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MPC for Wind Power Gradients — Utilizing Forecasts, Rotor Inertia,

and Central Energy Storage

Tobias Gybel Hovgaard, Lars F. S. Larsen, John Bagterp Jørgensen and Stephen Boyd

Abstract— We consider the control of a wind power plant,
possibly consisting of many individual wind turbines. The goal
is to maximize the energy delivered to the power grid under
very strict grid requirements to power quality. We define an
extremely low power output gradient and demonstrate how
decentralized energy storage in the turbines’ inertia combined
with a central storage unit or deferrable consumers can be
utilized to achieve this goal at a minimum cost. We propose a
variation on model predictive control to incorporate predictions
of wind speed. Due to the aerodynamics of the turbines the
model contains nonconvex terms. To handle this nonconvexity,
we propose a sequential convex optimization method, which
typically converges in fewer than 10 iterations. We demonstrate
our method in simulations with various wind scenarios and
prices for energy storage. These simulations show substantial
improvements in terms of limiting the power ramp rates
(disturbance rejection) at the cost of very little power. This
capability is critical to help balance and stabilize the future
power grid with a large penetration of intermittent renewable
energy sources.

I. INTRODUCTION

Today, wind power is the most important renewable energy

source. For the years to come, many countries have set goals

for further reduced CO2 emission, increased utilization of

renewable energy, and phase out of fossil fuels. In Denmark

one of the means to achieve this is to increase the share

of wind power to 50% of the electricity consumption by

2020 and to fully cover the energy supply with renewable

energy by 2050 [1]. Installing this massive amount of wind

turbines introduces several challenges to reliable operation of

power systems due to the fluctuating nature of wind power.

To mitigate fluctuations, modern wind power plants (WPP)

are equipped with variable speed wind turbine (VSWT)

technologies, which are interfaced with power electronics

converters that are required and designed to fulfil increas-

ingly demanding grid codes (see, e.g. [2], [3]).

The Grid Code (GC) is a technical document setting out

the rules, responsibilities and procedures governing the op-

eration, maintenance and development of the power system.

It is a public document periodically updated with new re-

quirements and it differs from operator to operator. Countries

with large amount of wind power have issued dedicated GCs

for its connection to transmission and distribution levels,

focused mainly on power controllability and power quality

[4], [5]. Particularly, Denmark establishes some of the most
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demanding requirements regarding active power control [6].

One of the regulation functions required is a power gradient

constraint that limits the maximum rate-of-change of non-

commanded variations in the power output from the WPP to

the grid. As of today, this constraint is softened if the power

production in the WPP drops due to the lack of wind. This is

merely out of necessity, and the GCs are expected to tighten

further regarding this requirement. Ensuring slow power

gradients reduces the risk of instability on the grid, allows

the TSO time for counteracting the change, and improves the

predictability of power output, enabling the WPP owner to

put less conservative bids on the power market.

Energy storage strikes the major problems of wind power

and joining energy storage with WPPs to smoothen variations

and improve the power quality is not a new idea. In, e.g.,

[7]–[10] the benefits, economics, and challenges of using

different means of storage, i.e., batteries, hydrogen, flywheels

etc., in combination with wind power are investigated. [11]

uses a Lithium-iron-phosphate battery to achieve power

forecast improvement and output power gradient reduction.

However, the additional cost of batteries or other energy

storages is usually the showstopper, at least as the market is

today. In our previous works, we have shown how thermal

capacity, e.g., in supermarket refrigeration, can be utilized

for flexible power consumption [12], [13]. It is very likely

that such techniques (where the capacity is a bi-product of

fulfilling another need) can play a major role instead of

adding expensive technologies which have storage as their

sole purpose. In the rest of this paper, we consider energy

storage in general without distinguishing actual storage from

flexible power consumption.

Traditionally, the rotor speed of modern wind turbines is

controlled for tracking the tip-speed ratio (TSR = angular

rotor speed × rotor radius / wind speed) for maximum

power extraction, constrained by the maximum rated speed.

