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Abstract— In this study, we would like to design a trans-
mission power control mechanism for minimizing the transmit
power of a wireless sensor node subject to a constraint on
the quality of estimation at a remote estimator. In particular,
we measure the estimation distortion by a mean square error
function, and model the transmit power as a function of the
packet success rate using the IEEE 802.15.4 standard which was
formed for the specification of low-data-rate and low-power
wireless communication. We formulate the problem with an
infinite horizon discounted cost function. We show that there
is a separation between the designs of the optimal estimator
and optimal transmit power policy. Then, we use dynamic

programming to characterize the optimal transmit power policy
in terms of the estimation error covariance. Finally, we propose
approximate value iteration as an approximation algorithm to
calculate a near-optimal transmit power policy.

I. INTRODUCTION

Thanks to the recent advances in micro electro-mechanical

systems (MEMS) and wireless communication technologies,

the design and development of wireless sensor networks

(WSNs) with small, low-cost, low-power, and multifunc-

tional wireless sensor nodes have become feasible. In gen-

eral, each node in a WSN consists of a sensor, a micropro-

cessor, and a transceiver which communicates wirelessly in

short distances. Applications of WSNs are many, in particular

in healthcare, automation, and security (for more detail see

[1] in which several WSN applications are described and the

related challenges are explored).

A wireless sensor node can only be equipped with a

limited power source due to severe hardware constraints. In

addition, power source replacement is impossible for most

applications, which makes lifetime of a node limited to life-

time of the battery. Among sensing, communication, and data

processing, the power of a wireless sensor node is mainly

consumed for communication. Hence, this motivates us to

design WSN protocols and algorithms, apart from traditional

performance metrics such as throughput and delay, based on

energy efficiency. One effective technique to conserve energy
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in a wireless sensor node is transmission power control

(TPC) [2].

In this study, we would like to design a TPC mechanism

for minimizing the transmit power of a wireless sensor node

subject to a constraint on the quality of estimation at a remote

estimator. In fact, the transmit power influences the signal-

to-noise ratio and subsequently the packet dropout rate. It

is shown in [3] that packet dropouts have a negative impact

on the performance of the remote estimation. Therefore, we

need an effective TPC mechanism that considers the task

performance as well as the realistic hardware features and

constraints of the wireless sensor node. Intuitively speaking,

this TPC mechanism should adaptively adjust the transmit

power such that a high level of transmit power is used only

for measurements with important information.

In [2], the problem of power management in WSNs is

discussed in detail and various TPC mechanisms are studied.

It is highlighted there that a TPC mechanism employed

at the medium access control (MAC) layer significantly

impacts the power consumption of the wireless sensor nodes.

Recently, different TPC mechanisms have been proposed

in the literature for the estimation problem over wireless

channels. A covariance-based TPC mechanism for the es-

timation outage minimization problem over a fading channel

is investigated in [4]. A measurement-based TPC mechanism

for estimation over a fading channel when the state estimate

is transmitted is proposed in [5]. A study on the joint design

of an estimator and a TPC mechanism for estimation (without

considering the measurement noise) over a fading channel

with an infinite horizon average cost function is carried out

in [6]. In addition, the results are extended in [7] and [8]

by taking into account the power constraints imposed by the

energy harvesting.

In this paper, we develop a framework for achieving the

minimum expected transmit power that satisfies a specific

level of distortion in the estimation problem of a linear

dynamical system over a wireless communication channel.

We take a practical approach by selecting a realistic channel

model and a specific physical layer modulation compliant

with the state-of-the-art WSN hardware platforms. In par-

ticular, we measure the estimation distortion by a mean

square error function, and model the transmit power as a

function of the packet success rate using the IEEE 802.15.4

standard which was formed for the specification of low-data-

rate and low-power wireless communication. We formulate

the problem with an infinite horizon discounted cost function.

We show that there is a separation between the designs of



the optimal estimator and optimal transmit power policy.

Then, we use dynamic programming to characterize the

optimal transmit power policy in terms of the estimation error

covariance. Finally, we propose approximate value iteration

as an approximation algorithm to calculate a near-optimal

transmit power policy.

The outline of this paper is as follows. Problem formu-

lation is presented in Section II. In Section III, we derive

the optimal estimator and optimal transmit power policy,

and show a separation between their designs. In Section IV,

we propose an approximate algorithm for calculating a near-

optimal transmit power policy. We illustrate numerical and

simulation results in Section V. Finally, concluding remarks

are made in Section VI.

