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Abstract— This paper addresses the problem of stability and
controller design for differential linear repetitive processes with
time delays in state. Delay-dependent conditions for stability
along the pass of such processes are developed in terms of
linear matrix inequalities. These results are then extended to
include finite frequency specifications to reduce conservatism
generated by considering the entire frequency spectrum. The
method is based on the generalized Kalman-Yakubovich-Popov
(KYP) lemma and hence finite frequency range performance
specifications can be imposed during the stability checking with
an extension to algorithms for controller design. A simulation
example to demonstrate the new results is also given.

I. INTRODUCTION

In the recent years, increasing research effort has been
directed at the development of an applicable control systems
theory for repetitive processes, which are one of the most
important classes of two-dimensional (2D) systems both in
terms of system theoretic properties and applications. Re-
ported applications of these processes include long-wall coal
cutting and metal rolling operations, see, e.g., the references
cited in [1], [2]. Moreover, the stability theory developed for
these processes can be of use in solving problems in other
areas. Examples include iterative learning control (ILC) law
design, with a follow through to experimental verification,
see, e.g., [3] and iterative algorithms for solving nonlinear
dynamic optimal control problems based on the maximum
principle [4].

Repetitive processes are an example of systems that
complete the same finite duration task, then resets to the
starting location, makes another completion and so on. Each
completion is termed a pass, its duration the pass length
and the output is termed the pass profile. The notation for
variables in this paper is yk(t), 0 ≤ t ≤ α where y
is the vector or scalar-valued variable, the integer k ≥ 0
the pass number and α < ∞ is the pass length. Suppose
also that y0(t) is a supplied initial pass profile and denote
the sequence of pass profiles generated in response to the
boundary conditions (of which y0(t) is a part) and/or input as
{yk}. Then the distinguishing feature of a repetitive process
is that yk(t) acts as a forcing function on the next pass
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and sequence generated {yk} can contain oscillations that
increase in amplitude from pass-to-pass (i.e., k) and these
cannot be controlled by standard, also known as 1D in some
of the literature, control laws.

Repetitive processes operate over {(k, t) : [0,∞)×[0, α]},
which is a subset of the upper-right quadrant of the 2D plane.
They are a distinct class of 2D systems that operate over
the complete upper-right quadrant of the 2D plane. If t is
a discrete variable then links exist with representations for
2D systems and this allows systems theory for this latter
class to be applied to repetitive processes, see, e.g., [2].
However, there are repetitive process dynamics for which
this is not possible. For example, the initial conditions at the
start of each new pass can be an explicit function of sample
instants along the previous pass. This form of dynamics
cannot be represented by 2D systems models but just this
form of pass initial conditions is required in the optimal
control application [4].

The applicability of systems theory for 2D models is less
relevant if the dynamics along the pass are governed by a
matrix linear differential equation and known as differential
linear repetitive processes. Also there is a need, as in other
areas, to deal with the effects of time delays [5]. An example
is again from the coal mining example where the pass profile
on any pass can only be measured as a delayed quantity.
This is because it is not possible to co-locate the measuring
equipment with the cutting drum used to extract the coal.

In this paper the novel contributions are on stability and
stabilization of differential linear repetitive processes with
delays in the state vector. Firstly, the solution to the stability
along the pass problem for processes with a single time
delay are derived where the duration of the delay is include
and therefore a delay-dependent result is obtained. Next, a
version of the generalized Kalman-Yakubovich-Popov (KYP)
lemma [6] is used to reduce the possible conservatism
generated by analyzing over the complete frequency do-
main. Finally, the stabilization problem is solved. All results
derived can be computed using Linear Matrix Inequalities
(LMIs).

This paper is organized as follows: Section II gives the re-
quired background and in Section III conditions for stability
along the pass are derived using the generalized KYP lemma
and results in LMI constraints that ensure stability over
a finite frequency range. Section IV. Section V illustrates
the feasibility and effectiveness of the new results by a
numerical example. Finally, the main results are summarized
in Section VI together with some possible areas for further
research.