However, due to the inertia of the rotating masses in the

turbine, there is a potential to improve the quality of the

power output by actively letting the rotor speed deviate

from the optimal setting. This might of course come at a

cost of slightly reduced power output. In, e.g., [14], [15]

turbine inertia is used for frequency response and power

oscillation damping. In addition, a vast amount of works exist

that address power optimization, fatigue load reduction and

pitch control for individual turbines in the more traditional

sense, e.g., [16]–[18]. Some of these take optimization and

model predictive control approaches to solve the problems

and many rely on a known operating point (e.g., local wind

speed and power set-point) for deriving linearized models.
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Other works consider the control of large wind farms where

the power extracted by upwind turbines reduces the power

that is available from the wind and increases the turbulence

intensity in the wake reaching other turbines (see, e.g., [19]–

[21]).

In [13], we demonstrate the appreciation of a sequential

convex programming (SCP) approach [22] for a model pre-

dictive control problem, controlling the power consumption

for commercial refrigeration with linear dynamics, convex

constraints, and a nonconvex objective. Inspired by this, we

now turn to the power producers’ side of the grid and apply

the same technique to a nonlinear wind turbine model. Our

method, like sequential quadratic programming (SQP) [23],

involves the solution of a sequence of (convex) quadratic

programs (QPs), but differs very much in how the QPs are

formed. In SQP, an approximation to the Lagrangian of the

problem is used; the linearization required in each step can

end up dominating the computation [24]. In our SCP method,

the convexification step is quite straightforward.

We demonstrate how model predictive control using fore-

casts of the wind speed can ensure very low power gradients

(e.g., less than 5% of the rated power per minute). We

do this with a central energy storage added to the WPP

and show how we can utilize the inertia in the individual

turbines to further improve this and minimize the extra

storage capacity needed. Our method gives no guarantee in

terms of convergence or optimality but is observed to perform

well in practice. [25] uses convex optimization to operate a

portfolio of electrical storage devices. In [26], we present a

change of variables that renders the problem fully convex

and demonstrate efficient closed-loop simulations with real

wind data.

II. WIND POWER PLANT

In this section, we describe the dynamic model used for the

WPP in the paper. The WPP can have a number of individual

wind turbines arranged in a certain geographical topology

and one central storage unit. We describe the simplified

dynamics of rotational motion, the constraints of the system

and the function reflecting the objective of operating the

plant.

A. Wind Turbine Model

The WPP in the examples consists of turbines using the

NREL 5MW model since this is openly available, but, could

easily be substituted with any specific turbine model. The

model is described in detail in, e.g., [27], [28]. We simplify

the model and derive the system equations as follows.

Neglecting the shaft torsion, we describe the turbine itself

by two dynamical states, the generator speed, ωg, in rad/s
and the generator torque, Tg, in Nm.

ω̇g =
1

Ig + Ir/N2

(

Tr

N
− Tg

)

, (1)

Ṫg =
1

τg
(Tg,ref − Tg) , (2)

where Ig and Ir are the inertias of generator and rotor

respectively, N is the gear ratio, τg is the time constant of

the generator and Tg,ref is the torque set-point. The torque,

Tr, delivered to the rotor by the wind is given by

Tr =
1

2
ρACP(λ, β)

v3

ωr

,

where ρ is air density, A is swept area of the rotor, v is

wind speed in m/s, ωr is angular rotor speed in rad/s, and

the coefficient of power, CP, is a look-up table (see Fig. 1)

derived from the geometry of the blades as a function of

TSR and blade pitch angle (β) in degrees. TSR is defined

as λ = Rωr/v, where R is the rotor radius in m. We use

ωr = ωg/N to eliminate ωr and describe the power produced

in the generator by

Pg = ηgTgωg,

where ηg is the generator efficiency.

B. Energy Storage Model

We use a simple integrator for illustrating the central

energy storage and describe its state-of-charge (Q [J]) in

discrete-time by

Q(t+ Ts) = Q(t) + c(t)Ts, (3)

where c is the charge rate in W and t denotes time. We

assume that the energy storage is lossless. However, in

reality batteries have losses just as, e.g., refrigeration systems

increase the heat load, and thereby the power loss, as the

temperatures are lowered to store extra cooling energy. A

loss term could be modeled as −ηlossQ(t) which is added to

the equation above, but, as our time-scale for storing energy

is in the range of seconds to minutes, we neglect this.

We can now find the power supplied from the WPP to the

grid

Pgrid = Pg − c.

