
Controllability Analysis of Threshold Graphs and Cographs

Shima Sadat Mousavi†, Mohammad Haeri†, and Mehran Mesbahi‡

Abstract— In this paper, we investigate the controllability of
a linear time-invariant network following a Laplacian dynamics
defined on a threshold graph. In this direction, an algorithm
for deriving the modal matrix associated with the Laplacian
matrix for this class of graphs is presented. Then, based
on the Popov-Belevitch-Hautus criteria, a procedure for the
selection of control nodes is proposed. The procedure involves
partitioning the nodes of the graph into cells with the same
degree; one node from each cell is then selected. We show
that the remaining nodes can be chosen as the control nodes
rendering the network controllable. Finally, we consider a
wider class of graphs, namely cographs, and examine their
controllability properties.

I. INTRODUCTION

Networks are the backbone of modern society. Social
networks, the internet, and energy networks, are examples
of some of the critical networks that we rely on their
operation in our daily lives. As such, the control, security,
and management of these and other types of networks are
of paramount importance, providing a rich class of system
theoretic questions for the control community [1]. One
foundational class of questions on networked systems pertain
to their controllability [2], [3], [4]. Controllability analysis
on networks can also provide a framework for designing
network topologies with favorable controllability properties.
However, some of the basic controllability questions on
networks-even for the linear case-are nontrivial. For example,
finding a minimum cardinality set of control nodes that
ensures the controllability of a large-scale network through
the classical rank conditions is NP-hard. Accordingly, an
alternative means of examining network controllability is
via its topological properties. In this direction, controllability
analysis of networks with the so-called Laplacian dynamics
has received a lot of attention, primary due to their role in
consensus-type collective behaviors such as synchronization
[5], [6], [7], [8].

The results in the literature on the controllability analysis
of networks with Laplacian dynamics can be classified into
two categories. In the first category, a general topology
has been considered for the network, and necessary or
sufficient conditions for its controllability from a graph-
theoretic point of view have been presented. These conditions
have been stated in terms of notions such as graph symmetry
[5], [9], equitable partitions [5], [10], [11], [6], [7], [12],
[13], distance partitions [6], [7], and pseudo monotonically
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increasing sequences [14], [8]. However, some of the ap-
proaches have a few important limitations. For example, none
of these conditions are necessary and sufficient for network
controllability; rather, they are used in deriving lower or/and
upper bounds on the dimension of the controllable subspace.
More importantly, these results cannot be utilized for efficient
selection of control nodes rendering a network controllable.
For example, it is known that the existence of a symmetry in
the structure of a network with respect to its control nodes is
destructive to its controllability [5], but finding a minimum
cardinality set of nodes breaking all symmetries for general
networks is NP-hard [9].

The second category of existing works includes those that
consider controllability of special classes of networks [15].
For example, controllability of networks with path graphs
[16], [17], cycle graphs [16], complete graphs [6], circulant
graphs [18], multi-chain graphs [19], grid graphs [20], and
tree graphs [21] have already been explored. In these cases,
stronger conditions for network controllability can be de-
rived. In particular, for some of these graphs, the minimum
number of control nodes from which the associated network
is controllable has been determined. Note that the stronger
controllability conditions derived for these special classes
of graphs are resulted from a better characterization of the
eigenvectors associated with their Laplacian. In fact, based
on the Popov-Belevitch-Hautus (PBH) test, the controllabil-
ity of a system solely depends on its associated eigenvectors
and how they relate to the input structure. Subsequently, by
identifying the eigenspace of the network (i.e., the space of
eigenvectors associated with each eigenvalue of the Lapla-
cian matrix), the controllability problem can be addressed.

Adopting a similar approach, in this paper, we consider the
controllability problem for the Laplacian networks defined
on cographs. Cographs have been independently introduced
by different research works, and as such, admit a few
equivalent definitions. For example, there is no subgraph
isomorphic to a path of size four in cographs. Moreover,
cographs can be generated by successively operating joins
and unions among isolated nodes [22]. Cographs have many
applications in diverse areas of computer science and math-
ematics [23]. Moreover, they include other known classes of
graphs with special structures. For example, threshold graphs
with applications in areas such like modeling social and
psychological networks, synchronizing parallel processes,
and cyclic scheduling problems, are cographs [24]. There
are different representations for threshold graphs as well; for
instance, threshold graphs can be uniquely determined by a
binary construction sequence [25]. In [26], the controllability
of a threshold graph from only a single control node has been
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explored. In particular, in this work it has been proved that a
threshold graph is controllable from a single controller only
if it is an antiregular graph with n − 1 different degrees.
Subsequently, the work [27] extended the result of [26] by
considering threshold graphs with only one repeated degree.

