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Boundary port Hamiltonian control of a class of nanotweezers

Hector Ramirez and Yann Le Gorrec

Abstract— Boundary controlled-port Hamiltonian systems
have proven to be of great use for the analysis and control
of a large class of systems described by partial differential
equations. The use of semi-group theory, combined with the
underlying physics of Hamiltonian systems permits to prove
existence, well-possessedness and stability of solutions using
constructive techniques. On other hand, the differential geomet-
ric representation of these systems has lead to finite dimension
approximation methods that conserves physical properties such
as the interconnection structure and the energy. These results
are applied to the modelling and control of a class of nan-
otweezers used for DNA-manipulation. The Nanotweezer may
be modelled as a flexible beam interconnected with a finite
dimensional dynamical system representing the manipulated
object. A boundary controlled-port Hamiltonian model for
the ensemble and an exponentially stabilizing controller are
proposed. A geometric approximation scheme is used to reduce
the infinite dimensional system and numerical simulations of
the closed-loop system presented.
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Fig. 1. Silicon nanotweezers

I. INTRODUCTION

Recent technological progresses have made possible the

manipulation of single biological molecules by using several

devices or methods such as: magnetic tweezers [1], [2],

optical tweezers [3], AFM cantilevers [4] and microfibers

[5], [6]. The single molecule manipulation is of great interest

in order to elucidate their basic characteristics and is of

particular interest in the case of DNA molecules [7]. Some

promising tools for the manipulation of DNA molecules are

silicon nanotweezers, (Figure 1).

The principle of silicon nanotweezers is to trap DNA

bundle between the two arm tips by using dielectrophore-

sis and to characterize the DNA mechanical properties by

using electrostatic actuation. Such actuator has been used

for the monitoring of enzymatic reactions on DNA. It has
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been shown that nanotweezers are so sensitive to the DNA

stiffness variation that it becomes flexible. As a consequence,

current microfabrication processes tend to reduce the thick-

ness of the beams in order to improve the sensitivity of the

actuator. This naturally leads to control problems that may

be formulated in the frame of Boundary Control Systems

[8]. The work proposed in this paper has been done in the

perspective of very compliant actuators.

In this paper we propose to use the framework of port

Hamiltonian system for the modelling, control and simula-

tion of a class of nanotweezers. Indeed, this framework is

particularly adapted for the case of interconnected systems

with some interesting perspectives for the generalization to

the manipulation in liquid phase (multiphysic modelling).

Furthermore recent results on the stabilization of boundary

control systems by using dynamic boundary port Hamilto-

nian controllers have been given in [9], [10]. These results are

recalled and applied to the system under study. The results

are validated by numerical simulations of a discretized model

of the closed-loop system. The model approximation is

performed by using a geometric discretization method [11],

which preserves the geometric structure and energetic prop-

erties of the boundary controlled-port Hamiltonian model.

The paper is organized as follows. In Section II the port

Hamiltonian model of the nanotweezer is presented. The

model consist of the interconnection of a flexible beam, mod-

elled as a Timoshenko beam, and a DNA-bundle, modelled

as a mass-spring-damper system. In Section III the stability

analysis of the ensemble twezeer - DNA bundle - controller

is analysed using the framework of boundary controlled

systems. Section IV presents the geometric reduction of

the closed-loop system and some numerical simulations of

the displacement of the DNA-bundle. Finally some closing

remarks are given in Section V

II. PORT HAMILTONIAN MODELLING OF NANOTWEEZERS

A simplified model of a nanotweezer used for DNA

manipulation [12] is presented in Figure 2. The trapped DNA

bundle is approximated by a mass spring system attached

at the tip of the tweezer. The arm is actuated by using

electrostatic forces generated by a comb drive actuator. In

this paper we do not represent the shuttle and suspension

system and consider that we can directly control the force

and the torque at the point a. We also assume that it is only

possible to measure the transversal and angular velocities

at the point a. The total system, may be divided into three

subsystems (Figure 3) the flexible arm, the DNA-bundle at

the tip of the gripper and the port Hamiltonian controller. The

flexible arm is modelled as a Timoshenko beam (infinite di-
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Fig. 2. DNA manipulation through port Hamiltonian control
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Fig. 3. Interconnexion and control strategy

mensional system) while the DNA-bundle may be modelled

as a finite dimensional mechanical system. The subsystems

are interconnected through their boundary power conjugated

port variables. In Figure 3 the interconnection boundary port

variables as well as the causality (depicted with arrows) are

given .

