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Generalized Feedback Homogenization and Stabilization of Linear
MIMO Systems*

Konstantin Zimenko1, Andrey Polyakov1,2, Denis Efimov1,2 and Wilfrid Perruquetti2

Abstract— Generalized homogenization of linear MIMO sys-
tems via linear feedback is introduced. The control algo-
rithm for finite-time (or asymptotic) stabilization of linear
MIMO systems via homogenization technique is developed.
The robustness of the control algorithm with respect to system
uncertainties and disturbances is studied. The theoretical results
are supported by numerical examples.

I. INTRODUCTION

The homogeneity is a property, that describes sort of
symmetry, i.e. an object remains consistent with respect to
a group of transformations. This property is widely used
for system analysis, control and observer design (see, for
example, [1]-[16]). Such an interest to the homogeneity
concept is based on very useful features of homogeneous
systems. In particular, local stability of homogeneous system
means the global one; if an asymptotically stable system
is homogeneous with negative degree, then it is finite-
time stable, etc. The present paper deals with generalized
homogeneity [12], [5], which is based on groups of linear
transformations (linear dilations).

The present paper addresses the problem of feedback
homogenization, i.e. problem of a feedback design making
the system homogeneous of a given degree, and control
design problem for linear MIMO plants providing asymptotic
or finite-time convergence depending on the homogeneity
degree of the closed-loop system. Asymptotic stabilization
via homogenization with positive degree can also attract
attention since such systems have a number of interesting
robust properties (see, for example, the results for gener-
alized weighted homogeneous systems [15], [16]). Unlike
existing solutions, the presented results do not require special
forms of the system matrix and block decomposition of linear
MIMO systems (as, for example, in [7]), which in some cases
can be accompanied by significant computational errors.
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The presented control law contains two terms: a linear
feedback that homogenizes the system with a specified
degree and a generalized homogeneous control law, which
stabilizes the system in finite time (asymptotically) if degree
of homogeneity is negative (positive).

The outline of this paper is as follows. Notation used
in the paper is given in Section II. Section III introduces
the problem statement and the basic assumptions. Section
IV considers preliminaries used in the paper. After that
the results on linear MIMO system homogenization and
control design are presented in Section V. Two examples
are considered in Section VI. Finally, concluding remarks
are given in Section VII.

II. NOTATION

Through the paper the following notation will be used:

• R+ = {x ∈ R : x > 0}, where R is the field of real
numbers;

• ‖ · ‖ denotes a norm in Rn;
• ‖A‖A = supx∈Rn

‖Ax‖
‖x‖ for A ∈ Rn×n;

• S = {x ∈ Rn : ‖x‖ = 1} is the unit sphere in Rn;
• In ∈ Rn×n is the identity matrix;
• the minimal and maximal eigenvalues of a symmetric

matrix P = PT are denoted by λmin(P ) and λmax(P ),
respectively;

• the inequality P > 0 means that the symmetric matrix
P = PT ∈ Rn×n is positive definite;

• R(λ) denotes the real part of the complex number λ.

III. PROBLEM FORMULATION

Consider the system

ẋ(t) = Ax(t) +Bu(t) + d̃(t, x(t)), (1)

where x ∈ Rn is the state vector, u ∈ Rm is the vector of
control inputs, A ∈ Rn×n, B ∈ Rn×m (the pair (A,B) is
controllable, m ≤ n) are system and control gain matrices,
d̃ : R × Rn → Rn describes the system uncertainties and
disturbances. The state vector x is assumed to be measured
and can be used for feedback control design. To consider the
case of discontinuous function d the theory of Filippov [17]
can be utilized.

The main goal of the paper is to propose a constructive
stabilizing control algorithm based on generalized homog-
enization of the system (1). The control must guarantee
asymptotic or finite-time stability, depending on the degree
of homogeneity of the closed-loop system.



IV. PRELIMINARIES
A. Stability Notions

Consider the following system

ẋ(t) = f(x(t)), x(0) = x0, t ≥ 0, (2)

where x(t) ∈ Rn is the state vector, f ∈ Rn → Rn is a
vector field, f(0) = 0. For any x0 ∈ Rn, a corresponding
solution of (2) is denoted by x(t, x0). The case of the
discontinuous vector field f is not excluded. In this case
the system solutions x(t, x0) are understood in the sense of
Filippov (see, for example, [17], [25]).

According to [17] an absolutely continuous function
x(t, x0) is called a solution of the Cauchy problem associated
to (2) if x(0, x0) = x0 and for almost all t > 0 it satisfies
the following differential inclusion

ẋ ∈ K[f ](t, x) = co
⋂
ε>0

⋂
µ(N)=0

f(t, B(x, ε)\N), (3)

where co(M) defines the convex closure of the set M ,
B(x, ε) is the ball with the center at x ∈ Rn and the radius
ε, the equality µ(N) = 0 means that the measure of N ⊂ Rn
is zero.