β
(◦

)

λ
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Fig. 1: Coefficient of power CP. The peak power coefficient is
0.482.
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C. Control

Manipulated variables: Our optimizer manipulates the set-

points to the generator torque, Tg,ref , and the pitch angle,

βref , for each individual turbine in the WPP. Normally,

the pitch is controlled by an inner loop exercising a gain-

scheduled PI controller. This controller samples up to 100

times faster than our MPC and we set βref = β as long

as the slew rate limit on βref is observed. Additionally, we

manipulate the charge rate, c, to/from the central energy

storage.

Measured variables: The controller bases its decisions on

measurements of the rotational speed and generator torque

in each turbine, on the known current wind speed, and on

the filtered, predicted future values of the latter covering the

entire prediction horizon, Np.

D. Constraints

The extracted power, Pg, must be equal to or less than

the available power in the wind, Pw, which is a function of

the wind speed, v. The turbine is build for a rated power

and when the available power in the wind exceeds this

level, the blades gradually pitch out of the wind to keep

the extracted power at the rated level and reduce loads on

the turbine. Likewise, the extracted power can only follow

the available power curve down to a certain level, Pmin, due

to the mechanical design. Thus,

Pmin ≤ Pg ≤ Prated, (4)

Pg ≤ Pw(v), (5)

For security reasons, the turbine is turned off for wind speeds

above 25m/s. Therefore, Pw = 0, and the constraint (4) is

not relevant for such high wind speeds.
In addition, four physical constraints are given by the

system

0◦ ≤ β ≤ 90◦, (6)

−8◦/s ≤
β(t+ Ts)− β(t)

Ts

≤ 8◦/s, (7)

c ≤ Pg, (8)

and

0 ≤ Q ≤ µPrated, (9)

where we introduce the variable µ which is the maximum

needed storage capacity in per unit (pu), i.e., normalized by

rated power.
The rotational speed is usually limited by a maximum

rated speed, mainly due to too high loads on the turbine

at higher speeds. However, since we want to put the turbine

inertia in play, we allow for higher speeds and introduce the

parameter ωos which is the fraction of the rated maximum

speed that we accept as over-speed.

ωg,rated,min ≤ ωg ≤ (1 + ωos)ωg,rated,max. (10)

The power supplied to the grid Pgrid must fulfill the power

gradient

−∆pu ≤
Pgrid(t+ Ts)− Pgrid(t)

PratedTs

≤ ∆pu, (11)

where ∆pu ∈ [0, 1] is the grid code for maximum power

gradient in per unit with respect to rated power.

In this study, we do not include the wake effects that

couple the individual turbines through the downwind wind

flow which is affected by the amount of power extracted by

upwind turbines. This type of constraint is a focus of our

future work.

We define the set Ω as all (Tg,ref , βref , c) that satisfy the

system dynamics (1)–(3) and the constraints (4)–(11).

E. Cost

We assume in this study that the objective of the WPP is

to maximize the average power supplied to the grid. Alter-

native operating modes such as delta production (keeping

a reserve by producing less than possible) or frequency

response (reacting on frequency deviations on the grid to

support stabilization at nominal grid frequency) are thus

not considered. The supplied energy, E, over the period

[T0, Tfinal] is

E =

∫ Tfinal

T0

Pgriddt.

Furthermore, we have a cost on the available storage capac-

ity. For a period [T0, Tfinal] this is

S = max [µ]
Tfinal

T0
cstorage.

We can consider the storage price, cstorage, as a tuning

parameter or as directly reflecting, e.g., purchase price of

batteries divided by their lifetime, a service agreement with

a flexible consumer, etc. Thus, S is a cost in the design phase

only (or for simulations as we will show here).

F. Nominal Controller

We compare the performance of our proposed method to

the solution from the nominal wind turbine control strategy,

also defined in the NREL 5MW model. For natural reasons

this system is only capable of obeying the power gradient

constraint in three cases: 1) When the rate-of-change of the

available power in the wind is less than the power gradient

constraint. 2) When the available power in the wind only

changes from one point to another, where both are above

rated power. 3) When sufficiently large amounts of storage is

added and its charge/discharge is controlled by some kind of

predictive control with knowledge of the future wind speed.

