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Sparse Inverse Covariance Estimation for Chordal
Structures

Salar Fattahi, Richard Y. Zhang, and Somayeh Sojoudi

Abstract—In this paper, we consider the Graphical Lasso (GL),
a popular optimization problem for learning the sparse repre-
sentations of high-dimensional datasets, which is well-known to
be computationally expensive for large-scale problems. Recently,
we have shown that the sparsity pattern of the optimal solution
of GL is equivalent to the one obtained from simply thresholding
the sample covariance matrix, for sparse graphs under different
conditions. We have also derived a closed-form solution that
is optimal when the thresholded sample covariance matrix has
an acyclic structure. As a major generalization of the previous
result, in this paper we derive a closed-form solution for the GL
for graphs with chordal structures. We show that the GL and
thresholding equivalence conditions can significantly be simplified
and are expected to hold for high-dimensional problems if the
thresholded sample covariance matrix has a chordal structure.
We then show that the GL and thresholding equivalence is
enough to reduce the GL to a maximum determinant matrix
completion problem and drive a recursive closed-form solution
for the GL when the thresholded sample covariance matrix has a
chordal structure. For large-scale problems with up to 450 million
variables, the proposed method can solve the GL problem in less
than 2 minutes, while the state-of-the-art methods converge in
more than 2 hours.

I. INTRODUCTION

In recent years, there has been a great deal of interest in
developing computationally efficient methods to analyze large-
scale and high-dimensional data. The data collected in practice
is often overwhelmingly large. Therefore, designing simple,
yet informative models for describing the underlying structure
of data is of significant importance. Hence, sparsity-promoting
techniques have become an essential part of inference and
learning methods. These techniques have been widely-used in
data mining [1f], pattern recognition [2]], functional connectiv-
ity of the human brain [3], distributed controller design [4], [15],
transportation systems [6], and compressive sensing [[/]. On
the other hand, in many applications, the number of available
data samples is much smaller than the dimension of the data.
This implies that most of the statistical learning techniques,
which are proven to be consistent with the true structure of
the data fail dramatically in practice. This is due to the fact
that most of the convergence results in the inference methods
are contingent upon the availability of a sufficient number of
samples, which may not be the case in practice. In an effort
to overcome this issue, sparsity-inducing penalty functions are
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often used to arrive at a parsimonious graphical model for the
available data. Graphical Lasso (GL) [8]], [9] is one of the
most widely-used methods for sparse estimation of the inverse
covariance matrices via the augmentation of a Lasso-type
penalty function. It is known that the GL can be computation-
ally prohibitive for the large-scale problems, which limits its
applicability in practice. Recently, it has been shown in various
applications, such as brain connectivity networks, electrical
circuits, and transportation networks, that the thresholding
technique and the GL lead to the same sparsity structure [6],
[10]. Moreover, [10] shows that under some conditions, a
simple thresholding of the sample covariance matrix will result
in the same sparsity pattern as the optimal solution of the GL.
These conditions have been modified in [[6] to depend only on
the sample covariance matrix (and not the optimal solution of
the GL). Based on this equivalence, [6] introduces a closed-
form solution for the GL, the exactness of which depends
on the sparsity structure of the thresholded sample covariance
matrix. In another line of work, [11] and [12] consider the
disjoint components of the thresholded sample covariance
matrix and show that the GL can be solved independently for
each of the disjoint components. Although this result does not
require additional conditions on the structure, its applicability
is limited since it does not reveal any information about the
connectivity of the sparsity graph corresponding to the optimal
solution of the GL.

A. Problem Formulation

Consider a random vector X = [x1,Z2,...,24] With an
underlying multivariate Gaussian distribution. Let 3, denote
the covariance matrix of this random vector. Without loss of
generality, we assume that X has a zero mean. The goal
is to estimate the entries of X! based on n independent
samples X(1), X(2), ---, X(n) Of X. The sparsity pattern of xt
determines which random variables in X are conditionally
independent. In particular, if the (i,7)" entry of X ! is
zero, it means that z; and x; are conditionally independent,
given the remaining entries of X (the value of this entry is
proportional to the partial correlation between x; and x;). In
this paper, we assume that ¥ ! is sparse and non-singular. The
problem of studying the conditional independence of different
entries of X is hard in practice due to the fact that the true
covariance matrix is rarely known a priori. Therefore, the
sample covariance matrix must instead be used to estimate
the true covariance matrix. Let 3 denote the sample covariance
matrix. To estimate ¥, !, consider the optimization problem