The main contributions of the present paper are as follows:
First, we consider a very general threshold graph and allow
it to have any number of repeated degrees. In this regard, we
assume that a threshold graph is described by its construction
sequence and derive a modal matrix associated with its
Laplacian. Then, we explore the controllability of a network
defined on this graph. By adopting an approach different
from the one used in [27], we show that for any repeated
degree, by independently controlling any node of that degree
except one, we can ensure controllability of the network. In
particular, we prove that the minimum number of control
nodes to fully control a threshold graph is the difference
between the size of the network and the number of its distinct
degrees. Moreover, we present a systematic method to choose
the control nodes. Next, we provide a controllability analysis
of a cograph via its eigenspace. In this direction, we provide
a method for deriving an input matrix with the minimum
rank that renders the network controllable.

The organization of the paper is as follows. First, the nota-
tion and preliminaries are provided. In §III, the eigenvectors
associated with a threshold graph are derived, and necessary
and sufficient conditions for the controllability of this class of
graphs is established. §IV is dedicated to the controllability
analysis of networks on cographs. Finally, §V concludes the
paper.

II. NOTATION AND PRELIMINARIES

In this section, the notation and preliminaries for our
subsequent discussion is presented.

Notation: The set of real numbers and integer numbers are
respectively, denoted by R and Z. For a matrix M ∈ Rp×q ,
Mij is the entry of M in its ith row and jth column.
Furthermore, Mi,: and M:,j represent the ith row and jth
column of M . The n × n identity matrix is denoted by In,
and ej represents its jth column. The vectors of all 1’s and
all 0’s with size n are respectively, denoted by 1n and 0n.
Also, an n × m matrix of all 1’s (resp., 0’s) is given by
1n×m (resp., 0n×m). For a set S, we denote its cardinality
by |S|.

Graph: A graph1 G of size n is represented by G =
(V,E), where V = {1, . . . , n} is its node set, and E
denotes its edge set. The node j is called a neighbor of
the node i if {i, j} ∈ E. We denote by N(i) the set of
neighbors of i ∈ V . The degree of the node i is defined as
d(i) = |N(i)|. The degree matrix of the graph G is defined as
∆(G) = diag(d(1), . . . , d(n)). Then, the Laplacian matrix
L(G) is given by L(G) = ∆(G) − A(G), where A(G) is
the (0,1)-adjacency matrix associated with the graph G. The

1All graphs in this paper are assumed to be undirected, unweighted, and
loop-free.

degree sequence D(G) is a nondecreasing sequence of node
degrees of G, which is defined as D(G) = (d1, . . . , dn),
where d1 ≤ . . . ≤ dn. Let s be the number of distinct degrees
in D(G). Then, one can write D(G) = (d̃p1

1 , . . . d̃
ps
s ), where

d̃1 ≤ . . . ≤ d̃s are the s distinct degrees of the nodes, and
pi is the multiplicity of the degree d̃i, 1 ≤ i ≤ s, among the
nodes of G.

Eigenpairs: With a slight abuse of notation, by eigenvalues
and eigenvectors of a graph G, we mean the eigenval-
ues and eigenvectors of its Laplacian matrix L(G). Since
L(G) ≥ 0, all of its eigenvalues are real and nonnegative.
Let Λ(G) = (λ1, . . . , λn) be the spectrum of the graph
G, where λ1 ≤ λ2 ≤ . . . λn. Then, λ1 = 0, and if G is
connected, we have λ2 6= 0. If λ̃1 ≤ . . . ≤ λ̃r are the
r distinct nonzero eigenvalues of G, then for a connected
G, we can write Λ(G) = (0, λ̃q11 , . . . , λ̃

qr
r ), where qi, 1 ≤

i ≤ r, is the algebraic multiplicity of the eigenvalue λ̃i.
Then, M = max{q1, . . . , qr} is the maximum multiplicity
of eigenvalues of G. We denote an eigenpair of the graph G
by the pair (λi, νi), where L(G)νi = λiνi, 1 ≤ i ≤ n.
The vector νi ∈ Rn is an eigenvector of G associated
with the eigenvalue λi. One can see that every graph has
(0, 1n) as one of its eigenpairs. Now, assume that λ̃i is
an eigenvalue of G with multiplicity qi. Then, there are qi
independent eigenvectors ν(i)1 , . . . , ν

(i)
qi associated with λ̃i.