Throughout this paper, the null and identity matrices with
the required dimensions are denoted by 0 and I, respectively,
and the notation X ≺ Y (respectively X � Y ) means that
the matrix X − Y is negative definite (respectively, positive
definite). The notation (?) represents the transposed elements
in some symmetric matrices and ρ(·) denotes the spectral
radius of its matrix argument, i.e., if λi, 1 ≤ i ≤ q, denotes
the eigenvalues of a q×q matrix, say H, ρ(H) = max

1≤i≤q
|λi|.

Also sym{M} is a shorthand notation for M + MT , ⊗
denotes the Kronecker matrix product.

The following lemma is used in developing the new results
in this paper.

Lemma 1: [7] Given a symmetric matrix Υ ∈ Rp×p and
two matrices Λ, Σ of column dimension p, there exist a
matrix W such that the LMI

Υ + sym
{

ΛTWΣ
}
≺ 0,

holds if, and only if

Λ⊥
T

ΥΛ⊥ ≺ 0,Σ⊥
T

ΥΣ⊥ ≺ 0, (1)

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns
form a basis of null spaces of Λ and Σ respectively. Clearly,
this means that ΛΛ⊥ = 0 and ΣΣ⊥ = 0.

II. DIFFERENTIAL LINEAR REPETITIVE PROCESSES AND
THEIR STABILITY PROPERTIES

Consider a differential linear repetitive process defined
over 0 ≤ t ≤ α and k ≥ 0, by the following state-space
model (see [2] for further details)

ẋk+1(t) =Axk+1(t)+Buk+1(t)+B0yk(t),

yk+1(t) =Cxk+1(t)+Duk+1(t)+D0yk(t),
(2)

where the pass length is denoted by α < +∞ and xk(t) ∈
Rn, uk(t) ∈ Rm and yk(t) ∈ Rp represent, respectively, the
state, input and output vectors at time instant t on pass k.
The boundary conditions considered are

xk+1(0) = dk+1, k ≥ 0,

y0(t) = f(t), 0 ≤ t ≤ α,
(3)

where dk+1 ∈ Rn is the pass state initial vector with known
constant entries and f(t) ∈ Rm is the initial pass profile
vector whose entries are known functions of t.

The terms B0yk(t) and D0yk(t) in (2) describe the
contributions of the previous pass profile vector to the
current pass state and pass profile vectors respectively. As
discussed in the previous section these terms are the source
of control problem for these processes, i.e., the sequence of
pass profiles {yk}k≥1 can contain oscillations that increase
in amplitude from pass-to-pass. As this behavior cannot be
controlled by standard linear systems control laws, a stability
theory for these processes has been developed [2]. This
theory requires that a bounded initial pass profile produces
a bounded sequence of pass profiles, where in the strongest
form this property is required for all possible values of the
pass length. This last form of stability is termed stability

along the pass and the following result characterizes this
property.

Lemma 2: [2] A differential linear repetitive process
described by (2) and (3) is stable along the pass if and only
if

i) ρ(D0) < 1,
ii) all eigenvalues of the matrix A have strictly negative

real parts,
iii) all eigenvalues of G(jω) = C (jωI−A)

−1
B0 +D0

have modulus strictly less than unity ∀ω ≥ 0.
In terms of checking these conditions for a given example,
it is the third condition that will incur the greatest computa-
tional load, since it requires that all eigenvalues of G(jω),
also termed the characteristic loci, lie inside the unit circle
in the complex plane ∀ ω.

This paper considers differential linear repetitive processes
with a delay in the current pass state vector and described
by the state-space model
ẋk+1(t)=Axk+1(t)+Adxk+1(t−d)+Buk+1(t)+B0yk(t),

yk+1(t)=Cxk+1(t)+Cdxk+1(t−d)+Duk+1(t)+D0yk(t),
(4)

where d is the unknown time-delay constant satisfying 0 <
d ≤ d̄, and d̄ is a known upper bound. No loss of generality
arises from assuming xk(t) = x0,k, t ∈ [−d, 0] on each pass.

The following result characterizes stability along the pass
of processes described by (4).