minimize — logdet(S) + trace(3%S) (1)
sest
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The optimal solution of the above problem is equal to ¥~
However, the number of available samples in many applica-
tions is smaller than the dimension of Y. This makes X ill-
conditioned or even singular, which would lead to large or
unbounded entries for the optimal solution of (). Furthermore,
although ;! is assumed to be sparse, a small difference
between X, and X would potentially make S°* highly dense.
In an effort to address the aforementioned issues, consider the
l1-regularized version of

minimize — logdet(S) + trace(X.5) + A|| S]]+,
Sest

(@)

where A > 0 is a regularization coefficient. Let the optimal
solution of @) be denoted by S°P'. This problem is known
as Graphical Lasso (GL). The term | S]|. in the objective
function is defined as the summation of the absolute values of
the off-diagonal entries in S. This additional penalty acts as a
surrogate for promoting sparsity in the off-diagonal elements
of S, while ensuring that the problem is well-defined even
with a singular input 3.

It is well-known that the GL is computationally prohibitive
for large-scale problems. One way to circumvent the problem
of solving the highly-complex GL is to simply threshold the
sample covariance matrix in order to obtain a candidate struc-
ture for the sparsity pattern of the optimal solution to the GL. It
has been shown in several real-world problems, including brain
connectivity networks and topology identification of electrical
circuits [3[], [1O], that the thresholding method can correctly
identify the nonzero pattern of S°P'. Recently, we have shown
that the sparsity structure of the thresholding method coincides
with that of the GL [6] under some conditions on the sample
covariance matrix. Although these conditions are not easy to
verify, it is shown that they are generically satisfied when a
sparse solution for the GL is sought, or equivalently, when
the regularization parameter in is large. Based on this
observation, [6] derives a closed-form solution for the GL
problem that is globally or near-globally optimal for the GL,
depending on the structure of the sample covariance matrix.

In this paper, we generalize the results of [6] to the cases
where the thresholded sample covariance matrix has a chordal
structure. A matrix has a chordal structure if every cycle in its
support graph with length of at least 4 has a chord. Clearly,
this class of sparsity structures includes acyclic graphs. First,
we revisit the conditions introduced in [6] for the equivalence
of the sparsity structures found using the GL and the simple
method of thresholding. We show that the conditions for
this equivalence can be significantly simplified when the
support graph of the thresholded covariance matrix is chordal.
Furthermore, we show that under some mild assumptions,
these conditions are automatically satisfied as the size of the
sample covariance matrix grows, provided that they possess
sparse and chordal structures. In the second part of the
paper, we generalize the closed-form solution of the GL with
acyclic thresholded sample covariance matrix to those with
chordal structures. More specifically, we show that S can
be obtained using a closed-form recursive formula when the
thresholded sample covariance matrix has a chordal structure.
As it is pointed out in [11], most of the numerical algorithms

for solving the GL has the worst case complexity of at least
O(d*). We show that the recursive formula requires a number
of iterations growing linearly in the size of the problem, and
that the complexity of each iteration is dependent on the
size of the maximum clique in the sparsity graph. Therefore,
given the thresholded sample covariance matrix (which can be
obtained while constructing the sample covariance matrix), the
complexity of solving the GL for sparse and chordal structures
reduces from O(d*) to O(d). In fact, we show the graceful
scalability of the proposed recursive method in large-scale
problems. Specifically, we show that, on average, the proposed
method outperforms the best known algorithm for solving the
GL by at least a factor of 16 with the sample correlation sizes
between 1220 x 1220 and 29902 x 29902.

The Graphical Lasso technique is commonly-used for esti-
mating the inverse covariance matrices of Gaussian distribu-
tions. However, a similar learning method can be employed
for data samples with more general underlying distributions.
More precisely, the GL corresponds to the minimization of the
l1-regularized log-determinant Bregman divergence, which is
a widely-used metric for measuring the distance between the
true and estimated parameters of a problem [13]. Therefore,
the theoretical results developed in this paper are applicable
to more general inference problems.