A. The Timoshenko beam

The Timoshenko beam has been widely studied as a

distributed parameter port Hamiltonian system [13] and as

BCS [14] and the exponential stability of the system has

been proved for static boundary feedback [15], [16]. The

BCS is defined as

∂
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
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

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
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(1)

where the following state (energy) variables have been

defined: x1 = ∂w
∂z

(z, t) − φ(z, t) the shear displacement,

x2 = ρ(z)∂w
∂t

(z, t) the transverse momentum distribution,

x3 = ∂φ
∂z

(z, t) the angular displacement, and x4 = Iρ
∂φ
∂t
(z, t)

the angular momentum distribution, for z ∈ (a, b), t ≥ 0,

where w(t, z) is the transverse displacement of the beam

and φ(t, z) is the rotation angle of a filament of the beam.

The coefficients ρ(z), Iρ(z), E(z), I(z) and K(z) are the

mass per unit length, the rotary moment of inertia of a

cross section, Youngs modulus of elasticity, the moment of

inertia of a cross section, and the shear modulus respec-

tively. The matrices P1 and P0 defines the skew-symmetric

differential operator of order 1 acting on the state space

X = L2(a, b,R
4), J = P1

∂
∂z

+P0. The energy of the beam

is expressed in terms of the energy variables,

E =
1

2

∫ b

a

(

Kx2
1 +

1

ρ
x2
2 + EIx2

3 +
1

Iρ
x2
4

)

dz

=
1

2

∫ b

a

x(z)⊤(Lx)(z)dz =
1

2
‖x‖2L

The boundary port variables are obtained by using integration

by parts and factorization in order to define an extended

Dirac structure including the boundary [14]. They also can

be directly parametrized from P1 [14], [15] leading to:

[
f∂,Lx

e∂,Lx

]

=















(ρ−1x2)(b)− (ρ−1x2)(a)
(Kx1)(b)− (Kx1)(a)

(I−1
ρ x4)(b)− (I−1

ρ x4)(a)
(EIx3)(b)− (EIx3)(a)
(ρ−1x2)(b) + (ρ−1x2)(a)
(Kx1)(b) + (Kx1)(a)

(I−1
ρ x4)(b) + (I−1

ρ x4)(a)
(EIx3)(b) + (EIx3)(a)















.

The control objective is to control the translational and

angular position of the DNA-bundle. The physical ports are

given by the translational force acting at the base of the beam

(input), and the translational velocity at the base of the beam

(output). All physical ports are hence located on the point

a of the beam and directly associated with the dynamic of

the suspension mechanism and/or base of the beam. In order

to achieve that the input and output variables of the flexible

arm coincide with the physical ones we define the following

input and outputs for the beam:

u =
[
v(b) ω(b) F (a) T (a)

]
,

y =
[
F (b) T (b) −v(a) −ω(a)

]
,

(2)

which is achieved by defining

u = W

[
f∂,Lx

e∂,Lx

]

, y = W̃

[
f∂,Lx

e∂,Lx

]

,

where

W =







1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1
0 −1 0 0 1 0 0 0
0 0 0 −1 0 0 1 0






,

W̃ =







0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0
1 0 0 0 0 −1 0 0
0 0 1 0 0 0 0 −1






.



It can by shown that with this choice of input and output the

system (1) defines a an abstract boundary control system.

Furthermore Ax = P1(∂/∂z)(Lx) + P0Lx with domain

D(A) =
{

Lx ∈ H1(a, b;Rn)
∣
∣
∣

[
f∂,Lx(t)

e∂,Lx(t)

]

∈ kerW
}

generates a contraction semigroup on X and the energy

balance equation is defined as:

dE

dt
= uT y

B. DNA-bundle

The DNA-bundle may be modelled as ideal mass-spring-

damper systems, and thus admits a port Hamiltonian system

representation. Let us denote with the sub-index b the system

representing the DNA-bundle. Then we may write

v̇b = (Jb −Rb)
dEb

dvb
+ gbub

yb = g⊤b
dEb

dvb
,

where vb = [qb1 , qb2 , pb1 , pb2 ]
⊤, qb1 , qb2 are the generalized

coordinates, with qb1 the distance from the equilibrium

configuration and qb2 the rotation angle, pb1 , pb2 are the

transversal and rotational generalized momenta respectively,

Jb = −J⊤

b , Rb = R⊤

b > 0 ∈ R
4 × R

4, the interconnection

and damping matrices respectively, defined as

Jb =

[
0 I
−I 0

]