Lemma 3: [8] A differential linear repetitive process de-
scribed by (4) is stable along the pass for all d ∈ [0, d] if
and only if

i) ρ(D0) < 1,
ii) all eigenvalues of the matrix (A + e−djωAd) have

strictly negative real parts ∀ω ≥ 0 and d ∈ [0, d],
iii) all eigenvalues of Gc(jω) =

(
C+e−djωCd

)
×
(
jωI−A−e−djωAd

)−1
B0 + D0 have modulus

strictly less than unity ∀ω ≥ 0 and d ∈ [0, d].
Proof: (Sketch of the proof ): The result of Lemma 3

is based on reworking the conditions of Lemma 2 and
application of delay-dependent stability conditions for the
state dynamics on each pass to be bounded for any set
of boundary conditions. Also, the condition is modified to
impose frequency attenuation (of the frequency content of
the initial pass profile) over the complete spectrum for any
delay d ∈ [0, d].

The development of a direct and numerically tractable
method to check the above conditions and extend them to
design procedures. An alternative, at the possible expense of
some conservativeness, in developed in the next section that
can be checked by solving convex optimization problem over
LMIs.

III. STABILITY ALONG THE PASS

By Lemma 3 a differential linear repetitive process de-
scribed by (4) is stable along the pass if and only if

‖Gc(jω)k‖ → 0, as k →∞,∀ω ≥ 0, (5)

where ‖Gc(jω)‖ = sup
0≤ω≤∞

|Gc(jω)| and

Gc(jω)=
(
C+e−djωCd

)(
jωI−A−e−djωAd

)−1

B0+D0, (6)



and hence each frequency component is attenuated from pass
to pass as k → ∞. Moreover, it is clear that any frequency
component is reduced between successive passes if and only
if

ρ (Gc(jω)) < 1, ∀ω ≥ 0. (7)

Based on standard Lyapunov stability theory, routine argu-
ments show that this last condition can be replaced by the
requirement that there exists a Hermitian matrix P (jω) � 0
such that

Gc(jω)∗P (jω)Gc(jω)− P (jω) ≺ 0, ∀ω ≥ 0,

but the dependence of P (jω) on the frequency variable
ω is unknown. To remove this difficulties, one method is
to consider the use of constant real matrices over entire
frequency range.

Lemma 4: Consider a differential repetitive process de-
scribed by (4) with transfer-function matrix defined by (6).
Then (7) holds if there exist P � 0 such that[

Gc (jω)
I

]T[
P 0
0 −P

][
Gc (jω)

I

]
≺0, ∀ω ≥ 0. (8)

Remark 1: This result establishes that a Hermitian matrix
in this case can be replaced by real symmetric matrix P
(see some details in [9]) but P must work for ∀ω ≥ 0.
Moreover, it may introduce additional conservatism since it
has been obtained by keeping P2 constant and independent of
frequency. However, this change reduces the computational
load of the resulting conditions and allows for extension to
control law design.
Practical experience shows that some examples exhibit poor
transients during operating even if the above condition is
satisfied (i.e., the output may grow over some number
of passes). To avoid these problems, a stronger stability
criteria is required and one choice is to require that

σ(Gc(jω)) < 1, ∀ω ≥ 0, (9)

where σ(·) denotes the maximum singular value of its matrix
argument. Also since

σ(Gc(jω)) < 1 ⇔ ‖Gc(jω)‖∞ < 1, ∀ω ≥ 0, (10)

then (9) holds if (8) is feasible for P = I .

A. Analysis over finite frequency domains

In many practical applications performance specifications
are only required over finite frequency ranges of interest.,
especially since commonly used reference signals. This paper
therefore considers the case when (10) is modified to

‖Gc(jω)‖∞ < 1, ∀ω ∈ Ω,

where Ω denotes the dominant finite frequency ranges, and
|ω| ≤ $l, $1 ≤ ω ≤ $2, |ω| ≥ $h represent the low
frequency range, middle frequency range and high frequency
range, respectively.