Notations: R?, S%, §i, and Si . are used to denote the sets
of d x 1 real vectors, d x d symmetric matrices, d X d positive-
semidefinite matrices, and d X d positive-definite matrices,
respectively. The symbols trace(M) and log det(M) refer to
the trace and the logarithm of the determinant of the matrix
M, respectively. The i and (i, 7)™ entries of the vector m and
matrix M are denoted by m; and M, respectively. Iy refers
to an d x d identity matrix. The sign of a scalar x is shown by
sign(x). For a set D, |D| refers to its cardinality. The inequal-
ity M > 0 (M > 0) means that M is positive-(semi)definite.
For a graph G, N (k) denotes the set of neighbors of node k.
Given a vector m € R? and matrix M € S?, define

d d d
ML= M| = > [ M 3)
i=1 j=1 i=1
| M || max = max [ M;;] 4
i#]
HmHmax = mlax|ml| (5)

An index set is a sorted subset of the integers {1,2,...,d}.
The number of elements in the index set I is denoted by |I|.
Given index sets I and J, we define

(Pry)ij = {1 1(i) = J(5),

0 otherwise.

A sparsity pattern is a symmetric binary matrix. A d X d
matrix X (not necessarily symmetric) is said fo have sparsity
pattern E if X;; = 0 whenever E;; = 0; the set R%L*?
(resp. S&) refers to the d x d matrices (resp. d x d symmetric
matrices) with sparsity pattern E. The Euclidean projection
onto sparsity pattern is denoted as IIg(-): the (i, )" element
of IIg(M) is zero if E; ; =0, and M, ; if E; ; = 1.



II. PRELIMINARIES

In this section, we review the properties of sparse and
chordal matrices and their connection to the max-det matrix
completion problem.

A. Sparse Cholesky factorization

Consider solving a d x d symmetric positive definite linear
system
Sr=»b

by Gaussian elimination. The standard procedure comprises a
factorization step, where S is decomposed into the (unique)
Cholesky factor matrices LDLT, in which D is diagonal and L
is lower-triangular with a unit diagonal, and a substitution step,
where the two triangular systems of linear equations Ly = b
and DLz = y are solved to yield .

In the case where S is sparse, the Cholesky factor L is
often also sparse. It is common to store the sparsity pattern of
L in the compressed column storage format: a set of indices
I,...,I; C{1,...,d} in which

I ={ie{l,...,d} :i>j,L;; #0}, (6)

encodes the locations of off-diagonal nonzeros in the j®
column of L. (The diagonal elements are not included because
the matrix L has a unit diagonal by definition).

After storage has been allocated and the sparsity structure
determined, the numerical values of D and L are computed
using a sparse Cholesky factorization algorithm. This requires
the use of the associated elimination tree T = {V, £}, which
is a rooted tree (or forest) on d vertices, with edges £ =
{{1,p(1)},...,{d,p(d)}} defined to connect each j® vertex
to its parent at the p(j)™ vertex (except root nodes, which
have “0” as their parent), as in

. min I; |I;| > 0,
p(])_{ J |J|

7
0 I5l=o. @

in which min /; indicates the (numerically) smallest index
in the index set I; [14]. The elimination tree encodes the
dependency information between different columns of L,
thereby allowing information to be passed without explicitly
forming the matrix.

B. Chordal sparsity patterns

The support or sparsity graph of E, denoted by supp(E),
is defined as a graph with the vertex set V = {1,2,...,d} and
the edge set £, where (4,j) € £ if and only if F;; # 0 and
i # j. The pattern E' is said to be chordal if its graph does
not contain an induced cycle with length greater than three.
If E is not chordal, then we may add nonzeros to it until it
becomes chordal; the resulting pattern E’ is called a chordal
completion (or chordal embedding or triangulation) of E. Any
chordal completion £ with at most O(d) nonzeros is a sparse
chordal completion of E.

A sparsity pattern E is said to factor without fill if every S
with sparsity pattern £ can be factored into LDL” such that
L+ L7 also has sparsity pattern E. If a sparsity pattern factors

without fill, then it is chordal. Conversely, if a sparsity pattern
is chordal, then there exists a permutation matrix () such that
QEQT factors without fill [I3]. This permutation matrix @ is
called the perfect elimination ordering of the chordal sparsity
pattern F.

C. Recursive solution of the max-det problem.

An important application of chordal sparsity is the efficient
solution of the maximum determinant matrix completion prob-
lem, written

X = ma;élé%lze log det(X) (8)
subject to X; ; = C; ; forall C; ; # 0

for a given large-and-sparse matrix C' with sparsity pattern
E. The optimal solution of the above optimization (when it
exists) is called the max-det matrix completion of C, and is
unique. The Lagrangian dual of this problem is the following

S = migif(l)ize — log det S + trace(C'S) + d, 9)
subject to S € S%,
with first-order optimality condition

Mp(S~1) =C. (10)

Strong duality gives a straightforward relation back to the
primal

X =51 (11)

Note that while X is (in general) a dense matrix, S is always
sparse. Instead of attempting to solve the primal problem ()
for a dense matrix, we may opt to solve the dual problem (9)
for a sparse matrix satisfying the optimality condition (IQ). In
the case that the sparsity pattern £ factors without fill, [[16]]
showed that (I0) is actually a linear system of equations over
the Cholesky factor L and D of the solution S = LDLT: their
numerical values can be explicitly computed using a recursive
formula.