III. MPC CONTROLLER

The WPP is influenced by disturbances from the wind

speed which we can predict (with some uncertainty) over

a time horizon into the future. The controller must obey

certain constraints, while maximizing the power supply and

limiting additional costs for storage. Economic MPC can

address all these concerns. Whereas the cost function in

MPC traditionally penalizes a deviation from a set-point,

the proposed economic MPC directly reflects the actual

costs of operating the plant. Like in traditional MPC, we

implement the controller in a receding horizon manner,

where an optimization problem over Np time steps (the

control and prediction horizon) is solved at each step. The
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result is an optimal input sequence for the entire horizon, out

of which only the first step is implemented. The optimization

problem is thus formulated as

maximize E − S,
subject to (Tg,ref ,βref , c) ∈ Ω,

(12)

where the variables are Tg,ref , βref and c (all functions of

time). Instead of (12) we solve a discretized version with Np

steps over the time interval [T0, Tfinal],

{Tg,ref ,βref , c} =
{

T k
g,ref , β

k
ref , c

k
}Np−1

k=0
. (13)

The MPC feedback law is the first move in (13). The

controller uses the initial state as well as predictions of the

wind speed for the time interval. The predictions could come

from any good sources available, see e.g., [29] where 10-

minute ahead predictions are implemented.

A. Sequential convex programming method

As we saw in §II, neither the feasible set Ω nor the

cost function term P are fully convex. Instead of using a

generic nonlinear optimization tool, we choose to solve the

optimization problem iteratively using convex programming,

replacing the nonconvex terms with convex approximations.

In each iteration, i, we perform a first-order Taylor expansion

of the nonconvex parts around the operating point found in

iteration i − 1, estimating the derivatives that involve table

look-ups by perturbing the parameters. As the wind speed

v is predicted we can use v3 as input to our model instead.

We establish the following linear approximations

T̂ i
r =Tr

i−1+

[

∆Tr

∆ωr

,
∆Tr

∆CP

]i−1[
ωi
r − ωi−1

r

Ci
P − Ci−1

P

]

,

P̂ i
g=Pg

i−1+

[

∆Pg

∆ωg

,
∆Pg

∆Tg

]i−1[
ωi
g − ωi−1

g

T i
g − T i−1

g

]

.

Thus, in each iteration we solve a convex optimization

problem, which can be done very reliably and extremely

quickly [30]. While our proposed method gives no theoretical

guarantee on the performance, we must remember that the

optimization problem is nothing but a heuristic for computing

a good control and that the quality of closed-loop control

with MPC is generally good without solving each problem

accurately.

B. Regularization

We use two different types of regularization in the op-

timization problem. To avoid oscillations from iteration to

iteration, we add proximal regularization of the form

ϕprox = ρprox

N−1
∑

k=0

‖Xk −Xk,prev‖22, (14)

for each of the control variables X = {Tg,ref , βref , c}. The

superscript ‘prev’ indicates that it is the solution from the

previous iteration and ρprox is a constant weight chosen to

damp large steps in each iteration. In addition, we add a

quadratic penalty on the rate-of-change (roc) of the manip-

ulable variables,

ϕroc = ρroc

N−1
∑

k=1

‖Xk −Xk−1‖22. (15)

This regularization term serves two purposes: It improves the

convergence of the sequential programming method, and also

discourages rapid changes, which helps reduce oscillations

and fatigue loads.

C. Algorithm

Algorithm 1 outlines the method. The term nominal refers

to the solution obtained from the nominal controller. We use

this as a baseline for initializing the algorithm. In MPC, the

solution from the previous time step is usually well suited

for warm-starting the algorithm.

Algorithm 1 Iterative optimization.

Initialize
{

T
0
g,T

0
r ,ω

0
g,ω

0
r ,C

0
P,T

0
g,ref ,β

0
ref

}

= {nominal(vk)}
Np

k=1,
i = 1.

Compute

T̂
i
g, P̂i

g and Ĉ
i
P, from {Tg,Tr,ωg,ωr,CP,Tg,ref ,βref}

i−1

and v.

Solve

maximize Ei − Si + ϕprox + ϕroc,

subject to (Ti
g,ref ,β

i
ref , c) ∈ Ω̂,

Update
{

T
i
g,T

i
r,ω

i
g,ω

i
r,C

i
P,T

i
g,ref ,β

i
ref

}

, and i = i+ 1
Repeat until convergence.