Introduce the following notation

Γ1 =

[
A Ad B0

I 0 0

]
,Γ2 =

[
C Cd D0

0 0 I

]
,

Θ=

 X − d̄−1Z d̄−1Z 0
d̄−1Z −X − d̄−1Z 0

0 0 0

 . (11)

The next result is Theorem 1 of [10] specialized to the single
delay case and gives an LMI-based sufficient condition,
which is dependent on the upper bounds of time-delay,
for (10) to hold.

Lemma 5: For a given real symmetric matrix Π of com-
patible dimensions and any delay d satisfying 0 < d ≤
d̄, a transfer-function matrix Gc(jω) defined by (6) satis-
fies (10) if there exist P � 0, Z � 0, Q � 0 and a symmetric
matrix X , such that

ΓT
1

(
Φ⊗P+Ψ⊗Q+Ψ0⊗d̄Z

)
Γ1 + ΓT

2 ΠΓ2+Θ≺0, (12)

holds. Moreover the following frequency domain inequality
also holds[

Gc (jω)
I

]T
Π

[
Gc (jω)

I

]
≺ 0,∀ω ∈ Ω, (13)

where

Φ =

[
0 1
1 0

]
, Ψ0 =

[
1 0
0 0

]
, 0 < d ≤ d̄,

Ψ :=



[
−1 0
0 $2

l

]
, if |ω| ≤ $l,[

−1 j$1+$2

2
−j$1+$2

2 −$1$2

]
, if $1 ≤ ω ≤ $2,[

1 0
0 −$2

h,

]
if |ω| ≥ $h,

and the frequency range Ω is specified by Ψ.
Remark 2: The above Lemma requires the matrices P and

X to be positive definite to guarantee that all eigenvalues of
the matrix (A+e−djωAd) have strictly negative real parts as
in [10]. This means that the condition ii) of Lemma 3 is
immediately satisfied.

The inequality conditions in Lemma 5 are not convex
and hence cannot be solved by using numerical software
(e.g. MATLAB LMI CONTROL TOOLBOX) directly. To make
this problem convex, the following transformations are used.
Firstly, by Lemma 5, if

Π =

[
I 0
0 −I

]
,

is used in (12) then (13) implies that (9) is satisfies for
different frequency ranges as these defined by the matrix
Ψ. Next, partition the matrix Ξ as

Ξ = Φ⊗ P + Ψ⊗Q+ Ψ0 ⊗ d̄Z =

[
Ξ1 Ξ2

(?) Ξ3

]
, (14)

where Ξ takes different form according to the considered
frequency range. In particular



• for the low frequency range (|ω| ≤ $l)

Ξ =

[
Ξ1 Ξ2

(?) Ξ3

]
=

[
−Q+ d̄Z P

(?) $2
lQ

]
, (15)

• for the middle frequency range ($1 ≤ ω ≤ $2)

Ξ =

[
Ξ1 Ξ2

(?) Ξ3

]
=

[
−Q+d̄Z P+j$1+$2

2 Q
(?) −$1$2Q

]
, (16)

• and for the high frequency range (|ω| ≥ $h)

Ξ =

[
Ξ1 Ξ2

(?) Ξ3

]
=

[
Q+ d̄Z P

(?) −$2
hQ

]
. (17)

Also, introduce

Y =

[
I 0 0 0
0 I 0 0

]
,

and

Υ=Y
(
Φ⊗ P+Ψ⊗Q+Ψ0⊗d̄Z

)
Y T +ΓT

2 ΠΓ2+Θ, (18)

to rewrite the inequality of (12) as
A Ad B0

I 0 0
0 I 0
0 0 I


T

Υ


A Ad B0

I 0 0
0 I 0
0 0 I

 ≺ 0.

This last inequality is of the form of the first of those in (1)
when

Λ⊥ =


A Ad B0

I 0 0
0 I 0
0 0 I

 ,
and

Λ =
[
−I A Ad B0

]
. (19)

To use the result of Lemma 1 it is required to find Σ⊥ that
satisfies the second inequality of (1). Choosing

Σ =
[
βI I 0 0

]
, (20)

gives

Σ⊥ =


I 0 0
−βI 0 0

0 I 0
0 0 I

 ,
where β is a given scalar and the desired formulations for
low/middle/high frequency range are obtained by selecting
β as:
• β = 0 for low and middle frequency range,
• β > 0 for high frequency range.