Algorithm 1: ( [16], Algorithm 4.2)
Input. Matrix C' € S% that has a positive definite completion.
Output. The Cholesky factors L and D of S = LDLT ¢ S¢,
that satisfy g (S—1) = C.
Algorithm. Iterate over j € {1,2,...,d} in reverse, i.e.
starting from d and ending in 1. For each j, compute D;;
and the j column of L from

L= —ijlsljj,
Djj = (Cjj + C ;L5

and compute the update matrices

c; CF.
_ pT J 1
V; - PJin |:Cljj V;7:| PJin

for each 4 satisfying p(i) = j, i.e. each child of j in the
elimination tree.

Of course, if the sparsity pattern E is chordal, then we may
find the perfect elimination ordering @) in linear time [17],



and apply the above algorithm to the matrix QCQ7, whose
sparsity pattern does indeed factor without fill.

The algorithm takes d steps, and the j" step requires a
size-|I;| linear solve and vector-vector product. The treewidth
of the sparsity graph is defined as w = w(supp(E)) =
max; |I;| — 1, and has the interpretation of the largest clique
in supp(F) minus one. Combined, the algorithm has time
complexity O(wd). This means that the matrix completion
algorithm is linear-time if the treewidth of supp(FE) is in the
order of O(1).

III. MAIN RESULTS

To streamline the presentation, with no loss of generality we
assume that 3 used in (@) is the sample correlation matrix. This
means that the diagonal elements of ¥ are normalized to 1 and
the off-diagonal elements are between —1 and 1. The results
of this paper can readily be generalized to an arbitrary sample
covariance matrix after appropriate rescaling. The following
definitions are borrowed from [6].

Definition 1:

A matrix M € S? is called inverse-consistent if there exists
a matrix N € S? with zero diagonal elements such that

M+N=0 (12a)
supp(N) C (supp(M)) (12b)
supp ((M + N)_l)) C supp(M), (12¢)

where (supp(M))(©) is the complement of supp(M). The
matrix IV is called an inverse-consistent complement of )/
and is denoted as M(©).

Moreover, M is called sign-consistent if the (i, j) entries
of M and (M + M (C))’1 are nonzero and have opposite signs
for every (i,7) € supp(M).

Example 1: Consider the matrix:

1 0.3 0 0

03 1  —04 0
M=1"% _o4 1 02 (13)
0 0 02 1

We show that M is both inverse- and sign-consistent. Consider
the matrix M (®) defined as

0 0 —0.12 —-0.024
@_| o 0 0 —0.08
M —0.12 0 0 0 (14)
—0.024 —-0.08 0 0
(M 4 M)~ can be written as
_1 =03 0 0
208 4 08¢ 016 04 0
R N VR R e
0.84 0.84 7 0.96 .96
0 0 —0.2 1
0.96 0.96
Note that:

o M + M) is positive-definite.

o The sparsity graph of M is the complement of that of
M.

o The sparsity graphs of M and (M + M ()~ are equiv-
alent.

o The nonzero off-diagonal entries of M and (M +M (9))~1
have opposite signs.
Therefore, it can be inferred that M is both inverse- and sign-
consistent, and M (®) is its inverse-consistent complement.

In [6], it has been shown that every positive definite matrix
has a unique inverse-consistent complement.

Definition 2: Given a graph G and a scalar «, define 5(G, «)
as the maximum of ||[M(9)||,,.x over all inverse-consistent
positive-definite matrices M with the diagonal entries equal
to 1 such that supp(M) = G and || M ||max < .

Without loss of generality and due to the non-singularity of
Y., one can assume that all elements of > are nonzero. Let
01,02, ...,04(d—1)/2 be the sorted upper triangular entries of
> such that

o1 > 02> ...> Od(d—1)/2 >0 (16)

Definition 3: Define the residue of X at level k relative to
A as a matrix Y75 (k, \) € S? whose (4, )" entry is equal to
i; — A xsign(X;;) if [3;;] > A, and equal to 0 otherwise.

Notice that ¥™5(k, A) is the soft-thresholded sample cor-
relation matrix with threshold A. For simplicity of notation,
we omit the arguments k& and A in X"°(k, A) whenever
the equivalence is implied from the context. The following
theorem is borrowed from [6].