A. Notations

In this paper, we represent an n dimensional vector with

x = [x1, . . . , xn]
T where xi is its ith component. We write

xT to denote the transpose of the vector x. The normal

distribution with mean µ and covariance Σ is denoted by

N(µ,Σ). The expected value and covariance of the random

variable x are denoted by E[x] and cov[x] respectively. For

matrices A and B, we write A ≻ 0 and B � 0 to mean

that A and B are positive definite and positive semi-definite

respectively.

II. PROBLEM FORMULATION

Consider a discrete-time dynamical system generated by

the following linear state equation:

xk+1 = Fxk + wk, (1)

for time k ∈ N+ and with initial condition x0 where xk ∈ R
n

is the state of the system, F is the state matrix, wk ∈ R
n is

a Gaussian white noise with zero mean and covariance R1

where R1 ≻ 0. At each time step, the output of the system

is measured by a wireless sensor node. The measurement of

the sensor is given by

yk = Hxk + vk, (2)

where yk ∈ R
p is the output of the system, H is the

output matrix, and vk ∈ R
p is a Gaussian white noise

with zero mean and covariance R2 where R2 ≻ 0. It is

assumed that the initial state x0 is a Gaussian vector with

mean m and covariance R0, and that x0, wk, and vk are

mutually independent. In addition, it is assumed that (F,H)
is observable.

The wireless sensor node is connected to a remote estima-

tor via a wireless communication channel which is unreliable

and modeled by a one-step-delay packet-erasure channel with

acknowledgement. The packet loss in the channel is modeled

according to a Bernoulli arrival process γk with mean equal

to the packet success rate PSRk such that

γk =

{

1, if packet is received successfully,

0, otherwise.
(3)

Assuming all possible errors in a packet can be detected,

the packet success rate for transmission of a packet with ℓ

bits is given by

PSRk = (1− BERk)
ℓ, (4)

where BERk is the bit error rate. Following the offset quadra-

ture phase-shift keying (O-QPSK) modulation [9] used in

IEEE 802.15.4 we have

BERk = Q

(

√

2BN

Rc

SNRk

)

, (5)

where Q(.) denotes the Q-function, BN is the bandwidth

of the noise, Rc is the data rate of the communication, and

SNRk is the average signal-to-noise ratio. Inserting (5) in

(4), we obtain

PSRk =

(

1−Q

(

√

2BN

Rc

SNRk

))ℓ

. (6)

Hence, the required average signal-to-noise ratio for a given

packet success rate is obtained by

SNRk =
Rc

2BN

(

Q−1
(

1− PSR
1
ℓ

k

))2

. (7)

In addition, every transmission experiences a channel

realization specified by considering path loss and shadowing

effects. The received power for a transmission is obtained by

pRX
k = pTX

k p−1

L p−1

S , (8)

where pRX
k is the received power, pTX

k is the transmit

power, and pL and pS capture the amount of path loss and

shadowing of a particular environment respectively given by

pL =

(

4πfd0
c

)2(

d

d0

)η

, (9)

ln pS ∼ N(0, σ2
S), (10)

where d0 is the reference distance, d is the receiver distance,

f is the carrier frequency, c is the speed of light, η is the

path loss exponent, and σ2
S is the shadowing variance. Notice

that the shadowing is modeled with a log-normal distribution

which is suitable for short-range indoor propagation. Then,

for each transmission the resulting signal-to-noise ratio is

obtained by

SNRk =
pRX
k

pN
=

pTX
k

pNpLpS
, (11)

where pN is the noise power floor. Taking the expectation,

we can obtain the transmit power as a function of the average

signal-to-noise ratio:

pTX
k = pN

(

4πfd0
c

)2(

d

d0

)η

e
σ
2
S

2 SNRk. (12)

Using (7) and (12), the required transmit power for a given

packet success rate is obtained as

pTX
k =

{

c0

(

Q−1

(

1− PSR
1
ℓ

k

))2

, PSRk ∈ [a, b],

0, PSRk = 0.
(13)
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Fig. 1. The required transmit power as a function of the packet success
rate for the specific wireless channel described in Section V.

where [a, b] represents the operational range of PSRk with

specific a and b, and

c0 =
Rc

2BN

pN

(

4πfd0
c

)2(

d

d0

)η

e
σ
2
S

2 . (14)

With abuse of notation we consider PSRk = 0 for the case in

which the transmitter is in sleep mode. Therefore, if PSRk =
0 then nothing is transmitted at time k. In the sequel, we

denote the function in (13) by pTX
k = ψ(PSRk) defined in

the domain Γ = 0 ∪ [a, b].