T he above analysis introduces a slightly different formula-
tion for the high frequency range since Ξ1 in (17) cannot be
negative definite because Q � 0 and Z � 0. Also with the Σ
and Σ⊥ given above, the second inequality in (1) becomes Σ11 −βCTCd − βd̄Z −βCTD0

(?) CT
d Cd−X−d̄−1Z CT

d D0

(?) (?) DT
0 D0 − I

 ≺ 0,

where

Σ11 = Ξ1−β2(Ξ3−CTC−X+d̄Z)−β(Ξ2+ΞT
2 ).

The first two new results in this paper can now be derived
where, unlike Theorem 1 in [10], the high frequency range
is considered separately since it requires β > 0 (not β = 0)
and hence the resulting LMI has a different form than for
low and middle frequency ranges.

B. Main results

The following theorem guarantees stability along the pass
of the differential repetitive processes considered over finite
frequency specifications. In this result, the matrices Ξ1,
Ξ2, Ξ3 form a matrix Ξ of the form (14) and are chosen
according to the specific frequency range, i.e. for low, middle
or high frequency range, respectively, as given in the previous
section.

Theorem 1: A differential linear repetitive process de-
scribed by (4) is stable along the pass and the finite frequency
performance specifications over low and middle frequency
ranges given in (13) are met for any delay d satisfying
0 < d ≤ d̄ if there exist matrices P̂ � 0, Q̂ � 0, X̂ � 0,
Ẑ � 0 and S such that

Ξ̂1 Ξ̂2−ST 0 0 0

(?) T1 AdS+d̄−1Ẑ B0 (CS)T

(?) (?) −X̂−d̄−1Ẑ 0 (CdS)T

(?) (?) (?) −I DT
0

(?) (?) (?) (?) −I

 ≺ 0,

(21)
where T1 =Ξ̂3+X̂−d̄−1Ẑ+sym {AS}, Ξ̂1 =−Q̂+d̄Ẑ, and

Ξ̂2 = P̂ , Ξ̂3 = $2
l Q̂, for low frequency range

Ξ̂2 = P̂ +j$1+$2
2

Q̂, Ξ̂3 = −$1$2Q̂, for middle frequency range.
(22)

Proof: Suppose that the LMI (21) holds. Then, pre-
and post-multiplying (21) by diag

{
S−T , S−T , S−T , I, I

}
and its transpose, respectively, gives

Ξ1 Ξ2−W 0 0 0

(?) Ξ̃3 d̄−1Z+WTAd WTB0 CT

(?) (?) −X−d̄−1Z 0 CT
d

(?) (?) (?) −I DT
0

(?) (?) (?) (?) −I

 ≺ 0, (23)

where

Ξ̃3 =Ξ3+X−d̄−1Z+sym{ATW},W = S−1, P = S−T P̂S−1,

Ξ1 =S−T Ξ̂1S
−1,Ξ2 = S−T Ξ̂2S

−1, Q = S−T Q̂S−1

Ξ3 =S−T Ξ̂3S
−1, X = S−T X̂S−1, Z = S−T ẐS−1.

Another application of the Schur’s complement formula
gives that (23) holds if and only if

Ξ1 Ξ2 −W 0 0

(?) Ξ̃3 + CTC Γ3 CTD0 +WTB0

(?) (?) Γ4 CT
d D0

(?) (?) (?) DT
0 D0 − I

 ≺ 0,

where

Γ3 =CTCd+d̄−1Z+WTAd,Γ4 =CT
d Cd−X−d̄−1Z.



It is immediate feasibility of this last inequality implies
that DT

0 D0 − I ≺ 0 and therefore condition i) of Lemma 3
must hold. Moreover, the last inequality can be rewritten as

Υ + sym
{

ΛTWΣ
}
≺ 0, (24)

where Υ is defined in (18) and

Λ =
[
−I A Ad B0

]
, Σ =

[
0 I 0 0

]
.