Definition 1 [11], [14] The origin of (2) is said to be
globally finite-time stable if it is globally asymptotically
stable and any solution x(t, x0) of the system (2) reaches the
equilibrium point at some finite time moment, i.e. x(t, x0) =
0 ∀t ≥ T (x0) and x(t, x0) 6= 0 ∀t ∈ [0, T (x0)), x0 6= 0,
where T : Rn \ {0} → R+ is the settling-time function. It is
fixed-time stable if in addition supx0∈Rn T (x0) = Tmax <
+∞.

Definition 2 [24] The set M is said to be globally finite-
time attractive for (2) if any solution x(t, x0) of (2) reaches
M in some finite time moment t = T (x0) and remains
there ∀t ≥ T (x0), T : Rn → R+ ∪ {0} is the settling-time
function. It is fixed-time attractive if in addition the settling-
time function T (x0) is globally bounded by some number
Tmax > 0.

Theorem 1 [11], [13] Suppose there exists a positive
definite C1 function V defined on an open neighborhood
of the origin D ⊂ Rn and real numbers C > 0 and σ ≥ 0,
such that the following condition is true for the system (2)

V̇ (x) ≤ −CV σ(x), x ∈ D \ {0}.

Then depending on the value σ the origin is stable with
different types of convergence:
• if σ = 1, the origin is exponentially stable;
• if 0 ≤ σ < 1, the origin is finite-time stable and

T (x0) ≤ 1

C(1− σ)
V 1−σ
0 ,

where V0 = V (x0);
• if σ > 1 the origin is asymptotically stable and, for

every ε ∈ R+, the set B = {x ∈ D : V (x) < ε} is
fixed-time (independent on the initial values) attractive
with

Tmax =
1

C(σ − 1)εσ−1
.

If D = Rn and function V is radially unbounded, then the
system (2) admits these properties globally.

B. Generalized Homogeneity

The homogeneity is a property that specifies sort of sym-
metry of an object with respect to a group of transformations
(dilation operation). The type of homogeneity, dealing with
linear transformations, is called generalized homogeneity.

Definition 3 [12], [9] A map d : R → Rn×n is called
dilation in the space Rn if it satisfies:
• group property: d(0) = In and d(t+ s) = d(t)d(s) =

d(s)d(t) for t, s ∈ R;
• continuity property: d is a continuous map;
• limit property: lims→−∞ ‖d(s)x‖ = 0 and

lims→+∞ ‖d(s)x‖ = +∞ uniformly on the unit
sphere S.

The dilation d is a uniformly continuous group [12].
Its generator [18] is a matrix Gd ∈ Rn×n defined by

Gd = lim
s→0

d(s)− In
s

.

The generator Gd satisfies the following properties [18]

d

ds
d(s) = Gdd(s) = d(s)Gd, (4)

d(s) = eGds =

+∞∑
i=0

siGid
i!

, (5)

where s ∈ R.
Let us introduce the definitions on monotonicity of the

dilation d(s).
Definition 4 [12] The dilation d is said to be monotone

if ‖d(s)‖A < 1 for s < 0.
Thus, monotonicity means that d(s) is strong contraction

for s < 0 (strong expansion for s > 0) and implies that for
any x ∈ R \ {0} there exists a unique pair (s0, x0) ∈ R× S
such that x = d(s0)x0. The rate of contraction is introduced
by the next definition.

Definition 5 [9], [5] The dilation d is said to be strictly
monotone if ∃β such that ‖d(s)‖A ≤ eβs for s ≤ 0.

Note [9], that monotonicity property may depend on a
norm ‖ · ‖.

Theorem 2 [5] If d is a dilation in Rn, then
• the generator matrix Gd is anti-Hurwitz, i.e. R(λi) > 0,
i = 1, ..., n;

• there exists a symmetric matrix P ∈ Rn×n such that

PGd +GTdP > 0, P > 0. (6)

• the dilation d is strictly monotone with respect to the
weighted Euclidean norm ‖x‖ =

√
xTPx for x ∈ Rn

and P satisfying (6):

eαs ≤ ‖d(s)‖A ≤ eβs if s ≤ 0,

eβs ≤ ‖d(s)‖A ≤ eαs if s ≥ 0,

where α = 1
2λmax

(
P

1
2GdP

− 1
2 + P−

1
2GTdP

1
2

)
, β =

1
2λmin

(
P

1
2GdP

− 1
2 + P−

1
2GTdP

1
2

)
.



