II. PROBLEM FORMULATION 

An uncertainty model expressed as a linear fractional 
transformation has the general form 

 1
0 21 11 12( )G G H I H H−= + ∆ − ∆ , (1) 

where G  is a transfer function of the true system, 0G  is the 
transfer function of a nominal model, and ∆  is the transfer 
function of an unknown bounded perturbation causing 
uncertainty about the true system. Depending on the 
particular type of uncertainty (e.g., additive, input or output 
multiplicative, inverse types of uncertainty, combinations of 
various types of uncertainty), the matrices 11H , 12H  and 

21H  are constant matrices or various combinations of 
constant matrices and the nominal transfer function. Well-
posedness (stability) of the model requires 11 1H ∞∆ < . In 
general, the uncertainty ∆  may be structured or unstructured, 
but in this paper we deal with unstructured uncertainty only. 

Assuming (1) to be time-invariant with all matrices 
proper and real rational, it has been shown that 

 ( ): sup ( j )
ω

σ ω∞∆ = ∆  (2) 

is a rigorous measure of the worst-case degradation of the 
stability margin due to a perturbation ∆  of a system (1) 
under feedback control [4]. In (2), ( )Aσ  denotes the largest 
singular value of A  and ω  denotes frequency.  Obviously, 
an uncertainty description having a smaller ∞∆  than an-
other uncertainty description is preferable from the viewpoint 
of feedback control. Hence, this can be used as a basis for 
choosing an uncertainty model for robust control design. 

It is assumed that a number of identification experiments 
have been performed to give data for finding an optimal 
uncertainty model structure. Thus, input-output data 
{ },k ku y , 1, ,k N=  , are assumed to be known for N  
experiments. These data satisfy 

 1
0 21 11 12( )k k k k ky G u H I H H u−= + ∆ − ∆ , (3) 

where k∆  is a model perturbation  required to satisfy the 
data in experiment k . It is clear that the size of k∆  depends 
not only on the type of uncertainty description (i.e., choice of 
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11H , 12H  and 21H ), but also on the choice of 0G . For a 
given uncertainty description and an optimal choice of 0G , 
the size of the smallest uncertainty required to satisfy the data 
of all experiments is thus 

 
0

min min max kG k∞ ∞∆ = ∆ . (4) 

Because the optimization involves the ∞  norm of the 
uncertainty, 0G  is not uniquely determined by (4). To find an 
optimal 0G , instead of solving (4), we minimize ( )( j )σ ω∆  
for a selection of frequency points, ω ∈ Ω . This gives 
sampled frequency responses of 0G  according to 

 ( )
0

0 ( j )
( j ) arg min max ( j )kG k

G
ω

ω σ ω= ∆ , ω∀ ∈ Ω . (5) 

A nominal transfer function 0 ( )G s  can then be found by 
fitting 0 ( j )G ω  to 0 ( j )G ω  subject to the appropriate data 
matching constraints to ensure that the uncertainty model 
satisfies known input-output data [8]. The transfer function 
fitting is not treated in the present paper, however. 

Since the optimization in (5) is done subject to (3), 
frequency samples of the input-output data have to be 
available. It is usually not a problem to calculate ( j )ku ω , 
ω ∈ Ω , for the input in a controlled identification experi-
ment. A convenient way of obtaining ( j )ky ω  is to fit a filter, 

kG , to the input-output data and to calculate a noise-free 
output according to ( j ) ( j ) ( j )k k ky G uω ω ω= . Note that kG  
is not assumed to be a true model appropriate for model 
matching, because ku  might not be persistently exciting in 
the various experiments [9]. 

The main problem treated in this paper is how to express 
the data-matching constraint (3) for convenient use in the 
optimization problem. For some uncertainty structures, (3) 
can readily be formulated as a set of linear matrix inequalities 
(LMIs), for some other uncertainty structures, LMIs are 
obtained after certain transformations of (3). There are also 
cases, when the constraints result in bilinear matrix 
inequalities (BMIs), which can be linearized to enable an 
efficient iterative solution. Essentially all known uncertainty 
structures of LFT type are considered. This makes it possible 
to find the uncertainty structure having the smallest ∞∆  for 
the given sets of data. 