, Rb =

[
0 0
0 Cb

]

,

with Cb =
[
cb1 0
0 cb2

]

∈ R
2 × R

2, where cb1 , cb2 ∈ R are the

scalar damping coefficients corresponding to the transversal

and rotational translation respectively. The Hamiltonian of

the system is given by the kinetic and elastic energy:

Eb =
1

2

(
kb1q

2
b1

+ kb2q
2
b2

)
+

1

2

(

p2b1
mb

+
p2b2
mIb

)

where kb1 , kb2 are the translational and rotational spring

coefficients respectively and mb,mIb are the mass and

moment of inertia respectively. The total force acting on

the DNA bundle, is completed with the contribution of the

transversal and angular force at point b, of the beam. Hence

the input map is gb ∈ R
4×R

2, gb =
[
0 I

]⊤
and the inputs

ub = [ub1 , ub2 ]
⊤ ∈ R

2 may be identified with the boundary

variables of the beam at the point b

ub =

[
ub1

ub2

]

=

[ ∂E
∂x2

(b)
∂E
∂x4

(b)

]

=

[
F (b)
T (b)

]

.

The outputs correspond to the transversal and angular veloc-

ity of the mass at the point b, and as it has seen it corresponds

to the inputs at the point b, for the flexible arm. The finite

dimensional PHS of the DNA-bundle is given by

v̇b =

[
0 I
−I −Cb

]
dEb

dv
+

[
0 0
I 0

]

ub

yb =
[
0 I

] dEb

dv
and corresponds to a strictly passive system with quadratic

dissipation rate s = dEb

dvb

⊤

Cb
dEb

dvb
.

III. STABILITY ANALYSIS AND CONTROL DESIGN

In this section we just recall some stability results of

dynamic boundary control systems. In [15] it is shown that

a power conserving interconnection , i.e.,

u = r − yc,

y = uc,
(3)

with r ∈ R
n the new input of the system, of a impedance

energy preserving BCS, i.e., that satisfies 1
2

d
dt
‖x(t)‖2

L
=

u(t)y(t), and a linear strictly positive real (SPR) finite

dimensional system defines again a BCS on an extended

space. This property is detailed in Theorem 1.

Theorem 1. [15] Let the state of the open-loop BCS satisfy
1
2

d
dt
‖x(t)‖2

L
= u(t)y(t). Consider a LTI strictly passive

finite dimensional system with storage function Ec(t) =
1
2 〈v(t), Qcv(t)〉Rm , Qc = Q⊤

c > 0 ∈ R
m × R

m. Then the

feedback interconnection of the BCS and the finite dimen-

sional system is again a BCS on the extended state space

x̃ ∈ X̃ = X×V with inner product 〈x̃1, x̃2〉X̃ = 〈x1, x2〉L+
〈v1, Qcv2〉V . Furthermore, the operator Ae defined by

Aex̃ =

[
JL 0
BcC Ac

] [
x
v

]

with

D(Ae) =
{[

x
v

]

∈

[
X
V

] ∣
∣
∣Lx ∈ HN (a, b;Rn),





f∂,Lx

e∂,Lx

v



 ∈ ker W̃D

}

,

where

W̃D =
[

(W +DcW̃ Cc)
]

generates a contraction semigroup on X̃ .

In [15] it is shown that asymptotic stability of closed loop

system can be proved as long as the finite dimensional system

is a positive system. It has also been proved that in the case

of static feedback exponential stability can be achieved if the

feedback is strictly positive [16]. These results have recently

been extended and in [9], [10] it has been shown that these

results can be generalized to strictly passive controllers.

Theorem 2. [9], [10] Consider the BCS defined by Theorem

1 with r(t) = 0, for all t ≥ 0. If the linear finite dimensional

control system is strictly passive, then the BCS system is

exponentially stable.

Now, for the ensemble nanotweezer - DNA bundle -

controller, the control strategy consists in applying a constant

force F ∗
a to drive the system to the desired equilibrium

configuration q∗b . The control is completed with a transversal

and angular velocity feedback loop in the point a in order to

stabilize the system around some equilibrium q∗b . The prob-

lem is similar to the one solved in [10], [13] using energy

shaping methods, but we will exploit the port Hamiltonian

structure of the global system to define a BCS and use

Theorem 2 to guarantee exponential stability.