Let V (i) = [ν
(i)
1 , . . . , ν

(i)
qi ] ∈ Rn×qi . Then every eigenvector

ν associated with λ̃i can be written as ν = V (i)C, for some
C ∈ Rqi . Let the nonsingular matrix V (G) = [ν1, . . . , νn] ∈
Rn×n be a modal matrix associated with Λ(G), where
L(G)V (G) = V (G)diag(Λ(G)). We can also consider an
unordered sequence of eigenvalues of L(G). Let Λ̄(G) =
(λ̄1, . . . , λ̄n) be a sequence of eigenvalues of L(G), not
necessarily ordered in a nonincreasing or nondecreasing way.
Moreover, we define V̄ (G) = [ν̄1, . . . , ν̄n] as a modal matrix
associated with Λ̄(G), where (λ̄i, ν̄i), 1 ≤ i ≤ n, is an
eigenpair of G.

A. Cographs and Threshold Graphs

We now introduce the notion of cographs and threshold
graphs; we also provide theorems about their corresponding
spectrum.

Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint
graphs of respectively, sizes n1 and n2. The union of the
two graphs is a graph of size n = n1 +n2, which is defined
as G1 +G2 = (V1 ∪V2, E1 ∪E2). Moreover, the join of the
two graphs represented by G1∗G2 is obtained from G1+G2

by adding new edges from each node of G1 to any node of
G2. A graph is called a cograph (or a decomposable graph)
if it can be constructed from isolated nodes by successively
performing the join and union operations.

Now, let Λ̄(G1) = (0, ψ̄2, . . . , ψ̄n1
) = (0, Ψ̄) and

Λ̄(G2) = (0, π̄2, . . . , π̄n2
) = (0, Π̄), with Ψ̄ =

(ψ̄2, . . . , ψ̄n1
) and Π̄ = (π̄2, . . . , π̄n2

), be unordered se-
quences of eigenvalues of G1 and G2. Moreover, let
V̄ (G1) = (1n1 , ū2, . . . , ūn) = (1n1 , Ū) and V̄ (G2) =
(1n2

, w̄2, . . . , w̄n) = (1n2
, W̄ ) be respectively the modal

matrices of G1 and G2 associated with Λ̄(G1) and Λ̄(G2).



Then by the next result, one can establish the eigenvalues
and eigenvectors of the join and the union of G1 and G2.
Consider a vector v ∈ Rn and a scalar m ∈ R. With a slight
abuse of notation in this theorem, we let v+m = v+m1n.

Theorem 1 ([28]): For two graphs G1 and G2 of respec-
tively, sizes n1 and n2, we have:

L(G1 +G2) =

[
L(G1) 0n1×n2

0n2×n1
L(G2)

]
,

L(G1 ∗G2) =

[
L(G1)− n2In1 0n1×n2

0n2×n1 L(G2)− n1In2

]
,

Λ̄(G1 +G2) = (0, Ψ̄, Π̄, 0),

Λ̄(G1 ∗G2) = (0, Ψ̄ + n2, Π̄ + n1, n+m),

V̄ (G1 +G2) =

[
1n1

Ū 0n1
n21n1

1n2
0n2

W̄ −n11n2

]
,

V̄ (G1 ∗G2) = V̄ (G1 +G2).

Now, let us start with one isolated node as the initial graph,
and in each step, connect an isolated node to the former
graph through the join or union operation. The obtained
graph is referred to as a threshold graph, which is a spacial
type of a cograph. One can associate a binary construction
sequence TG ∈ {0, 1}n to a threshold graph G of size n,
where TG(1) = 0, and for 1 < i ≤ n, TG(i) = 0 (resp.,
TG(i) = 1) if the node i is added to the former graph by the
union (resp. join) operation [25]. In fact, any threshold graph
G can be uniquely determined by its construction sequence
TG. In this paper, we assume that all threshold graphs
are described and given by their associated construction
sequences. Adopting this notation, the next theorem connects
the spectrum of a threshold graph to its degree sequence.