Definition 6 [12] A vector field f : Rn → Rn (a function
g : Rn → R) is said to be d-homogeneous of degree ν ∈ R
if

f(d(s)x) = eνsd(s)f(x), ∀x ∈ Rn \ {0}, ∀s ∈ R.
(resp. g(d(s)x) = eνsg(x), ∀x ∈ Rn \ {0}, ∀s ∈ R.)

(7)

A special case of homogeneous function is a homogeneous
norm [10], [5]: a continuous positive definite d-homogeneous
function of degree 1. Define the canonical homogeneous
norm ‖ · ‖d : Rn → R+ as ‖x‖d = esx , where sx ∈ R
such that ‖d(−sx)x‖ = 1. Note that ‖d(s)x‖d = es‖x‖d
and

‖d(− ln ‖x‖d)x‖ = 1. (8)

Theorem 3 [5] An asymptotically stable d-homogeneous
system ẋ = f(x), f : Rn → Rn of degree ν ∈ R is finite-time
stable if and only if ν < 0.

C. On the Matrix Equation XĀ− ĀX = X

Let us consider the matrix equation

XĀ− ĀX = X. (9)

The following results hold true.
Proposition 1 [19] Let Ā ∈ Rn×n. Then every matrix

solution X ∈ Rn×n of the equation XĀ − ĀX = X is
nilpotent and hence satisfies Xn = 0.

Note, that the linear matrix equation (9) is a special case
of the Sylvester matrix equation. The general solution of the
matrix equation is given in [20].

In solving the inverse problem (search for the matrix Ā
for given X), the following result is valid.

Proposition 2 For any nilpotent matrix X ∈ Rn×n the
equation (9) has a solution.

Proofs of all propositions are skipped.

V. MAIN RESULT

The following lemma gives the condition of the linear
system to be d-homogeneous with the generator Gd.

Lemma 1 Let Gd ∈ Rn×n be a generator of the dilation
d(s) = eGds, s ∈ R. Then the linear system ẋ = Cx,
x ∈ Rn, C ∈ Rn×n is d-homogeneous of degree ν ∈ R if
and only if

CGd −GdC = νC. (10)

Based on Proposition 1 and Lemma 1 it can be shown that
the system (1) with d̃(t, x) = 0 can be homogenized by a
linear control u = K0x.

Lemma 2 Let A + BK0 be nilpotent for K0 ∈ Rm×n.
Then for any ν ∈ R there exists a matrix Gd such that the
system (1) with d̃(t, x) = 0 and u = K0x is d-homogeneous
of degree ν.

Further, these results are utilized for control design of the
system (1).

Theorem 4 (Disturbance-free case) Let d̃(t, x) = 0 and
• for some ν ≥ −1 the system of matrix equations and

inequalities

(A+BK0)X+X(A+BK0)T+By+yTBT+αX≤0, (11)

(A+BK0)L− L(A+BK0) = (A+BK0), (12)

(L− γI)B = 0, (13)

X > 0, (14)

is feasible, where the matrix K0 ∈ Rm×n is such that
the matrix A + BK0 is nilpotent, L,X ∈ Rn×n, y ∈
Rm×n, α ∈ R+, γ ∈ R;

• the control has the form

u(x) = K0x+ ‖x‖ν(1+γ)+εd Kd(− ln ‖x‖d)x, (15)

where K = yP , P = X−1 and ε ∈ R+ is chosen such
that

νL+ νLT + 2εIn > 0, (16)

ηX ≥ νLX + νXLT + 2εX > 0 (17)

for some η ∈ R+.
Then the closed-loop system (1), (15) is asymptotically (for
ν > 0) / exponentially (for ν = 0) / finite-time (for 0 > ν ≥
−1) stable.

Remark 1 Obviously, the case ν = 0 is out of interest since
in this case the task reduces to the standard linear control
design problem.

Remark 2 According to Theorem 1 for 0 > ν ≥ −1 the
settling time function is bounded as follows

T (x0) ≤ − η

αν
V −ν0 ,

for ν > 0 and any ε ∈ R+, the set B = {x ∈ Rn : V (x) <
ε} is fixed-time attractive with

Tmax =
η

ανεν
.

Remark 3 The canonical homogeneous norm ‖ · ‖d (Lya-
punov function V ) is defined implicitly by (8). To find ‖ ·‖d
the numerical procedures can be used, as, for example, in
[7] the bisection method has been applied to find implicitly
defined Lyapunov function.

Note, that implicit Lyapunov function method was intro-
duced by Korobov in [22], [23] for the first time.

Remark 4 The feedback matrix K0 can be chosen using
pole placement methods.

The following theorem presents the modification of the
control scheme from Theorem 4 to reject some additive
disturbances.