III. LFT UNCERTAINTY MODEL STRUCTURES 

A. Left 4-Block Interconnection 
Fig. 1 illustrates a so-called left 4-block interconnection 

of an uncertainty structure [4]. It is defined by 

 0 2 1( )y G u w w= − + , (6) 

 1 1
2 2

w z
w zS Sw z

   = ∆      
,  (7) 

 1
2

z y
z u

   =     
, (8) 

where 1z  and 2z  are perturbation signals from the output 
side and the input side, respectively; 1w  and 2w  are distur-
bances affecting the output and the input, respectively; zS  
and wS  are perturbation and disturbance selector matrices. 

Fig. 1.  Left 4-block interconnection. 

Fig. 2.  Right 4-block interconnection. 

Fig. 3.  A mixed 4-block interconnection. 

Fig. 4.  Another mixed 4-block interconnection. 

The selector matrices define the particular uncertainty 
structure within the left 4-block interconnection structure. 
The choices 

[ ] [ ] 0 0 00 , 0 , , , ,0 0 0z w
I I IS I I SI I I

          ∈ ∈                    
, (9) 

give rise to various uncertainty structures such as additive, 
input multiplicative, inverse additive and output inverse 
multiplicative uncertainty as well as combinations of these. 

∆ wSzS

0G
1w1z

yu
2w2z

+ +
- +

∆ wSzS

0G
1w 1z

yu
2w2z

+ +
- +

∆ wSzS

0G
1w1z

yu
2w 2z

+ +
- +

∆ wSzS

0G
1w 1z

yu
2w 2z

+ +
- +



  

The special choice [4] 

 
1

00 ,0 0z w
I MS SI

−  = =      



, (10) 

where 0M  is a left-coprime factor of 0G , gives a left- 
coprime factorized uncertainty model.  

B. Other 4-Block Interconnections 
There are also other LFT interconnections. Fig. 2 illus-

trates a right 4-block interconnection defined by (6), (7) and 

 1 1
2 2

z wy
z u w

    = −        
. (11) 

With the chosen terminology, Fig. 3 and 4 illustrate mixed 
types of LFT interconnections. In addition to (6) and (7), the 
interconnection in Fig. 3 is defined by 

 1 1
2 2

0
0 0

z wy I
z u w

      = −            
 (12) 

and the interconnection in Fig. 4 by 

 1 1
2 2

0 0
0

z wy
z u I w

      = −            
. (13) 

In general, the interconnections are defined by (6), (7) and 

 1 1
2 2

z wy Sz u w
    = −        

,  11
22

0
0

SS S
 =   

, (14) 

where { }11 22, 0,S S I∈ . 

C. Model for All Interconnections 
Combination of (7) and (14) gives 

 ( ) 11
2

w z w z
w yS I S SS Sw u

−   = ∆ + ∆     
, (15) 

which inserted into (6) yields the “mixed” input-output model 

 [ ] ( ) 1
0 0 w z

yy G u I G S I S S u
−

∆
 = + − ∆ + ∆   

, (16) 

where 

 : z wS S SS∆ = . (17) 

Solving (16) for y  gives the uncertainty model 

 [ ] ( ) 1 0
0 0 w z

Gy G u I G S I S S uI
−

∆
 = + − ∆ + ∆   

 , (18) 

where 

 : z wS S SS∆ =  ,  [ ]0: 0
IS S I G = − −  

 . (19) 

We note that the matrices in (1) and (3) are 

 11H S∆= −  ,  0
12 z

GH S I
 =   

,  [ ]21 0 wH I G S= − . (20) 

IV. DERIVING DATA-MATCHING CONSTRAINTS 

A. Problem Overview 
Depending on zS , wS  and S , there are various problems 

that have to be solved in the derivation of data-matching 
constraints for the optimization in (5). 

• If 0S∆ ≠ , ∆  does not appear linearly in (18). If 
0S∆ = , (16) can be used instead of (18), but 

otherwise, a linearizing transformation has to be done. 
• If [ ]0zS I≠ , use of (18) will introduce a bilinear 

term containing 0 0G G∗  in the data matching constraint. 
This can be avoided by using (16). 

• If wS I= , both (16) and (18) will introduce a bilinear 

term containing 0 0G G∗ , which gives a BMI problem. 