Theorem 2 ([29]): In a threshold graph with the the
degree sequence D(G), λn−i+1 = |{j : d(j) ≥ i}|. Now, let
D(G) = (d̃p1

1 , . . . d̃
ps
s ) and Λ(G) = (0, λ̃q11 , . . . , λ̃

qs
s ). Then

if s = 2l (resp., s = 2l + 1), for some l ∈ Z, we have:

λ̃i =

{
d̃i, 1 ≤ i ≤ l,
d̃i + 1, l + 1 ≤ i ≤ s

,

qi =

{
pi − 1, i = l, (resp., i = l + 1)

pi otherwise
.

B. Problem Formulation

In this paper, we consider a linear time-invariant (LTI) net-
work with the graph structure G and the so-called Laplacian
dynamics described as:

ẋ = Ax+Bu, (1)

where A = −L(G), and L(G) ∈ Rn×n is the Lapla-
cian matrix associated with the graph G. Moreover, x =
[x1, . . . , xn]T is the vector of states of the nodes, and
u = [u1, . . . , um]T is the vector of input signals. Also,

B ∈ Rn×m is the input matrix whose nonzero entries
determine the nodes where the input signals are directly
injected. In this paper, G is assumed to be a threshold graph
or a general cograph, and the controllability of the network is
investigated. Specifically, we provide conditions ensuring the
controllability of the network and find the minimum number
of independent input signals (or controllers) that render the
network controllable.

In the first step, we assume that any input signal can be
injected into only one node, referred to as the control node.
Thus, the input matrix B can be defined as

B = [ej1 , . . . , ejm ], (2)

where ji ∈ {1, . . . , n}, for 1 ≤ i ≤ m, and VC =
{j1, . . . , jm} is the set of control nodes in the network. In
the next step, we consider a general matrix B whose entries
can be any real numbers. Then, we find an input matrix B
with the minimum number of columns (or equivalently, the
minimum number of independent inputs) that renders the
network controllable.

In order to investigate the controllability of networks, we
use the PBH controllability test as follows.

Proposition 1 ([30]): A system with dynamics (1) (or the
pair (A,B)) is controllable if and only if for any nonzero
(left) eigenvector ν of A, we have νTB 6= 0.

The PBH test can be stated in another equivalent way:
a system with dynamics (1) is controllable if and only if
for every eigenvalue λ of A, the matrix [λIn − A,B] ∈
Rn×(n+m) is full rank.

Note that if we want to select the set of control nodes
for a network of size n by relying on the PBH test, we are
required to adopt a brute-force exponential time algorithm,
that is computationally infeasible for large-scale networks. In
this paper, we provide controllability conditions for special
classes of graphs that can be efficiently inferred from the
corresponding network topology.

III. CONTROLLABILITY OF NETWORKS WITH
THRESHOLD GRAPHS

In this section, we investigate the controllability of net-
works with dynamics (1) whose structures are described by
threshold graphs. To this aim, the eigenspace of a threshold
graph are first examined.

A. Eigenspace of a Threshold Graph

We consider a construction sequence TG associated with
a threshold graph G and proceed to characterize the eigen-
values and eigenvectors of its Laplacian matrix.

As mentioned previously, considering the sequence TG, a
threshold graph G of size n can be constructed in n steps,
where in each step, an isolated node is added to the graph
through the join or union operation. Consider the node added
to G in the ith step, and let it be indexed as i, 1 ≤ i ≤ n. By
the next result, given TG, one can provide the node degrees
of G.

Proposition 2: Consider the construction sequence TG

associated with a threshold graph G. Then, for every 1 ≤



i ≤ n, d(i) = TG(i)× (i− 1) + |{i < j ≤ n : TG(j) = 1}|.

Proof: For some 1 ≤ i ≤ n, first let TG(i) = 1. Then
node i is added to the set of nodes {1, . . . , i − 1} through
the join operation. In other words, it is connected to all nodes
j where 1 ≤ j < i. Moreover, for a node k where k > j,
if TG(k) = 1, {i, k} ∈ E, and if TG(k) = 0, then {i, k} /∈
E(G). Thus, d(i) = (i − 1) + |{i < j ≤ n : TG(j) = 1}|.
On the other hand, if TG(i) = 0, the node i is connected
only to the nodes which are added to the graph through a
join operation in some step j, where j > i. In other words,
{i, k} ∈ E if k > i and TG(k) = 1, which completes the
proof. �

From Proposition 2, with a construction sequence, we can
find the degree sequence of the associated threshold graph.
Moreover, the next result provides conditions on elements of
TG under which two nodes i and j have the same degree.