IV. RESULTS

In this paper, we apply the proposed method to a concep-

tual study limited to only one wind turbine. We implement

and solve our controller for different scenarios using CVX

[31], [32]. In this section, we report on results with a power

gradient constraint as low as 3% of the rated power per

minute (∆pu = 5 ·10−4pu/s) and with an allowed overspeed

of 50% above rated speed for short time intervals. We sample

with Ts = 1s intervals and use a horizon of 5 minutes (Np =
300) in this case. Obviously, a wide range of solutions can

be obtained depending on the specific ramp rate of the wind

speed, the wind speeds before and after the change occurs,

the allowed amount of overspeed and the definition of storage

price versus power sales price. In this paper, we give proof-

of-concept of the method, using a few selected trajectories,

and for the next version of this work, we will derive a more

generalized measure of the relation between wind ramp rates,

overspeed ratio, power constraint, and storage capacity.

Fig. 2 shows examples of how our proposed method per-

forms in different cases, while satisfying the power gradient

constraint. For all four cases shown in the figures, we can

calculate the total power delivered to the grid from t =
0 . . . 800s. For the scenario in figures 2(a)–2(b) (wind speed

changes from 10m/s to 8m/s), the available power in the

wind is below the rated power for the entire interval. Thus,
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Fig. 2: Test of power gradient satisfaction. We use pu as the unit for all quantities, except the state-of-charge (Q) which is normalized
first with respect to maximum storage capacity. In all scenarios we let the wind speed drop from v1 to v2 linearly from t = 400s to
t = 430s, and we show cases with high and low storage cost. Pg,nom is the power output from the nominal controller.

no extra power exists for accelerating the rotor beyond rated

speed. If central energy storage is relatively cheap (Fig. 2(a))

this is used entirely as a buffer for achieving the commanded

power gradient while the turbine behaves exactly as with the

nominal controller. In this case, the total amount of energy

delivered to the grid is equal to the nominal case too. As the

price of energy storage increases the controller trades off the

power production that is lost during the phase where the rotor

is accelerated, in order to use that kinetic energy during the

power ramp to reduce the peak of needed storage capacity.

In Fig. 2(b) the storage capacity is reduced by 26.5% at the

cost of 1.3% of the energy delivered to the grid, compared to

Fig. 2(a). For the scenario in figures 2(c)–2(d) (wind speed

changes from 12m/s to 10m/s), the available power in the

wind goes from above rated to below rated power. In this

case, the rotor can be accelerated to reach the maximum

allowed speed just when the available power in the wind

begins to drop. This kinetic energy is used during the power

ramp no matter how cheap storage is, as it only adds to

the total delivered energy. In Fig. 2(c) the amount of energy

delivered to the grid is 1.6% higher than with the nominal

controller. When storage cost is increased, the utilization of

stored inertia is shifted towards the time when the storage

needs peak, to reduce the required additional capacity, and

the extra production gained otherwise is now traded off with

storage cost. In Fig. 2(d) the energy delivered is just 0.03%

less than with the nominal controller while the storage need

is reduced by almost 7%.

A. Convergence and Computation

When initialized with the trajectory from the nominal

controller, the proposed method generally converges in 5–

10 iterations. In MPC, however, the open-loop trajectory
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from the previous run of the optimizer, shifted one time-

step, is an excellent guess on the next outcome and is well-

suited for warm-starting the algorithm. Using this warm start

initialization, the method generally just need a couple of

iterations to converge.

V. CONCLUSION

In this paper, we present an approach to power gradient

reduction for fulfilling future, tighter grid codes and for

improving the quality of power delivered to the grid from

wind power plants. We utilize turbine inertia as a resource

of distributed energy storage, limited by the rotational speed,

in addition to a central storage unit which is associated with

an extra cost. Our method is based on convex optimization,

solved iteratively to handle the nonconvexity of the aerody-

namics. Simulation on realistic models reveal a significant

ability to reject the disturbances from fast changes in wind

speed, ensuring certain power gradients, while keeping the

amount of produced power close to nominal. We can easily

trade off lost production versus price of extra energy storage.
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