Also Σ =
[

0 I 0 0
]

is obtained by setting β = 0
in (20). Therefore, by Lemma 1 it follows that (24) is feasible
if and only if (12) holds. Hence conditions ii) and iii) of
Lemma 3 must hold and the proof is complete.
Selecting β > 0 and using a similar approach gives the
following result for stability along the pass in the high-
frequency range.

Theorem 2: With the notation of (22), a differential linear
repetitive process described by (4) is stable along the pass
and the finite frequency performance specifications over high
frequency ranges given in (13) are met for any delay d
satisfying 0 < d ≤ d̄ if there exist matrices P̂ � 0, Q̂ � 0,
X̂ � 0, Ẑ � 0, S, and a positive scalar β such that

Γ5 Γ6 βAdS βB0 0

(?) T1 AdS+d̄−1Ẑ B0 (CS)T

(?) (?) −X̂−d̄−1Ẑ 0 (CdS)T

(?) (?) (?) −I DT
0

(?) (?) (?) (?) −I

 ≺ 0, (25)

where

Γ5 = Ξ̂1−βS−βST ,Γ6 = Ξ̂2−ST +AS.
Proof: This follows from routine changes to the proof

of the previous result to account for β > 0. Hence the details
are omitted.

C. A frequency-partitioned approach for stability along the
pass

Divide the entire frequency range, i.e., from ω = 0 to
ω =∞, into H intervals (not necessarily containing the same
number of frequencies) such that

[0,∞) =

H⋃
h=1

[ωh−1, ωh], (26)

where ω0 = 0 and ωH = ∞. Then the LMI conditions in
Theorems 1 and 2, respectively, can be applied over these
frequency intervals. In particular, the control performance
for low frequency range is imposed over the first interval,
i.e. h = 1 and those for the high frequency range over the
last interval, i.e. h = H . The specifications for the middle
frequency range can be defined over remaining intervals for
2 ≤ h ≤ H − 1. Furthermore, the LMI condition in Theo-
rems 1 and 2 guarantee that σ(Gc(jω)) < 1 (where Gc(jω)
is defined in (6)) over the prescribed frequency ranges.
However, some practical control specifications require that
σ(Gc(jω)) < µ where 0 < µ ≤ 1, i.e., a prescribed rate of
pass-to-pass convergence over some frequencies is required.

IV. CONTROLLER DESIGN

In this section, the LMI based stability conditions devel-
oped in the previous section are extended to the problem
of controller design. The control law to be applied has the
following form over 0 ≤ t ≤ α, k ≥ 0

uk+1(t) = K1xk+1(t)+K2yk(t), (27)

where K1 and K2 are matrices of compatible dimensions to
be designed. This control law uses feedback of the current
pass state vector (which is assumed to be available for
feedback) and ‘feedforward’ of pass profile vector from
the previous pass. It is important to note that the term
’feedforward’ is used to describe the case where state or
pass profile information from the previous pass (or passes)
is used as (part of) the input to a control law applied on the
current pass, i.e. to information which is propagated in the
pass to pass (k) direction.

This form of control law has an obvious physical meaning
for repetitive processes considered in this paper and the
following result holds.

Theorem 3: Suppose that the control law of (27) is applied
to a differential repetitive process of the form (4). Then
the resulting process is stable along the pass and the finite
frequency performance specifications over low and middle
frequency ranges given in (13) and any delay d satisfying
0 < d ≤ d̄ if there exist matrices P̂ � 0, Q̂ � 0, X̂ � 0,
Ẑ � 0, S, N and K2 such that

Ξ̂1 Ξ̂2−ST 0 0 0
(?) Γ7 Γ8 B0+BK2 (CS+DN)T

(?) (?) Γ9 0 (CdS)T

(?) (?) (?) −I (D0+DK2)T

(?) (?) (?) (?) −I

≺0,

(28)
where

Γ7 =Ξ̂3 + X̂ − d̄−1Ẑ+sym {AS +BN} ,
Γ8 =AdS+d̄−1Ẑ, Γ9 = −X̂−d̄−1Ẑ,

and where the notation introduced in (22) is used. Moreover,
if the above LMI is feasible, the corresponding matrices
in the control law (27) are K2 (directly computed during
solving LMI of (28)) and K1 is computed as K1 = NS−1.