Theorem 1: The thresholding method and the GL have the
same sparsity patterns if the following conditions are satisfied
for X € (og41,0k):

o Condition 1-i: I; + X" is positive definite.

o Condition 1-ii: Iy + X" is sign-consistent.

o Condition 1-iii: The relation

B (supp(X7®°), 01 — A) < X\ — Op41- 17

In [6], it is pointed out that the aforementioned conditions
in Theorem [1] are expected to hold if a sparse solution for
the GL problem is sought. However, efficient verification of
these conditions is yet to be addressed in practice. It has been
observed that the last condition plays the most important role
in verifying the optimality conditions for the sparsity pattern
of the thresholded sample correlation matrix.

A. Upper Bound for 5(G,«) in Chordal Graphs

In what follows, we derive an upper bound on 3(G, a) for
chordal graphs and show that under some mild assumptions,
Condition 1-iii is satisfied as the size of the sample correlation
matrix grows.

Theorem 2: Suppose that the following conditions hold:

o Condition 2-i: G is chordal.

o Condition 2-ii: w(G) < %(d —1).

« Condition 2-iii: o < L
w(G)y/d—w(G)—1+w(g)—1

Then, we have

<w(g) d—w(G) —1xa?

8G.0) s @ -1 xa (18)



Proof 1: The proof is provided in Appendix.

Conditions 2-ii and 2-iii are guaranteed to be satisfied for
small values of «. In such circumstances, chordal structure
for G is enough to verify the validity of (I8). Based on this
theorem, the next corollary shows that the Condition 1-iii in
Theorem[I]is guaranteed to be satisfied when the support graph
of the sample correlation matrix is sparse and large enough.

Corollary 1: Suppose that the following conditions hold for
some 6 > 0 and € > 1/2:

A=opt1 =0(d) (19a)
o1 — A= 0(d" (%) (19b)
w(G) = O(1) (19¢c)
6 <e/2—1/4 (19d)

Then, there exists a dy > 0 such that for every d > dy, the
Condition 1-iii in Theorem [1| is satisfied.

Proof 2: The proof is provided in Appendix.

Corollary [Tl implies that, if the sample correlation matrix is
large enough and the rate of decrease in o1 — A, as a function
of the dimension of the data, is not much smaller than that
of A — oj+1, then, Condition 1-iii is automatically satisfied.
For instance, suppose that ¢ = 2 in (I94). Then, Corollary [
implies that for large enough values of d, Condition 1-iii is
satisfied if w(G) = O(1) and there exists a v > 0 such that
o1 — A= 0(d" 1277,

Remark 1: Although (I8) only holds for chordal graphs, one
can generalize Theorem [2 to non-chordal graphs, under some
additional assumptions. In particular, suppose that G is the
chordal completion of a non-chordal graph G. Then, one can
easily verify that (I8) holds for (G, a) if 5(G, ) < B(G, ).
Indeed, we could show that the monotonic behavior of (-, -)
is maintained under fairly general conditions. Due to the space
restrictions, this generalization is not included in this paper.

B. Max-Det Matrix Completion for Graphical Lasso

In this subsection, we show that if the equivalence between
the thresholding method and GL holds, the optimal solution
of the GL can be obtained using Algorithm

Theorem 3: Assume that the thresholded sample correlation
matrix has the same sparsity pattern as the optimal solution
of the GL and A\ > 0.5. Then,

1. (S°PY~1 is the unique max-det completion of Y5,

2. Algorithm [I] can be used to find S° if supp(X*®) is
chordal.

Proof 3: The proof is provided in Appendix.

Recall that the main goal of the GL is to promote the
sparsity structure of the inverse correlation matrix. In order to
obtain a sparse solution, the regularization coefficient should
be large, relative to the absolute values of the off-diagonal
elements in the sample correlation matrix. Under such circum-
stances, the conditions delineated in Theorem [1| are satisfied
and the sparsity pattern of the simple thresholding technique
corresponds to that of the GL. Theorem [3] uses this result to

show that for large values of J, instead of merely identifying
its sparsity structure, the thresholded sample correlation matrix
can be further exploited to find the optimal solution of the
GL problem by solving its corresponding max-det matrix
completion problem. Note that the first part of Theorem
is independent of the structure of the thresholded sample
correlation matrix. However, the second part of the theorem
suggests that solving its corresponding max-det matrix com-
pletion problem can be much easier than the GL problem and
can be performed in linear time using Algorithm [1|l when the
thresholded sample correlation matrix has a sparse and chordal
structure.