Lemma 1: Consider the construction sequence TG asso-
ciated with a threshold graph G. For some nodes i, j ∈ V ,
where 1 ≤ i < j ≤ n, we have d(i) = d(j) if and only if
one of the following three conditions holds:

1) (TG(i), TG(i+ 1), . . . , TG(j)) = (0, 0, . . . , 0),

2) (TG(i), TG(i+ 1), . . . , TG(j)) = (1, 1, . . . , 1),

3) i = 1, and (TG(1), TG(2), . . . , TG(j)) =
(0, 1, . . . , 1).

Proof: For the sufficiency part, using Proposition 2, one
can verify that if any of the three conditions hold, d(i) =
d(j). Now, let us prove the necessity by contradiction. Let
d(i) = d(j). First, assume that TG(i) = TG(j), but for
some i < k < j, TG(i) 6= TG(k). Then, if TG(i) = 0,
by Proposition 2, d(i) > d(j), and if TG(i) = 1, d(j) >
d(i), which contradicts the assumption. Now, assume that
TG(i) = 1 and TG(j) = 0. Then, d(i) ≥ (i − 1) + d(j).
Moreover, since TG(1) = 0, we have i > 1. Then, d(i) >
d(j). On the other hand, let i > 1 and TG(i) = 0, while
TG(j) = 1. Define k1 = |{i < k < j : k = 1}| and
k2 = |{j < k ≤ n : k = 1}|. Then, d(i) = k1 + k2 + 1
and d(j) = j − 1 + k2 ≥ k1 + k2 + i. Then, since i > 1,
d(j) > d(i), which is a contradiction. �

By Lemma 1, we can also conclude that the degrees of
the nodes 1 and 2 in a threshold graph are the same.

Corollary 1: In a threshold graph G whose nodes are
ordered and indexed based on the construction sequence TG,
we have d(1) = d(2).

Proof: Since TG(1) = 0, then (TG(1), TG(2)) = (0, 1)
or (0, 0). Accordingly, from Lemma 1, d(1) = d(2). �

By applying Proposition 2, for a threshold graph G with
a construction sequence TG, one can obtain the degree
sequence D(G). Then, based on Theorem 2, the ordered
nondecreasing sequence of eigenvalues of G denoted by
Λ(G) is provided. In Fig. 1, an algorithm that generates the
modal matrix V (G) associated with Λ(G) is presented. Let
C : {1, . . . , n} → Rn such that C(i) =

[
1Ti −i 0Tn−i−1

]T
.

Theorem 3: For a threshold graph G with a given con-
struction sequence TG, the matrix V (G) obtained by Al-

Algorithm 1:
Input: The construction sequence TG

Output: The modal matrix V (G)
V:,1(G) = 1n

k = 1
r = 0

for i = n : −1 : 2
if TG(i) = 0
k = k + 1
V:,k(G) = C(i− 1)

else
V:,n−r = C(i− 1)
r = r + 1

end if
end for

return V (G)

Fig. 1. An algorithm that generates the modal matrix V (G) associated
with the construction sequence TG of a threshold graph G.

gorithm 1 is the modal matrix of G associated with the
spectrum Λ(G) = (0, λ2, . . . , λn) (s.t., 0 ≤ λ2 ≤ . . . ≤ λn).

Before presenting the proof of Theorem 3, let us consider
a sample run of Algorithm 1 for a construction sequence
TG = (0, 1, 0, 1, 0, 0, 1) associated with a threshold graph
G. The graph G is shown in Fig. 2. The nodes are indexed
according to the number of the step in which they are added
to the graph through the join or union operation. Using
Proposition 2, one can find that d(1) = 3, d(2) = 3, d(3) =
2, d(4) = 4, d(5) = 1, d(6) = 1, and d(7) = 6. Moreover,
from Theorem 2, the spectrum of the graph is obtained as
Λ(G) = (0, 1, 1, 2, 4, 5, 7). Now, let us run Algorithm 1 to

Fig. 2. A threshold graph G associated with TG = (0, 1, 0, 1, 0, 0, 1).

generate V (G). The first column of V (G) is 17. One can
see that for i = 6, 5, 3, TG(i) = 0. Then, the 2nd, the
3rd, and the 4th columns of V (G) are respectively, equal to
C(5) = (1, 1, 1, 1, 1,−5, 0)T , C(4) = (1, 1, 1, 1,−4, 0, 0)T ,
and C(2) = (1, 1,−2, 0, 0, 0, 0)T . The next columns of V (G)
are associated with C(i) for every i that TG(i) = 1. Then,
V (G) is obtained as:

V (G) =



1 1 1 1 1 1 1
1 1 1 1 −1 1 1
1 1 1 −2 −3 1
1 1 1 1
1 1 −4 1
1 −5 1
1 −6


Proof of Theorem 3: The proof follows by induction. First,

note that for a threshold graph of size 1 which is an isolated



node, Λ(G) = (0) and V (G) = [1]. Now, consider TG for
a threshold graph G of size 2. Then, TG = (0, 1) or (0, 0).
Then, it follows from Theorem 1 that

V (G) =

[
1 1
1 −1

]
,

which can be constructed by running Algorithm 1 as well.
Now, assume that for any threshold graph G′ of size n,
V (G′) can be obtained through Algorithm 1. Then, consider
a threshold graph G of size n + 1. We want to prove that
V (G) can be generated by running Algorithm 1. Let TG be
the construction sequence of G. Then, we have either TG =
(TG′

, 0) or TG = (TG′
, 1), where TG′

is a construction
sequence associated with a threshold graph G′ of size n.
Thus, V (G′) can be provided by Algorithm 1. Let Λ(G′) =
(0, λ2, . . . , λn) = (0,Λ′), where Λ′ = (λ2, . . . , λn), and
0 ≤ λ2 ≤ . . . ≤ λn. Moreover, let V (G′) = [1n, V ′], where
V ′ = [ν2, . . . , νn]. Now, first assume TG = (TG′

, 0). Thus,
the node n + 1 is added to the graph G′ through a union
operation. Then, from Theorem 1, Λ(G) = (0, 0,Λ′), and

V (G) =

[
1n 1n V ′

1 −n 0

]
.

Therefore, V (G) can be constructed through Algorithm 1.
In fact, according to this algorithm, since TG(n + 1) = 0,
V:,2(G) = C(n), which is true. Now, assume that TG =
(TG′

, 1) which means that the node n + 1 is added to G′

through a join operation. According to Algorithm 1, since
TG(n+1) = 1, V:,n+1(G) = C(n). This can also be verified
through Theorem 1 which implies that Λ(G) = (0,Λ′, n+1),
and

V (G) =

[
1n V ′ 1n

1 0 −n

]
.

�
We should note that for a threshold graph of size n, one

can run Algorithm 1 in O(n).

B. Controllability Analysis of Threshold Graphs

We now consider a network with dynamics (1) with a
connected threshold graph G. Furthermore, we assume that
the input matrix B is defined as (2). In particular, we proceed
to characterize the minimal set of control nodes VC which
renders the network controllable.

Before presenting the control node selection method, let
us introduce some more notation and present a lemma which
is applied in the proof of the main result. For a connected
threshold graph G with the degree sequence D(G) =
(d̃p1

1 , . . . , d̃
ps
s ) and the spectrum Λ(G) = (0, λ̃q11 , . . . , λ̃

qs
s ),

let V (G) = [1n, Ṽ
(1), . . . , Ṽ (s)], where for every 1 ≤ i ≤ s,

Ṽ (i) ∈ Rn×qi is a matrix whose columns are the independent
eigenvectors associated with the eigenvalue λ̃i. Then, every
vector ν̃i = Ṽ (i)C, for some C ∈ Rqi , is an eigenvector
associated with λ̃i.

Lemma 2: Consider a connected threshold graph with
D(G) = (d̃p1

1 , . . . , d̃
ps
s ) and Λ(G) = (0, λ̃q11 , . . . , λ̃

qs
s ). If

s = 2l (resp., s = 2l + 1), for some l ∈ Z, then for i 6= l
(resp., i 6= l + 1), there is some 1 ≤ k ≤ n− 1 that

Ṽ (i) =
[
C(k) . . . C(k + pi − 1)

]
. (3)

Moreover, if i = l (resp., i = l+ 1), one can obtain that for
some 1 ≤ k ≤ n− 1,

Ṽ (i) =
[
C(k) . . . C(k + pi − 2)

]
. (4)

Proof: We prove the result only for the case that s = 2l
and i 6= l. The result for the other cases can be be proved in
a similar way. Note that in this case, Theorem 2 implies that
qi = pi, that is, the multiplicity of the eigenvalue λ̃i is equal
to the multiplicity of the ith degree. Then, Ṽ (i) ∈ Rn×pi .
Moreover, from Lemma 1, pi nodes have the same degrees
if they are successively indexed. In other words, if for the
nodes j1, . . . , jpi