The required transmit power as a function of the packet

success rate is depicted in Figure 1 for the specific wireless

channel described in Section V.

Let the available information at the remote estimator at

time k be specified by:

Ik = {γ0:k−1, y0:k−1}. (15)

We measure the estimation distortion by a mean square error

function:

Φ = E

[

N
∑

k=0

‖xk − x̂k‖
2
Θk

]

, (16)

where Θk ≻ 0 is a weighting matrix and x̂k is the best state

estimate given the information set Ik.

Let µ be a transmit power policy. We would like to achieve

the minimum expected transmit power that satisfies a specific

level of distortion β, i.e.,

Ψ = inf
µ:Φ≤β

E

[

N
∑

k=0

pTX
k

]

, (17)

which can equivalently be written as

Ψ = inf
µ

E

[

N
∑

k=0

(

pTX
k + λ‖xk − x̂k‖

2
Θk

)

]

,

for a λ > 0. In this paper, we study this problem over an

infinite horizon with a discounted cost function expressed by

Ψ∞=inf
µ

lim
N→∞

E

[

N
∑

k=0

αk
(

pTX
k + λ‖xk−x̂k‖

2
Θk

)

]

, (18)

where α ∈ (0, 1) is a discount factor which weighs the

relative contribution of the costs in the short-term and long-

term future.

III. OPTIMAL TRANSMIT POWER POLICY

The estimation is performed at the remote estimator based

on the information set Ik. The following lemma provides the

best state estimate at the remote estimator.

Lemma 1: The conditional expected value of the state

with the following dynamics is the minimizer of the dis-

tortion function in (16) for the system in (1) and (2) over

the one-step-delay packet-erasure channel with the arrival

process in (3):

x̂k+1 = F x̂k + γkKk(yk−Hx̂k), (19a)

Pk+1 = FPkF
T +R1 − γkKkHPkF

T , (19b)

where x̂k = E[xk|Ik], Pk = cov[xk|Ik], and

Kk = FPkH
T (HPkH

T +R2)
−1, (19c)

with initial conditions x̂0 = m0 and P0 = R0.

Proof: Since the conditional distribution of xk given

Ik is Gaussian and the distortion is measured by a mean

square error function, the conditional expectation E[xk|Ik] is

the best state estimate. Following the Kolmogorov forward

equation [10], the estimate and its covariance are propagated

as

x̂k+1 = F x̂k+ , (20)

Pk+1 = FPk+FT +R1, (21)

where k+ denotes time k just after the update of the estimate

and its covariance. From Bayes’ rule [10], the estimate and

its covariance are updated as

x̂k+ = x̂k + γkPkH
T (HPkH

T +R2)
−1(yk −Hx̂k), (22)

Pk+ = (In − γkPkH
T (HPkH

T +R2)
−1H)Pk. (23)

We obtain the result by substituting (22) and (23) in (20)

and (21) respectively.

Let us use the identity E
[

‖xk − x̂k‖
2
Θk

]

= E[tr(ΘkPk)].
Then, the optimal transmit power policy is obtained by

solving the following optimization problem:

min. lim
N→∞

E

[

N
∑

k=0

αkpTX
k + αkλ tr(ΘkPk)

]

,

s. t. Pk+1 = FPkF
T +R1 − γkKkHPkF

T ,

pTX
k = ψ(PSRk), (24)

with initial condition P0 = R0.

Theorem 1: There is a separation between the designs of

the optimal estimator and optimal transmit power policy.



Proof: The proof follows from the above derivations.

The best state estimate is obtained by the recursive filter

given in (19) and the optimal transmit power policy is

obtained by solving the optimization problem in (24).

Next, we shall use dynamic programming in order to

characterize the solution of the optimization in (24). We

can eliminate the transmit power equality, and obtain the

following equivalent optimization problem:

min. lim
N→∞

E

[

N
∑

k=0

αkψ(PSRk) + αkλ tr(ΘkPk)
]

,

s. t. Pk+1 = FPkF
T +R1 − γkKkHPkF

T . (25)

We denote the optimal solution of the above optimization

problem by J∗(P0). Let π be a packet success rate policy.