While the focus of this paper is on the thresholded sample
correlation matrices with chordal structures, the presented
method may be extended to matrices with non-chordal sparsity
patterns. Note that for non-chordal structures, the provided
recursive formula does not necessarily result in the optimal
solution. However, it has been shown in [18] that efficient
implementations of Newton and conjugate gradient methods
for max-det matrix completion problem are possible when
the sparsity structure of the problem has a sparse chordal
completion. The detailed analysis of this extension is left as
future work. Furthermore, as it is pointed out in [[L1] and [12],
the disjoint components of the sparsity graph induced by the
thresholding of sample correlation matrix can be treated inde-
pendently since the GL is decomposed into multiple smaller
size problems over these disjoint components. Therefore, the
proposed method can be applied to every chordal component
even if the overall sparsity graph of the thresholded sample
correlation matrix does not benefit from a chordal structure.

IV. NUMERICAL RESULTS

Using the method proposed in this paper, we solve the
GL problem on various large-scale problems whose thresh-
olded sample correlation matrices have chordal structures.
All the test cases are collected from the SuiteSparse Matrix
Collection [19] and MATPOWER package [20], [21]]. These
are publicly available and widely-used datasets for large-and-
sparse matrices from real-world problems. The simulations are
run on a laptop computer with an Intel Core i7 quad-core 2.50
GHz CPU and 16GB RAM. The results reported in this section
are for a serial implementation in MATLAB.

A. Data Generation

For each test case, we take the following steps to design the
sample correlation matrix.

1. First, the nonzero structure of the matrix for a given test
case is exploited and a Symbolic Cholesky Factorization
is performed to arrive at a chordal embedding of the given
structure [22]. In other words, we augment the sparsity
graph corresponding to the considered test case with
additional edges to obtain a sparse chordal completion
of the graph.

2. The elements of the sample correlation matrix corre-
sponding to the edges in the extended graph are chosen
randomly from the union of the intervals [—0.50, —0.55]



recursive QUIC GLASSO

test case matrix size | max clique size || run. time || run. time | opt. gap | speedup || run. time | opt. gap | speedup
fpga-dcop-01T 1220 10 0.17 0.46 <1077 2.71 45.93 <1077 99.85
west1505T 1505 338 0.89 9.56 <107° 10.74 13759 | <107° | 154.60
netscience™ 1589 20 0.21 0.91 <1077 4.33 10804 | <1077 | 52853
lungl T 1650 4 0.24 1.70 <1077 7.08 93.63 <1077 368.50
cryg2500F 2500 75 0.51 6.39 <1077 12.53 446.23 <107 | 89247
freeFlyingRobot-7T 3918 35 0.86 18.13 <10~% 21.08 2066.80 | < 10—8 | 2319.98

freeFlyingRobot-14T 5985 35 1.53 40.54 <10 % 26.50 * * *

CASE13659PEGASET 13659 35 5.34 260.04 <108 48.70 * * *

OPF-6000T 29902 52 78.97 * * * * * *

TABLE I: The running time, relative optimality gap, and the speedup of the proposed recursive formula, compared to the GLASSO and QUIC algorithms.
The superscripts “+ and “T” correspond to the test cases chosen from SuiteSparse Matrix Collection and MATPOWER package, respectively.

and [0.50,0.55]. The rest of the elements are randomly
chosen from the interval [—0.20,0.20].

3. The diagonal elements of the sample correlation matrix
are elevated according to the off-diagonal elements in
order to make the sample correlation matrix positive
semidefinite. The resulted matrix is normalized, if neces-
sary.

B. Discussion

We consider different test cases corresponding to various
real-world problems in materials science, power networks,
circuit simulation, optimal control, fluid dynamics, social
networks, and chemical process simulation. The size of the
variable matrices in the GL problem for the investigated
problems ranges from 1220 x 1220 (with approximately
700 thousands variable elements) to 29902 x 29902 (with
approximately 447 million variable elements). We compare
the running time and objective function of our proposed
method with two other state-of-the-art algorithms, namely the

GLASSO [8] and QUIC [23] algorithms (downloaded
from [http://statweb.stanford.edu/~tibs/glassol] and
[http://bigdata.ices.utexas.edu/software/1035/  respectively).

The GLASSO algorithm is the most widely-used algorithm
for the GL, while the QUIC algorithm is commonly regarded
as the fastest solver for the GL. Define the relative optimality
gap as the normalized difference between the objective
functions of the proposed solution and the solutions that are
obtained by the other two methods. We consider a 2-hour
time limit for the solvers.