• If [ ]T0wS I= , the BMI problem can be avoided by 

multiplying the terms in (16) or (18) by 1
0G−  from the 

left (assuming 0G  to be invertible). 
 From (18) it follows that well-posedness of the uncer-

tainty structure requires 
1

S
−

∆∞ ∞
∆ <  . When (16) is used 

instead of (18), the well-posedness restriction becomes 
1S −

∆∞ ∞∆ < . For many choices of zS , wS  and S , we 

have S I∆ = . This gives the requirement 1∞∆ < , which 
might be tighter than the true well-posedness requirement of 
(18). On the other hand, in many cases the well-posedness 
restriction vanishes when (16) is used, which makes it easier 
to find a numerical solution. 

B. Two Useful Lemmas 
We shall use two lemmas adapted from [10]. 

Lemma 1. Consider the matrix equation 

 C A B= ∆ . (21) 

There is a solution for ∆ , ( ) 1σ ∆ ≤ , if and only if 

 0AA C
C B B

∗

∗ ∗
 
 
 

 . (22) 

Here, X ∗  denotes the complex-conjugate transpose of X  
and 0P   denotes that P  is a positive semidefinite matrix. 

Lemma 2. Consider the matrix equation 

 1
22 21 11 12(1 )G H H H H−= + ∆ − ∆ , (23) 

where 11( ) 1Hσ <  and ( ) 1σ ∆ ≤ . For every ∆ , there is a ∆̂  
satisfying 
 22 21 12

ˆ ˆ ˆ ˆG H H H= + ∆ , (24) 
where 

 

1
22 22 21 11 11 11 12

1/2
21 21 11 11

1/2
12 11 11 12

ˆ : ( )
ˆ : ( )
ˆ : ( )

H H H H I H H H

H H I H H

H I H H H

∗ ∗ −

∗ −

∗ −

= + −

= − −

= −

 (25) 



  

if and only if ˆ( ) 1σ ∆ ≤ . For every ∆̂ , ˆ( ) 1σ ∆ ≤ , there is also 
a ∆  satisfying (23) if and only if ( ) 1σ ∆ ≤ . 

In the lemmas, ( ) 1σ ∆ ≤  is required. For an uncertainty 
( )σ δ∆ ≤ , we can formally impose this condition by writing 

the uncertainty as δ∆ , ( ) 1σ ∆ ≤ , and include the real-valued 
scalar δ  in a matrix adjacent to ∆  in (21) (i.e., A  or B ) 
and (23) (i.e., 11H  and 21H ). 

V. MAIN RESULTS 

In this section, data-matching constraints are derived for 
all LFT uncertainty models, represented by (16) and/or (18). 
The constraints are expressed in terms of input-output data 
{ },k ku y , 1, ,k N=  , and the perturbations are expressed as 

k kδ ∆ , ( ) 1kσ ∆ ≤ . For convenience, the combined vector of 
outputs and inputs is denoted 

 : k
k

k

yx u
 =   

. (26) 

The expressions apply individually for every considered 
frequency, ω ∈ Ω , but the frequency argument ‘ jω ’ is not 
included. 

A. [ ]T0wS I=  and 0S∆ =  

In this case, there is no input disturbance (the wS  
condition) and no connection between a disturbance and a 
possible perturbation on the output side ( [ ]0zS I=  or 

11 0S = , resulting in 0S∆ = ). 

The mixed input-output expression (16) yields 

 0k k k k z ky G u S xδ= + ∆ . (27) 

Application of Lemma 1 now gives the condition 

 0 0
(*)

k k

k z z k

I y G u
x S S x

α
∗ ∗

− 
 
 

 , (28) 

where (*)  indicates the complex-conjugate transpose of the 
elements in the symmetrical position of the full matrix. Here, 

 2max k
k

α δ= . (29) 

The solution of the optimization problem simplifies to 

 
0

0 ( j )
( j ) arg min

G
G

ω
ω α=   s.t. (28), k∀ . (30) 

Note that the problem is well-posed for arbitrarily large 
uncertainties ( kδ ) even though (18) restricts the allowable 
uncertainty by 1∞∆ ≤  if [ ]0zS I≠ .  

B. [ ]T0wS I= , [ ]0zS I≠ , and 0S∆ =  

This case occurs when there is no input disturbance ( wS  
condition), but a connection between a disturbance and a 
perturbation on the output side ( zS  condition and 11S I= , 

resulting in 0S∆ = ). 