, we have d(j1) = . . . = d(jpi
), there is

some 1 ≤ k ≤ n − 1 that jr = k + r − 1, for 1 ≤ r ≤ pi.
Then, from the construction method of V (G) in Algorithm
1, we have Ṽ (i) =

[
C(k) . . . C(k + pi − 1)

]
. �

Now, let us partition the node set of a connected threshold
graph into cells, such that the degrees of any two nodes in a
cell are the same; while the degrees of two nodes from two
different cells are different. In the following, we show that
the network is controllable if and only if from any cell, all
nodes except one are chosen as control nodes. The procedure
of the selection of the control nodes is presented as follows.

Procedure 1: Consider a connected threshold graph G with
the degree sequence D(G) = (d̃p1

1 , . . . , d̃
ps
s ). For every 1 ≤

i ≤ s, let K(i) = {1 ≤ j ≤ n : d(j) = d̃i}. Note that
|K(i)| = pi ≥ 1. Now, choose one node ki from every set
K(i), 1 ≤ i ≤ s. Let V ′ = {k1, . . . , ks} and VC = V \ V ′.
Then, |VC | = n − s, where n is the size of network, and s
is the number of distinct degrees of its nodes.

Theorem 4: Consider a network with a connected thresh-
old graph G and dynamics (1) whose input matrix B is
described in (2). Then, the network is controllable if VC
is chosen through Procedure 1. Moreover, the minimum
number of control nodes rendering the network controllable
is n− s which is also determined through the application of
Procedure 1.

Proof: Let VC = V \ V ′, and note that from Corollary 1,
either 1 ∈ VC or 2 ∈ VC . Now, assume that the network
is not controllable. Then, for some 1 ≤ i ≤ s, there
is a nonzero eigenvector ν̃i associated with λ̃i such that
ν̃Ti B = 0. Then, for some nonzero C ∈ Rqi , one can write
ν̃i = Ṽ (i)C. Accordingly, from the PBH test, we should
have CT (Ṽ (i))TB = 0. Note that (Ṽ (i))TB = (Ṽ

(i)
VC ,:)

T ,
where Ṽ

(i)
VC ,: is a submatrix of Ṽ (i) including its jth rows

with all j ∈ VC . From Lemma 2, for every 1 ≤ i ≤ s,
Ṽ (i) in (3) has pi + 1 independent rows, that is, the rows
k, . . . , k + pi − 1 and one of the rows 1 and 2. Then, if
VC includes pi − 1 nodes from the pi nodes with the same
degree along with one of nodes 1 and 2, then Ṽ

(i)
VC ,: is full

rank; thus, CT Ṽ
(i)
VC ,: = 0 implies that C = 0; that is, ν̃i = 0,

which is a contradiction. For the second part of the theorem,



we can do a similar argument and conclude that by choosing
a set of control nodes with a size less than n− s, for some
1 ≤ i ≤ s, Ṽ (i)

VC ,: is not full rank; then, λ̃i has some nonzero
eigenvector ν̃i that ν̃Ti B = 0. Hence, the system would not
be controllable. �

As an example, consider the network with the threshold
graph shown in Fig. 2. Applying Procedure 1, one can choose
one of the nodes 1 and 2 and one of the nodes 5 and 6 as
control nodes. For instance, we can have B = [e1, e5].

IV. CONTROLLABILITY OF NETWORKS DEFINED ON
COGRAPHS

In this section, we discuss the controllability of a network
with dynamics (1) defined on a cograph. A cograph has a few
definitions, all of which are equivalent. Here, we describe a
cograph by its associated cotree.

A cotree T associated with a cograph G is a rooted tree
whose leaves (i.e., the nodes with the degree one) correspond
to the nodes of the cograph. Moreover, the internal nodes of
a cotree (i.e., the nodes whose degree is bigger than one)
are labeled with 0 or 1. Any subtree rooted at each node
z of T corresponds to an induced subgraph of G defined
on the leaves descending from z. If z is a leaf of T , the
corresponding subgraph in G is a graph of the single node
z. In addition, to an internal node z of T that is labeled 0, one
can correspond a subgraph which is the union of subgraphs
associated with the children of z. On the other hand, if z is
labeled 1, the corresponding subgraph is a join of subgraphs
corresponding to the children of z [31].

We note that a cograph G = (V,E) can be recognized in
O(|V |+ |E|), while its associated cotree can be constructed
with similar computational efficiency [31].