Proof: Assume that the control law of (27) is applied to
a differential repetitive process described by (4), resulting in
the following state- space model for the controlled process

ẋk+1(t)=(A+BK1)xk+1(t)+Adxk+1(t−d)

+(B0+BK2)yk(t),

yk+1(t)=(A+DK1)xk+1(t)+Cdxk+1(t−d)

+(D0+DK2)yk(t).

Next, routine matrix manipulations show that the above pro-
cess is stable along the pass as setting N = KS allows the
application of the result of Theorem 1. This transformation
leads directly to LMI of (28) and the proof is complete.

The result holds for the high frequency range.
Theorem 4: Suppose that the control law of (27) is applied

to a differential repetitive process of the form (4). Then



the resulting process is stable along the pass and the finite
frequency performance specifications over high frequency
ranges given in (13) are met for any delay d satisfying
0 < d ≤ d̄ if there exist matrices P̂ � 0, Q̂ � 0, X̂ � 0,
Ẑ � 0, S, N and a positive scalar β such that

Γ10 Γ11 βAdS β(B0+BK2) 0
(?) Γ7 Γ8 B0+BK2 (CS+DN)T

(?) (?) Γ9 0 (CdS)T

(?) (?) (?) −I (D0+DK2)T

(?) (?) (?) (?) −I

≺0,

(29)
where Γ10 = Ξ̂1−βS−βST , Γ11 = Ξ̂2−ST +AS+BN and
where the notation introduced in (22) is used. Moreover, if
the above LMI is feasible, the corresponding matrices in the
control law (27) are computed the same as for Theorem 3.

Proof: This result is proved, with routine changes, in
the same way as Theorem 3. Hence the details are omitted.

V. SIMULATION STUDY

To illustrate the effectiveness of the proposed design
procedure the numerical example is provided. Let us consider
the particular case of (4) when

A=

[
−0.005 −5.8

1 −0.005

]
, Ad =

[
−0.005 −0.8

0 −0.001

]
, D0 =1.2,

B=

[
0.1
0.5

]
, B0 =

[
0.1
0.5

]
, C=

[
1 0
]
, Cd =

[
0.1 0

]
, D=0.8

This example is asymptotically unstable and hence unstable
along the pass since D0 > 1, i.e., condition i) of Lemma 3
is not satisfied. Executing the design procedure given in Sec-
tion IV for d̄ = 0.4 and the following frequency ranges

[0, 3] ∪ [3, 15] ∪ [15,∞],

gives the following control law matrices for β = 0.2

K1 = [−1.3328 − 2.1505], K2 = −1.4523

It can be easily verified that the resulting controlled process
is stable along the pass since ρ(D0+DK2) = 0.0382, and it
can be verified that ρ(Gcl(jω)) < 1 for all ω, where Gcl(jω)
is given by

Gcl(jω)=(C+DK1+e−djωCd)(jωI−A−BK1−e−djωAd)−1

× (B0+BK2)+(D0+DK2).

This can be seen in Figure 1 and this plot confirms that the
design specifications are met.

VI. CONCLUSION

This paper has developed results that enable finite fre-
quency domain specification to be imposed in the stability
analysis and control law design for differential linear repet-
itive processes with time-delays. It has been shown that the
delay-dependent stability condition for these processes can
be reformulated as a convex optimization procedure in the
form of an LMI. These are the first results in this area and
much further work remains to be done. For example, it is
necessary to investigate the trade-offs between using this
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Fig. 1. Plot of ρ(Gcl(jω).

approach and alternative schemes which use only measured
outputs in the form of the pass profile vectors but at the
(possible) expense of requiring dynamics in the control law
itself.
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