It remains to consider a controller at the point a. To this

end a simple static velocity feedback loop is considered

ya1 = −k1v(a), ya2 = −k2ω(a).

where k1, k2 > 0 are the control gains. This feedback

introduces dissipation at the point a and is the most simples

case of interconnection of dissipative system. Hence the

dissipation of the complete extended system is given by s =
dEa

dva

⊤

Ca
dEa

dva
−k1

∂E
∂x1

2
(a)−k2

∂E
∂x3

2
(a) implying specifically

that we can increase the damping of the system.

IV. SPATIAL REDUCTION AND SIMULATION

Sections II and III present abstract formulations for the

construction of the mathematical model of the system and the

synthesis of the controller. In this section we exploit the port

Hamiltonian structure of the abstract control system to reduce

it to an explicit finite dimensional port Hamiltonian system,

which can be simulated using standard numerical algorithms.

To this end the mixed-finite element discretization method

proposed in [11] is used. The method is based in approximat-

ing flows and efforts with differential forms related to their

physical (geometrical) natural. In the case of the Timoshenko

beam, defined on a one-dimensional spatial domain, we

distinguish between zero forms (functions), corresponding to

the efforts (force and torque) and one-forms, corresponding

to the flows (translational and angular velocities). The reader

is referred to [11], [17]–[20] for detailed revisions of the

method, and to [21] for its application to the flexible beam.

A. Power preserving discretization

The infinitesimal energy variables (flow variables) are

denoted by fxi , i = 1, . . . , 4, and corresponds to the partial

derivative with respect to time of the state variables. Their

approximation on an infinitesimal section Lab of an one

dimensional spatial domain L is given by

fxi(t, z) = fxi

abω
xi

ab(z) (4)

where the one-forms ωxi

ab satisfy
∫

Lab

ωxi

ab = 1.

The co-energy variables (infinitesimal efforts) are denoted

by exi and corresponds to the variational derivative of the

Hamiltonian (energy). Their approximation on Lab is given

by

exi(t, z) = exi
a ωxi

a (z) + exi

b ωxi

b (z), (5)

where the zero-forms ωxi
a , ωxi

b , satisfy

ωa(a)
xi = 1, ωa(b)

xi = 0, ωb(a)
xi = 0, ωb(b)

xi = 1.

The dynamic equations of the flexible structure may then be

approximated by replacing (4) and (5) in (1) as follows

fx1

ab ω
x1

ab = ex2

a dωx1

a + ex2

b dωx2

b − ex4

a ωx4

a dz − ex4

b ωx4

b dz

fx2

ab ω
x2

ab = ex1

a dωx1

a + ex1

b dωx1

b

fx3

ab ω
x3

ab = ex4

a dωx4

a + ex4

b ωx4

b

fx4

ab ω
x4

ab = ex3

a dωx3

a + ex3

b dωx3

b + ex1

a ωx1

a dz + ex1

b ωx1

b dz

where d denotes the exterior derivative of differential forms

[22]. From the previous relation the following compatibility

conditions between one and zero forms are deduced

−ωxi

ab = dωxi
a ωxi

ab = dωxi

b
∫

Lab

ωx4

a dz ωx1

ab = ωx4

a dz

∫

Lab

ωx4

b dz ωx1

ab = ωx4

b dz

∫

Lab

ωx1

a dz ωx4

ab = ωx1

a dz

∫

Lab

ωx1

b dz ωx4

ab = ωx1

b dz

(6)

Using the compatibility conditions an algebraic relation

between the approximated flows and efforts is obtained

fx1

ab = ex2

b − ex2

a −

∫

Lab

ωx4

a dz ex4

a −

∫

Lab

ωx4

b dz ex4

b

fx2

ab = ex1

b − ex1

a

fx3

ab = ex4

b − ex4

a

fx4

ab = ex1

b − ex1

a +

∫

Lab

ωx1

a dz ex1

a +

∫

Lab

ωx1

b dz ex1

b

(7)

Since the goal is to achieve a finite dimensional port

Hamiltonian system it is necessary to guarantee that the

approximated system in energy preserving. To this end

the net power of the infinitesimal section is calculated

Pnet
ab =

∑4
i=1

∫

Lab
fxiexi + fBeB , where fBeB is the

energy flowing through the boundaries of the system. To

identify the port-variables of the discretized interconnection

structure Pnet
ab is expressed in terms of the approximated

flows and efforts, and using the compatibility conditions we

obtain (6)