Fig. 3. a) A cograph G, b) Associated cotree T .

In Fig. 3, an example of a cograph along with its associated
cotree is illustrated.

In order to characterize the eigenvalues and eigenvectors
associated with a cograph, one can apply a bottom-up
tree computation on its associated cotree and by applying
Theorem 1, provide the spectrum of the cograph as well as its
corresponding modal matrix in a polynomial time. By having
the eigenspace of a network, its controllability problem can
be addressed as follows.

Consider a connected cograph G. Let Λ(G) =
(λ̃q11 , . . . , λ̃

qr
r ) be the spectrum of G and V (G) =

[V (1), . . . , V (r)] be its normalized modal matrix, where λ̃i,
1 ≤ i ≤ r, is an eigenvalue of L(G) with the multiplicity
qi. Moreover, V (i) ∈ Rn×qi , and L(G)V (i) = λ̃iV

(i). Let

V (i) = [V
(i)
1 , . . . , V

(i)
qi ], where V (i)

j ∈ Rn, for 1 ≤ j ≤ qi.
In addition, for some 1 ≤ k ≤ r, let qk be the maximum
multiplicity of eigenvalues of G. Now, for every 1 ≤ i ≤ r,
add qk − qi zero columns to each V (i) and define V̄ i =
[V

(i)
1 , . . . , V

(i)
qi , 0n×(qk−qi)]. Then, we have the following

condition for the controllability of the associated network.
Theorem 5: A network with dynamics (1) which is de-

fined on a cograph G is controllable if

B = [

r∑
i=1

V̄
(i)
:,1 , . . . ,

r∑
i=1

V̄ (i)
:,qk

] ∈ Rn×qk .

Proof: Since V (G) is normalized, V (G)V T (G) =
V T (G)V (G) = In. Then, the equation L(G)V (G) =
V (G)diag(Λ(G)) implies that diag(Λ(G)) =
V T (G)L(G)V (G). Let D = diag(Λ(G)). Since the
controllability property is not influenced by the similarity
transformation, the controllability of the pair (L(G), B)
is equivalent to the controllability of the pair (D, B̄),
where B̄ = V T (G)B. Based on the PBH test, the pair
(D, B̄) is controllable if and only if for every λ̃i ∈ Λ(G),
the matrix [D − λ̃iI, B̄] is full rank. Accordingly, the
pair (D, B̄) is controllable if and only if the rows of
B̄ associated with the same diagonal entries of D are
independent. Now, for every 1 ≤ i ≤ r, let us define
E(i) = [e1, . . . , eqi ], where ej , 1 ≤ j ≤ qi, is the jth
column of Iqk . We then choose B̄T = [E(1), . . . , E(r)].
Thus, B = V (G)B̄ = [

∑r
i=1 V̄

(i)
:,1 , . . . ,

∑r
i=1 V̄

(i)
:,qk ]. �

As an example, consider the cograph G shown in Fig. 3
(a). By having the associated cotree in Fig. 3 (b) and ap-
plying Theorem 1, one can obtain Λ(G) = (0, 3, 4, 52, 6, 7).
Moreover, we have:

V (G) =



1 2 1 3
1 2 −1 3
1 −2 1 3
1 −2 −1 3
1 2 −4
1 −1 1 −4
1 −1 −1 −4


.

Accordingly, V (1) = V:,1(G), V (2) = V:,2(G), V (3) =
V:,3(G), V (4) = [V:,4(G), V:,5(G)], V (5) = V:,6(G), and
V (6) = V:,7(G). Then from Theorem 5, one can obtain
B = [

∑6
i=1 V

(i)
:,1 , V

(4)
:,2 ]. Thus, we have:

BT =

[
6 6 3 1 −1 −3 −5
1 −1 0 0 0 0 0

]
.

Note that the entries of the input matrix B obtained from
Theorem 5 are all integer.

V. CONCLUSION

In the first part of this paper, the controllability of an
LTI network with the Laplacian dynamics on a threshold
graph has been examined. In this direction, an efficient
algorithm for characterizing the modal matrix associated with



the Laplacian of a threshold graph has been presented. Sub-
sequently, by assuming that any input signal can be injected
into one node only, necessary and sufficient conditions for the
controllability of this class of networks has been established.
Furthermore, the paper examined the controllability problem
of general cographs; it is shown that an input matrix with
the minimum rank that renders the network controllable can
be found in a polynomial time.
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