Table [l shows the results of our simulations. It can be
observed that the proposed recursive method significantly
outperforms the GLASSO and QUIC algorithms in terms of
running time, while achieving a negligible relative optimality
gap in most of the test cases. More specifically, for the first
8 cases, the proposed recursive method is 16.70 times faster
than the QUIC. For the largest test case, QUIC does not find
the optimal solution within the 2-hour time limit while the
proposed recursive formula obtains the optimal solution in
less than 2 minutes. Furthermore, the recursive method is 726
times faster than GLASSO algorithm for the first 6 test cases.
However, this algorithm does not find the optimal solution for
the 3 largest test cases within the 2-hour time limit.

V. CONCLUSIONS

In many graphical learning problems, the goal is to obtain a
sparsity graph that describes the conditional independence of
different elements in the available dataset via sparse inverse
covariance estimation. The Graphical Lasso (GL) is one of the
most commonly-used methods for addressing this problem.
It is known that, in high-dimensional settings, the GL is
computationally-prohibitive. A cheap alternative method for
finding the sparsity pattern of the inverse covariance matrix
is a simple thresholding method performed on the sample
covariance matrix of the data. Recently, we have provided
sufficient conditions under which the thresholding is equivalent
to the GL in terms of the sparsity pattern of the graphical
model. Based on this result, we have shown that the GL has a
closed-form solution when the thresholded sample covariance
matrix is acyclic. In this paper, this result is generalized to the
problems where the thresholding results in a chordal structure.
It is shown that the sufficient conditions for the equivalence
of the thresholding and GL can be significantly simplified for
chordal structures and is expected to hold as the dimension
of the data increases. Furthermore, it is shown that the GL
can be reduced to a maximum determinant matrix completion
problem when the thresholding is equivalent to the GL, and
for chordal structures, the corresponding matrix completion
problem has a simple recursive formula. The performance
of the derived recursive formula is compared with the other
commonly-used methods and shown that, for the large-scale
GL problems, the proposed method significantly outperforms
other methods in terms of their running times.
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APPENDIX

First, we present the KKT conditions for the optimal solu-
tion of (2).

Lemma 1: A matrix S°P is the optimal solution of the GL
if and only if it satisfies the following conditions for every
1,7 €41,2,...,d}:

(Sopt)i_jl = Zij if i=j (20a)
()" = Tij + A xsign(S;T)  if S #£0 (20b)
Nij =A< (SOpl)i_jl <Y+ A if S;Pt =0 (200)

where (S°)-! denotes the (i, 7)™ entry of (S°P')~1.

Proof 4: The proof is straightforward and omitted for
brevity.

Next, we provide the proof of Theorem [3 based on
Lemma [1l

Proof of Theorem 31 The second part of the theorem is a
direct consequence of the first part and Algorithm[Il To prove
the first part, consider (i,) such that X}$° # 0. Due to the
assumption, the sparsity structure of >"*° corresponds to that
of S°Pt. Therefore, we have E;;?S # 0. First, we show that
(S"p‘)fjl = 3;; — A x sign(¥;;). By contradiction, suppose
(S°P);;' # Tij — A x sign(8y;). Since SiT # 0, we must
have (S"P‘)fj1 =Y;; + A x sign(%;;) based on (20B). Due to
positive-definiteness of (S°P')~!, one can write

1 — (i + A x sign(¥;;))? > 0 1)

However, since 3j3° # 0, we have |Z;;] > A. This implies

1— (202 >1— (55 + A x sign(3;5))? (22)

@I) and @2) entails A < 0.5 which is a contradiction.
Therefore, one can invoke Theorem 2.4 in [24] to show that
(S°PYY~1 is indeed the max-det completion of %" based on
the following relations:
o (SOt = X if XS £ 0,
St =0 if £ = 0.
This completes the proof. |

Given M € Si ., denote its unique max-det completion as
M. Furthermore, let MF* be the k™ order max-det completion
of X which is defined as the unique max-det completion of
the submatrix corresponding to the last d — k + 1 rows and
columns of M. For simplicity, we abuse the notation and let
M f '; denote the submatrix of MP¥ whose rows and columns are
indexed by I and J in M. The following lemmas are crucial
in order to prove Theorem

Lemma 2: Condition 2-iii in Theorem [2] implies

w(G)\/d —w(G) — 1 x o?
1—(w(@)—-1)xa«

(23)

Proof 5: Based on Condition 2-iii in Theorem 2] one can
write

(w(g) d—w(G) — 1) xa? < a— (@) —1)xa? (24)
Furthermore, this condition yields & < 1/(w(G)—1). Dividing
both sides of @4) by 1 — (w(G) — 1) x o completes the proof.