Theorem 5 (Disturbed case) Let ν ≥ −1 and
• the system (12)-(14),

(A+BK0)X+X(A+BK0)T+By+yTBT+αX+R≤0,
(18)

is feasible, where the matrix K0 ∈ Rm×n is such that
the matrix A + BK0 is nilpotent, R,L,X ∈ Rn×n,
R > 0, y ∈ Rm×n, α ∈ R+, γ ∈ R;



• the control has the form (15) with K = yP , P = X−1

and ε, η ∈ R+ satisfying the inequalities (16), (17);
• the disturbance function d̃ satisfy

d̃TdT (− ln ‖x‖d)R−1d(− ln ‖x‖d)d̃ ≤ ζα‖x‖2νd ,
(19)

with ζ ∈ (0, 1).
Then the closed-loop system (1), (15) is asymptotically (for
ν > 0) / exponentially (for ν = 0) / finite-time (for 0 > ν ≥
−1) stable.

Remark 5 The restriction on the system disturbances (19)
is presented in the form, which is not appropriate for using in
practice. It can be simplified using the result of Proposition
16 in [7] if Gd is presented in a diagonal form. Simplification
and relaxation of the restriction (19) may be one of the
directions for future research.

VI. NUMERICAL EXAMPLES

A. Finite-time stabilization of linear MIMO system

Consider the system (1) in disturbance-free case (d̃(t, x) =
0) for n = 3,

A =

3 1 0
0 2 1
1 0 0

 and b =

1 1
0 0
0 1

 .

Define the finite-time control u in the form (15) with the
parameter ν = −0.5, where the matrix K0 ∈ R2×3 is chosen

K0 =

(
−2 −5.9442 −2.4721
−1 −4 −2

)
that the matrix A+BK0 is nilpotent and the matrices P ∈
R3×3, K ∈ R2×3 are obtained from the inequalities (11)-
(14), (16), (17) with the parameters α = 1, η = 3.4182:

P =

0.0392 0 0
0 0.6458 0.1199
0 0.1199 0.0466

 ,

K =

(
−14.323 55.9463 19.8991
0.8963 −49.7414 −16.4913

)
,

Gd =

1.0001 −2.2361 0
0 1.5001 0
0 −1 1.0001


and γ = 0.25, ε = 1.1251.

The numerical simulation of the closed-loop system has
been done for x0 =

(
−1 5 −1

)T
by the Euler method

with the fixed step size h = 0.01. To find values of ‖ · ‖d
the bisection method was used. The results of simulation are
shown in Fig. 1, Fig. 2.

B. Robust finite-time control of damper system

Consider a mass/spring/damper system [21] as shown in
Fig. 3, where

A =


0 0 1 0
0 0 0 1

− k1
m1

k1
m1

− b1
m1

b1
m1

k1
m2

−k1+k2m2

b1
m2

− b1+b2m2

 ,

Fig. 1. System states versus time for finite-time control in disturbance-free
case

Fig. 2. Control inputs versus time

B =


0 0
0 0
1
m1

0

0 1
m2

 ,

d̃(t, x) =
(
0 0 0.8 sin(4t) 0.5 sin(2t)

)T
, k1 = 1, k2 =

4, b1 = 0.2, b2 = 0.1, m1 = 1, m2 = 2 of appropriate units.

Fig. 3. A two-mass/spring/damper system

The parameters of the control in the form (15) were
selected solving the system (12)-(14), (18), (16), (17) for

K0 =

(
−1 1 −0.2 0.2
1 −5 0.2 −0.3

)
,

α = 1, η = 2.0858, R = In:

P =


0.1252 0 0.0586 0

0 0.1252 0 0.0586
0.0586 0 0.0666 0

0 0.0586 0 0.0666

 ,



K =

(
−3.4471 0 −2.7827 0

0 −6.8943 0 −5.5655

)
,

Gd =


0.9214 0 0 0

0 0.9214 0 0
0 0 0.1214 0
0 0 0 0.1214


and γ = 0.4, ε = 0.4414.

Assume that the system operates in Ω = {x ∈
Rn : ‖x‖d ≤ 1}. In this case the inequality (19) can be
rewritten as

d̃T d̃ ≤ ζ‖x‖−1.3572d

and it holds for ζ = 0.89.
The numerical simulation shown in Fig. 4 has been done

for x0 =
(
1 −0.8 −2 −1.5

)T
by the Euler method with

the fixed step size h = 0.001.

Fig. 4. System states versus time for finite-time control of the spring
system

VII. CONCLUSIONS

The paper presents homogenizing and stabilizing control
algorithms for linear MIMO systems. It is shown that the
system (1) can be homogenized with any degree via linear
feedback. The settling time estimate is obtained for finite-
time stabilized system. Tuning of control parameters is pre-
sented in the form of linear matrix equations and inequalities.
The robustness of the control algorithm with respect to
system uncertainties and disturbances is studied. Numerical
examples demonstrate the effectiveness of proposed control.
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