The pure input-output expression (18) gives 

 0
0k k k k z k

Gy G u S uIδ  = + ∆   
 (31) 

for which Lemma 1 yields 

 0

0 0
0

(*)
k k

k k k zu k

I y G u
u G G u u S u

α
∗ ∗ ∗

− 
 + 

 , (32) 

where 0zuS =  if [ ]0zS I= , zuS I=  if zS I= . 

Unfortunately, (32) is a BMI when 0G  is a decision 
variable. Using (16) instead of (18) gives 

 ( ) 1
0k k k k z w k k z ky G u I S S S xδ δ −= + ∆ + ∆ , (33) 

which is nonlinear in terms of k∆ . However, by application 
of Lemma 2, (33) can be reformulated as 

 2
0 2 1/2

ˆ(1 )
(1 )

k
k k k k k z

k k

y
y G u S

u
δ δ

δ
 

= − − ∆  − 
, (34) 

which by use of Lemma 1 gives 

 0(1 )
0

(*) (1 )
k k

k k k zu k

I y G u
y y u S u

β β
β ∗ ∗
+ − 

 + + 
 , (35) 

where 
 2 2 1max (1 ) 0k k

k
β δ δ −= − ≥ . (36) 

The solution of the optimization problem is given by 

 
0

0 ( j )
( j ) arg min

G
G

ω
ω β=   s.t. (35), k∀ . (37) 

Note that the use of (16) and Lemma 2 in this case 
introduces the restriction 0 1kδ≤ <  although the original 
formulation in (18) does not have such a restriction. If this 
restriction is unacceptable, the optimization must be based on 
(32) and solved as described in Subsection E. 

C. [ ]T0wS I=  and 0S∆ =  

This case differs from Case A in that there is an input 
disturbance, but no output disturbance ( wS  condition), and 
no connection between a disturbance and a possible perturba-
tion on the input side ( [ ]0zS I=  or 22 0S = , resulting in 

0S∆ = ). 

The mixed input-output expression (16) yields 

 0 0k k k k z ky G u G S xδ= − ∆ . (38) 

Direct application of Lemma 1 would result in a BMI, but by 
first multiplying every term in (38) by 1

0G−  from the left 
(assuming 0G  to be invertible), we obtain 

 
1

0 0
(*)

k k

k z z k

I G y u
x S S x

α −

∗ ∗
 −
 
  

  (39) 



  

with the optimization problem 

 
1

0

1
0

( j )
( j ) arg min

G
G

ω
ω α

−

− =  s.t. (39), k∀ . (40) 

D. [ ]T0wS I=  and S I∆ =  or [ ]T0 I  

In this case, there is no output disturbance ( wS  condi-
tion), but a connection between a disturbance and a pertur-
bation on the input side ( [ ]0zS I≠  and 22S I= , resulting 
in the S∆  condition). 

Both the mixed and pure input-output relations are now 
nonlinear with respect to k∆ . However, they can be 
linearized by a simple reformulation. Pre-multiplication by 

1
0G− , use of the identity 1 1( ) ( )A I BA I AB A− −+ = + , and 

some further manipulations, result in 

 1
0 1

0
k k k k z k

I
G y u S y

G
δ−

−
 

= − ∆  
 

. (41) 

Lemma 1 now gives 

 
1

0
1

0 0
0

(*)
k k

k k k zy k

I G y u
y G G y y S y

α −

∗ −∗ − ∗

 −
 

+  
 , (42) 

where 0zyS =  if [ ]0zS I= , zyS I=  if zS I= . 

Equation (42) is a BMI with respect to the decision 
variable 1

0G− . By application of Lemma 2 to the mixed input-
output relation (16), we can similarly as in Subsection B 
derive 

 
2 1/22 1

0
(1 )ˆ(1 ) k kk k k k k z

k

yG y u S
u

δδ δ−  −− = − ∆  
 

. (43) 

By Lemma 1 we then obtain 

 
1

0(1 )
0

(*) (1 )
k k

k k k zy k

I u G y
u u y S y

β β
β

−

∗ ∗

 + −
 

+ +  
 . (44) 

Also here, use of Lemma 2 introduces the restriction 
0 1kδ≤ < . However, this restriction is not tighter than the 
well-posedness restriction ( ) ( ) 1k Sσ σ ∆∆ <  in the pure 
input-output relation (18). If the optimization is done subject 
to the BMI (42), an unrestricted solution can be obtained. 