Lemma 3: Consider a partitioning of {1,2,...,d} into 3
disjoint subsets A, B, and C. Given a positive-definite matrix
M with the sparsity pattern

Maa Map 0

M= |Myz Mgp Mpc|, (25)
0 Mpjo Mce
its unique max-det completion has the following form
) Maa Map MapMgpMpc
M = Mg Mpg Mpc
(MapMppMpe)'  Mjc Mecc
(26)



Proof 6: The proof can be found in [24] and is omitted for
brevity.

Without loss of generality, we assume that the perfect
elimination ordering of every chordal graph in the sequel is
(1,2,...,d).

Lemma 4: Given M € S%_, suppose supp(M) is chordal.
For a given k between 1 and d — 1, define

Ap = {k} (27a)
Br={k+1,...d} NN (k) (27b)
Cr ={1,....,d}\(AU B) (27¢)

Then, one can write
MAka = Ma,B, (ngék)_lngék (28)

Proof 7: The proof is the immediate consequence of
Lemma [3 and Lemma 2.7 in [24]]. The details are omitted
for brevity.

LemmaMlintroduces a recursive method for finding the max-
det completion of a matrix with chordal structure: given the
the k 4 1 order max-det completion of M, one can find the
missing elements in the k™ order max-det completion of M
via (28). Therefore, M can be obtained after performing d
iterations of (28) in the reverse perfect elimination order.

Lemma 5: Given a positive-definite matrix M and its max-
det completion M, we have M(©) = M — M.

Proof 8: The proof is the direct consequence of Lemma 8
in [6]. The details are omitted for brevity.

Lemma [3 shows that the nonzero elements of the inverse
consistent complement of M are equal to the missing elements
in its max-det completion. Therefore, in order to derive an
upper bound on S(G, «), it suffices to analyze the behavior
of the max-det completion of every M & S‘i 4 with the
diagonal elements equal to 1 that satisfies supp(M) = G and
[ M [[max < a.

Proof of Theorem 2 Due to Lemmas [4] and [3] it suffices to
show that ||M4, ¢, ||max is upper bounded by the right-hand
side of (I8) for every k € {1,2,...,d} and every M € SEIH
such that supp(M) = G and || M ||max < . We show this by
induction on the order of the max-det completion of M. The
base case can be easily verified. Suppose that aforementioned
upper bound holds for || M4, ¢, |[max, where j € {k+1,...,d}.
This implies that

w(G)\/d —w(G) — 1 x o?

HMkJrleaxS <a

1—(w@)-1)xa —

where the second inequality is due to Lemma[ll One can write

M a0 llmase= 1M a, 5, (MBS )T METE [lmax
< 1M, 5, (M5 5,) " MpSE, |12
<N May s ll2l (Mg ) M2l Mg, N2
_ 1Bl VIAIG] x a?

Amin (Mg-:ék )

(29)

(30)

where the first inequality is due to Lemmadland the rest of the
inequalities are based on the properties of max- and 2-norms.
Now, note that ||M§:ék)|\max is upper bounded by « due
to @9), o < 1/(w(g) — 1) and |Bg| < w(G). Therefore, one
can show that Mg:ék is diagonally dominant and Gershgorin
circle theorem can be invoked to obtain Apin (M gﬁ;}k) >1-—
(w(G)—1) x a. Furthermore, we have |Ax| = 1, |By| < w(G),
and |Cy| = d — 1 — | Bg|. Under Condition 2-ii, one can show
that | Bi|v/|Ak||Ck| < w(G)+/d — w(G) — 1. This completes
the proof. |

Proof of Corollary [Il One can easily verify that the right-
hand side of Condition 2-iii in Theorem [2| is in the order
of O(d~2). On the other hand, since e — d > 1/2 (due
to (I9d)), there exists d’ such that for « = o1 — A and every
d > dy, Condition 2-iii is satisfied. Furthermore, it can be
easily verified that the right-hand side of (I8) is in the order
of O(d=(2¢-20=1/2)) Combined with and (19d), one
can show that there exists d” such that for every d > d”, we
have

w(G)y/d —w(G) —1x (01 — \)?
<\ —
@@ Dx(@_n % GD
The proof is completed by setting dg = max{d’,d"}. [
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