We would like to find the optimal stationary packet success

rate policy π∗. Then, the optimal transmit power policy can

be obtained by

µ∗ = ψ(π∗). (26)

Let us define

ρ(Pk,PSRk) = ψ(PSRk) + λ tr(ΘkPk), (27)

and

φ(Pk,PSRk) = FPkF
T +R1 − γkKkHPkF

T . (28)

The optimization problem in (25) can concisely be rewritten

as

min. lim
N→∞

E

[

N
∑

k=0

αkρ(Pk,PSRk)
]

s. t. Pk+1 = φ(Pk,PSRk), (29)

with initial condition P0 = R0. The next theorem shows that

the optimal cost function satisfies the Bellman’s equation.

Theorem 2: The optimal cost function J∗(P ) satisfies

J∗(P ) = TJ∗(P ), (30)

where T is the dynamic programming operator defined as

TJ(P ) = min
PSR∈Γ

E

[

ρ(P,PSR) + αJ
(

φ(P,PSR)
)

]

. (31)

Proof: Notice that ρ(P,PSR) ≥ 0. Then, the proof

follows from the dynamic programming principle for infinite

horizon discounted cost functions with positive stage costs.

Refer to [11].

The following proposition shows the convergence of the

dynamic programming recursive equation.

Proposition 1: For any function J(P ), the operator

T kJ(P ) is convergent, i.e.,

J∞(P ) = J∗(P ), (32)

where J∞(P ) = limk→∞ T kJ(P ).

Proof: Please refer to [11].

The next proposition provides the sufficient and necessary

condition for the optimality of a stationary packet success

rate policy.

Proposition 2: The stationary packet success rate policy

π is optimal if and only if

TπJ
∗(P ) = TJ∗(P ), (33)

where the operator Tπ is defined as

TπJ(P ) = E

[

ρ(P, π) + αJ
(

φ(P, π)
)

]

. (34)

Proof: Please refer to [11].

Finally, the next proposition gives the optimal stationary

packet success rate policy based on the value function.

Proposition 3: The optimal stationary packet success rate

policy is given by

PSR
∗ = argmin

PSR∈Γ

{

ρ(P,PSR) + α(1 − PSR)J∗(FPFT +R1)

+ αPSRJ∗(FPFT +R1 −KkHPF
T )
}

,

(35)

where J∗(P ) is the value function and satisfies (30).

Proof: Since the stage cost ρ(P,PSR) for each P is

deterministic, from Theorem 2 we have

TJ∗(P )= min
PSR∈Γ

{

ρ(P,PSR)+αE

[

J∗
(

φ(P,PSR)
)

]}

.

Moreover, the transition function φ(P,PSR) for each P and

any PSR can only take two different values:

P 0
+ = FPkF

T +R1, (36)

P 1
+ = FPkF

T +R1 −KkHPkF
T . (37)

The probability of Pk+1 = P 1
+ is PSR and the probability

of Pk+1 = P 0
+ is 1 − PSR. Therefore, we can calculate the

expected value of the value function as

E

[

J∗
(

φ(P,PSR)
)

]

= (1− PSR)J∗(P 0
+) + PSR J∗(P 1

+).

Using Proposition 2, we have

TπJ
∗(P ) = min

PSR∈Γ

{

ρ(P,PSR) + α(1 − PSR)J∗(P 0
+)

+ αPSR J∗(P 1
+)
}

.

The optimal PSR is then given by the argument of this

minimization.

IV. APPROXIMATE ALGORITHM

The spaces of the covariance and packet success rate are

infinite. In order to use a computational method to solve the

dynamic programming recursive equation given by (30), we

approximate the problem via discretization. We discretize the

packet success rate space by the following finite grid:

S1 = {PSR1,PSR2, . . . ,PSRM1}, (38)

where M1 denotes the cardinality of S1, PSR
1 = 0, and

a ≤ PSR
i ≤ b for i ≥ 2. To discretize the covariance space,

we use the following finite grid:

S2 = {P 1, P 2, . . . , PM2}, (39)



where M2 denotes the cardinality of S2 and 0 � P i ≺ ∞.

We express the non-grid covariances by a linear interpolation

of grid covariances, i.e.,

P =

M2
∑

i=1

wi(P )P
i, (40)

where weights wi are nonnegative. Given that J(P i) is the

value function of a grid covariance P i, the value function of

a non-grid covariance P is approximated by

J̃(P ) =

M2
∑

i=1

wi(P )J(P
i). (41)

Algorithm 1 Approximate Value Iteration Algorithm

0. Initialize function J0(P ) for P ∈ S2.

1. Calculate the function Jk+1(P ) for P ∈ S2:

Jk+1(P ) = min
PSR∈S1

{

ρ(P,PSR) + α(1− PSR)J̃k(P 0
+)

+ αPSR J̃k(P 1
+)
}

,

J̃k(P ) =

M2
∑

i=1

wi(P )J
k(P i).