E. wS I=  and 0S∆ =  or I  

In this case, there are input as well as output disturbances 
( wS  condition). The condition 0S∆ =  means that there is no 
direct connection between perturbations and disturbances, 
whereas S I∆ =  means that there are connections both on the 
input and the output side.  It turns out that both cases result in 
the same type of data-matching constraints. 

Because wS I= , it is clear that BMIs cannot be avoided 

by the techniques presented above. For 0S∆ = , (16) yields 

 [ ]0 0k k k k z ky G u I G S xδ= + − ∆ , (45) 

for which Lemma 1 gives 

 0 0 0 0
(*)

k k

k z z k

I G G y G u
x S S xα

∗

∗ ∗
 + −
 
  

 . (46) 

For S I∆ = , application of Lemma 2 to (16) gives the same 
expression as (45) with k∆  replaced by ˆ

k∆ . Thus, the data-
matching constraint (46) is also the same. 

A left-coprime factorized (LCF) uncertainty model is 
obtained with 0S =  and (10). This will also result in the 
mixed input-output model (45). Thus, a LCF model is 
equivalent with a full right 4-block interconnection with 

z wS S S I= = = . 

The bilinearity of (46) is caused by the term *
0 0G G . 

Assume now that a suboptimal solution 0G  has been found. 

Linearization of *
0 0G G  around this solution gives 

 
* * * *

0 0 0 0 0 0 0 0 0 0
* *

0 0 0 0 0 0

( ) ( )
.

G G G G G G G G G G
G G G G G G

∗

∗
≈ + − + −
= + −

 (47) 

Substitution of this approximation into (46) gives 

 
* *

0 0 0 0 0 0 0 0
(*)

k k

k z z k

I G G G G G G y G u
x S S xα

∗

∗ ∗
 − + + −
 
  

 , (48) 

which is now linear in the decision variable 0G . 

Because the second order perturbation neglected in the 
linearization is a positive (semi)definite matrix, 

 * * *
0 0 0 0 0 0 0 0 .G G G G G G G G∗ + −  (49) 

This means that (48) is a tighter constraint than the exact 
constraint (46) as long as the solution is suboptimal. This, in 
turn, means that the solution of an iteration using (48) will 
always satisfy (46). Thus, there is a smaller α  than the 
current solution α α=  that will satisfy (46) tightly. Since 
(48) is equivalent with (46) when 0 0G G= , a smaller α  will 
be found when the iteration is continued with (48). From this 
it follows that the solution will converge to the optimal 
solution satisfying (46). 

F. wS I= , [ ]0S I∆ =  or 0 0
0 I

 
  

 

In this case, there are input and output disturbances ( wS  
condition) and a direct connection between a perturbation 
and a disturbance on the input side; there is no direct 
connection between a possible perturbation and disturbance 
on the output side ( S∆  condition). 

The input-output expressions are here more complicated 
than in the previous cases. Equation (16) will give the data-
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Fig. 5.  Additive uncertainty. 
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Fig. 6.  Inverse output multiplicative uncertainty. 
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Fig. 7.  Output multiplicative uncertainty. 

 

matching condition 

 0 0 0
2

(1 ) (1 )
0

(*)
k k

k z z k zy k k

I G G y G u
x S S x S y y

α α
α α

∗

∗ ∗ ∗

 − + − −
 

−  
 . (50) 

This expression is bilinear both with respect to 0G  and α . 
The bilinearity in α  can be handled by the substitution  

2α αα= , where α  is kept constant during each iteration 
and updated before next iteration. When α  is larger than the 
optimal solution, the true bilinear constraint will always be 
satisfied when (50) is satisfied and α  will converge to the 
optimal solution. Note that 0 1α≤ <  is required. The 
bilinearity *

0 0G G  can be handled in the same way as in 
Subsection E. 

G.  wS I= , [ ]0S I∆ =  or 0
0 0
I 

  
 

Here, there are input and output disturbances ( wS  
condition) and a direct connection between a perturbation 
and a disturbance on the output side; there is no direct 
connection between a possible perturbation and disturbance 
on the input side ( S∆  condition). 