Pnet
ab =

4∑

i=1

fxi

ab e
xi
a b+ fBeB , (8)

where

ex1

ab = α′ex1

a + αex1

b , ex2

ab = αex2

a + α′ex2

b ,

ex3

ab = α′ex3

a + αex3

b , ex4

ab = αex4

a + αex4

b ,
(9)

correspond to the generalized efforts, with α ∈ [0, 1], α =
∫

Lab
ωx1

b (z)ωx1

ab (z), α
′ = 1−α and where fBeB = ex1

b ex3

b +
ex2

b ex4

b −ex1

a ex3

b −ex2

a ex4

a . The generalized efforts (9) are the

conjugated efforts of the approximated flow variables, and

permit to express the net power (8) as the scalar pairing

Pnet
ab = 〈eab|fab〉 =

4∑

i=1

fxi

ab e
xi

ab + fBeB ,

where fab = [fx1

ab , f
x2

ab , f
x3

ab , f
x4

ab , f
B ] and eab =

[ex1

ab , e
x2

ab , e
x3

ab , e
x4

ab , e
B ]. Hence from (7) and (9) the following



implicit system is obtained















0 0 0 0 0 0 0 0
0 0 0 0 −α α′ 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 −α α′

−1 0 0 0 1 1 β −β′

0 −1 0 0 0 0 1 1
0 0 −1 0 0 0 1 1
0 0 0 −1 0 0 0 0















︸ ︷︷ ︸

Fab















fx1

ab

fx2

ab

fx3

ab

fx4

ab

−ex2

a

ex2

b

−ex4

a

ex4

b















+















−1 0 0 0 α′ α 0 0
0 −1 0 0 0 0 0 0
0 0 −1 0 0 0 α′ α
0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 −1 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 β β′ −1 1















︸ ︷︷ ︸

Eab















ex1

ab

ex2

ab

ex3

ab

ex4

ab

ex1

a

ex1

b

ex3

a

ex3

b















= 0

(10)

where β ∈ [0, b−a], β =
∫

Lab
ωx2

a and β′ = (b−a)−β. The

implicit system (10) actually defines a Dirac structure [23],

thus implying that the discretized interconnection structure

of the infinitesimal section of the Timoshenko beam is power

preserving. For simulation and control design purposes it

may be convenient to have an explicit representation of

(10). This is easily achieved by properly assigning the

input and the outputs at the boundaries. In particular, the

choice of inputs and outputs (2) leads to the following port

Hamiltonian system


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where ẋab
i , Eab, uab

i and yabi correspond respectively, to the

discretized state variables, Hamiltonian function, input and

output port variables on the infinitesimal section Lab. In this

case the zero forms have been chosen such that α = 1 (α′ =
0) and β = b− a (β′ = 0).

To obtain the complete model of the beam, the infinitesi-

mal sections are interconnected in a power preserving man-

ner. The efforts of the section j that represent outputs in b
are interconnected with the efforts of j + 1 that represent

Fig. 4. Open-loop response, k1 = k2 = 0.

Fig. 5. Closed-loop response, k1 = k2 = 1.

the inputs in a, and the same for the physical flows. In

this case the interconnection of the infinitesimal sections are

performed as uab
1 (j + 1) = yab3 (j), uab

2 (j + 1) = yab4 (j),
uab
3 (j) = −yab1 (j + 1) and uab

4 (j) = yab3 (j + 1).

B. Simulations

Figures 4 and 5 show the transversal position of the

DNA-bundle when a step input of force at time t = 0 is

applied at the base of the nanotwezeer. All the numerical

parameters of the Timoshenko beam and the DNA-bundle

have been selected equal to one (= 1) in the simulations,

the Timoshenko beam has been divided in 10 infinitesimal

subsections, L = 1, and b− a = 0.1. From Figure 4 (open-

loop response) it may be observed that the system is always

exponentially stable since the DNA-bundle acts as strictly

passive controller (Theorem 2). However, the static feedback

at the point a introduces additional damping to the system

and, as expected, the closed-loop system reaches the desired

equilibrium considerably faster as may be observed in Figure

5.