2. Stop if maxP∈S2
|Jk+1(P ) − Jk(P )| < ǫ0; otherwise

assign k := k + 1 and go to Step 1.

We use approximate value iteration, described in Algo-

rithm 1, to compute a near-optimal stationary packet success

rate policy. In approximate value iteration, we generate

a sequence of functions Jk(P ) which are approximations

of the functions T kJ(P ). In each iteration, the improved

function Jk+1(P ) is obtained based on the previous function

Jk(P ). The algorithm stops when the maximum difference

between two successive functions is less than a specific

tolerance ǫ0. Let ks denote the step Algorithm 1 stops. We

obtain the near-optimal stationary packet success rate policy

as

PSR
∗(P ) = argmin

PSR∈S1

{

ρ(P,PSR) + α(1 − PSR)J̃ks(P 0
+)

+ αPSR J̃ks(P 1
+)
}

, (42)

where P 0
+ and P 1

+ are defined in (36) and (37).

The following proposition gives the optimality bound of

the approximate value iteration algorithm.

Proposition 4: Assume that

max
P∈S2

∣

∣

∣
Jk+1(P )− TJk(P )

∣

∣

∣
≤ ǫ, k ∈ N+. (43)

Then,

max
P∈S2

|J∞(P )− J∗(P )| ≤
ǫ

1− α
. (44)

Proof: Please refer to [11].

V. ILLUSTRATIVE EXAMPLE

In this section, we provide a simple example to show

how our framework can be used to obtain the optimal

stationary transmit power policy. Consider the following

unstable system observed by a wireless sensor node:

xk+1 = 1.01xk + wk, (45)

yk = 0.3xk + vk, (46)

where the covariances are R1 = 0.1 and R2 = 0.5. The

state of the system is to be estimated by a remote estimator

which receives the measurements from the wireless sensor

node through a one-step-delay packet-erasure channel with

acknowledgement. The communication channel is charac-

terized by the following parameters: the bandwidth of the

noise BN = 2 MHz, the data rate of the communication

Rc = 250 Kbps, the carrier frequency f = 2.4 GHz, the

reference distance d0 = 1 m, the receiver distance d = 10 m,

the path loss exponent η = 3.6, the shadowing variance

σ2
S = 8, the noise power floor pN = 1.2×10−11 watt, and the

packet length ℓ = 100 bits. This yields c0 = 3.8929× 10−5.

We choose the weighting matrix Θ = 1, the discount factor

α = 0.95, and the weighting coefficient λ = 0.0007.

The space of the packet success rate is discretized by

a grid with cardinality M1 = 2500 with a = 0.0001 and

b = 0.9999, and the space of the covariance is discretized

by a grid with cardinality M2 = 2500 over the interval

[0, 10]. We consider PSR
1 = 0 for the case in which the

transmitter is in sleep mode. We used the approximate value

iteration algorithm given in Algorithm 1 with ǫ0 = 10−5

to approximate the optimal cost function J∗(P ). Then, we

calculated the near-optimal stationary transmit power policy.

Figure 2 illustrates the near-optimal stationary transmit

power policy as a function of the covariance. As it is seen,

the transmitter is in sleep mode for small values of the

covariance. This result can justify usage of a simple threshold

event-triggering mechanism for transmission power control

(see e.g., [12]). We assume that the initial conditions of the

system are x0 = 1, x̂0 = 0, and P0 = 2. We simulated the

system over the horizon N = 200. Figure 3 and Figure 4

depict the trajectories of the estimation error and covariance

respectively, and Figure 5 illustrates the trajectory of the

transmit power. It can be observed that the transmit power

is adaptive and at many time steps the transmitter is in sleep

mode, which leads to an overall improvement in the energy

saving of the wireless sensor node while satisfying a specific

level of distortion in the estimation problem.

VI. CONCLUSION

In this paper, we developed a framework for achieving

the minimum expected transmit power that satisfies a specific

level of distortion in the estimation problem. We obtained the

optimal estimator, and derived the optimal transmit power

policy by using dynamic programming. The results sug-

gested that one can use a simple threshold event-triggering

mechanism [12] for transmission power control with small

performance degradation.
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Fig. 2. Near-optimal stationary transmit power policy.
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