In this case the data-matching condition becomes 

     0 0 0
1

(1 ) (1 ) 0
(*) (1 )

k k

k k zu k k

I G G y G u
y y S u u

β β
β β β

∗

∗ − ∗
 + + + −
 

+ +  
 . (51) 

Also here, the expression is bilinear with respect to both 0G  
and the optimization parameter β . The bilinearities can be 

handled similarly as in Subsection F. In this case, 1(1 )β −+  

is replaced by 1(1 )β −+ . 

VI. APPLICATION TO DISTILLATION MODELING 

In this section the presented uncertainty modeling method 
is applied to a two-product distillation column. Identification 
data determined in [9] are used for the modeling. The 
distillation column was excited by a series of step changes in 
the so-called high- and low-gain directions. This resulted in 
six sets of input-output data, { },k ku y , 1, ,6k =  . A pre-
liminary nominal model was determined by least-squares 
fitting to all available data. The same data have also been 
used in uncertainty modeling by other, less general, methods 
[3], [6] for some uncertainty structures. 

A. Additive Uncertainty 

Additive uncertainty ( [ ]0zS I= , [ ]T0wS I= ) is an 
example of a Case A uncertainty structure. Fig. 5 shows the 
minimum uncertainty norm as function of frequency for both 
the preliminary (original) nominal model and the optimal 
nominal model. 

B. Inverse Output Multiplicative Uncertainty 
Fig. 6 illustrates inverse output multiplicative uncertainty, 

which is obtained by [ ]0zS I=  and [ ]T0wS I=  in Case 
A. Now there is also a well-posedness  limit ( ) 1σ ∆ ≤ , which 
is included in the figure. As can be seen, the original nominal 
model does not satisfy this limit for all frequencies. Overall, 
the uncertainty even for the optimal model is much larger 
than for additive uncertainty. 

C. Output Multiplicative Uncertainty 
Output multiplicative uncertainty is obtained in Case B by 

[ ]0zS I=  and [ ]T0wS I= .  Fig. 7 illustrates the result. It 
is very similar to inverse output multiplicative uncertainty, 
but in this case there is no well-posedness limit. 
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Fig. 8.  Input multiplicative uncertainty. 
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Fig. 9.  Inverse additive uncertainty. 
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Fig. 10.  Left-coprime factorized uncertainty. 

 
 

D. Input Multiplicative Uncertainty 
Input multiplicative uncertainty is obtained in Case C 

with [ ]0zS I=  and [ ]T0wS I= . As can be seen in Fig. 8, 
the original nominal model performs very badly, but also the 
optimal nominal model gives an uncertainty norm close to 1 
for all frequencies. There is no well-posedness limit. 

E. Inverse Additive Uncertainty 
Inverse additive uncertainty is obtained from Case C with 

[ ]0zS I=  and [ ]T0wS I= . For this uncertainty structure, 
both the original and the optimal model perform very badly. 
There is also a well-posedness limit, which is not satisfied at 
some frequencies even by the optimal model. See Fig. 9. 

F. Left-Coprime Factorized Uncertainty 
Left-coprime factorized (LCF) uncertainty is obtained 

from Case E  with z wS S S I= = = .  As Fig. 10 shows, this 
uncertainty structure performs slightly better than additive 
uncertainty. However, the uncertainty block in LCF uncer-
tainty is twice as large as in additive uncertainty. 

G. Other Uncertainty Structures 
All other uncertainty structures perform similarly to some 

of the already presented ones. However, for many of these, 
the dimension of the uncertainty block is larger than the basic 
size dim( ) dim( )y u× . 

Considering the size of the uncertainty block, additive 
uncertainty is probably the best uncertainty structure for the 
data in this application. 

VII. CONCLUSION 

We have presented a procedure using convex optimi-
zation techniques for finding the tightest ∞  bound on the 
unstructured uncertainty of any LFT uncertainty model such 
that it is not invalidated by known input-output data. By 
systematically considering all LFT models, we can find the 
best one (in terms of smallest ∞  norm) for robust control 
design. In this paper, only the frequency response of the 
resulting nominal model was determined at a number of 
frequency points. A parametric model (e.g., a state-space 
model) can be obtained by fitting it to the frequency response 
subject to the known data-matching constraints. 
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