V. FINAL REMARKS

The port Hamiltonian framework has been used to model,

control, reduce and simulate a class of nanotweezers used

for DNA-manipulation. The ensemble nanotweezer - DNA

bundle - controller has been formulated as an abstract control

system, namely a boundary controlled port Hamiltonian

system and using semi-group theory it has then been shown

that the closed-loop system is exponentially stable. The

infinite dimensional system has then been approximated as

a finite dimensional port Hamiltonian system by using a

power preserving discretization scheme that preserves the

geometric structure and the energy of the system. Using the

approximated model numerical simulations have been carried

out to illustrate the results.

The main contribution of this work is to show how the port

Hamiltonian framework may be used for practical modelling

and control of complex physical systems, in particular a class

of nanotweezers for DNA manipulation. We started with an

abstract formulation and ended with numerical simulation

conserving in every step the physical properties of the

system. Future work will deal with the practical implemen-

tation of the control scheme using the experimental set-up

presented in Figure 1, and with more complex submodels for

the DNA-bundle and the controller.

REFERENCES

[1] F. Amblard, B. Yurke, A. Pargellis, and S. Leibler, “A magnetic ma-
nipulator for studying local rheology and micromechanical properties
of biological systems,” Review of Scientific Instruments, vol. 67, no. 3,
pp. 818–827, 1996.

[2] C. Gosse and V. Croquette, “Magnetic tweezers: micromanipulation
and force measurement at the molecular level,” Biophysical Journal,
vol. 82, no. 6, pp. 3314–3329, 2002.

[3] R. Simmons, J. Finer, S. Chu, and J. Spudich, “Quantitative measure-
ments of force and displacement using an optical trap,” Biophysical

Journal, vol. 70, no. 4, pp. 1813–1822, 1996.

[4] E. Florin, V. Moy, and H. Gaub, “Adhesion forces between individual
ligand-receptor pairs,” Science, vol. 264, no. 5157, p. 415, 1994.

[5] A. Ishijima, T. Doi, K. Sakurada, and T. Yanagida, “Sub-piconewton
force fluctuations of actomyosin in vitro,” Nature, 1991.

[6] P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. Viovy, D. Chatenay, and
F. Caron, “Dna: an extensible molecule,” Science, vol. 271, no. 5250,
p. 792, 1996.

[7] C. Bustamante, Z. Bryant, and S. Smith, “Ten years of tension: single-
molecule dna mechanics,” Nature, vol. 421, no. 6921, pp. 423–427,
2003.

[8] R. Curtain and H. Zwart, An introduction to infinite-dimensional linear

systems theory, ser. Texts in applied mathematics. New York, USA:
Springer-Verlag, 1995.

[9] H. Ramirez and Y. L. Gorrec, “Exponential stability of a class of pdes
with dynamic boundary control,” in Submitted to the American Control

Conference, Washington, DC, June 17 - 19 2013.

[10] A. Macchelli, “Boundary energy shaping of linear distributed port-
Hamiltonian systems,” in Proceedings of the 4th IFAC workshop

on Lagrangian and Hamiltonian methods for non-linear control,
Bertinoro, Italy, August 2012.

[11] G. Golo, V. Talasila, A. van der Schaft, and B. Maschke, “Hamiltonian
discretization of boundary control systems,” Automatica, vol. 40, no. 5,
pp. 757 – 771, 2004.

[12] M. Boudaoud, Y. Haddab, and Y. Le Gorrec, “Modeling and optimal
force control of a nonlinear electrostatic microgripper,” Mechatronics,

IEEE/ASME Transactions on, vol. PP, no. 99, pp. 1 –10, 2012.

[13] A. Macchelli and C. Melchiorri, “Modeling and control of the Tim-
oshenko beam. the distributed port Hamiltonian approach,” SIAM

Journal on Control and Optimization, vol. 43, no. 2, pp. 743–767,
2004.

[14] Y. Le Gorrec, H. Zwart, and B. Maschke, “Dirac structures and
boundary control systems associated with skew-symmetric differential
operators,” SIAM Journal on Control and Optimization, vol. 44, no. 5,
pp. 1864–1892, 2005.

[15] J. A. Villegas, “A port-Hamiltonian approach to distributed parameter
systems,” Ph.D. dissertation, Universiteit Twente, 2007.

[16] J. Villegas, H. Zwart, Y. Le Gorrec, and B. Maschke, “Exponential
stability of a class of boundary control systems,” IEEE Transactions

on Automatic Control, vol. 54, pp. 142–147, 2009.
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