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Abstract—In this paper we consider the control of robots that
feature visco-elastic actuators with adjustable physical damping.
Considering the link variables of the robot as output, the
corresponding system dynamics has a relative degree of 3. We
present a novel control approach that allows to realize a torque
interface on the link side, while preserving the intrinsic visco-
elastic structure and the inertial properties of the system. By
means of this joint torque interface one can implement link-side
position tracking and impedance tasks. For this case, we provide
a stability and passivity analysis. The control approach has been
verified by experiments with a visco-elastic joint testbed.

I. INTRODUCTION

The reduced model of a flexible joint robot [1] consists
of the rigid body dynamics in feedback interconnection with
the elastic actuator dynamics. In case that the joint flexibility
is caused by parasitic effects like the gear elasticity or the
compliance of a joint torque sensor, the joint stiffness usually
is quite high and thus the rigid body part gives a good
approximation of the dominating dynamics. Several previous
control approaches for elastic joint robots consequently started
with a control law for the rigid body dynamics and used it
as a desired torque to be controlled with the elastic actuator
dynamics [2], [3], [4]. Inverse dynamics based control [5] in-
stead allows to design a controller directly for the full flexible
robot model without designing first a rigid body controller in
an intermediate step. In both cases, the closed loop system
can be rendered stably, but will have a significantly different
structure than the original open loop behavior.

Starting with [6], [7] we developed a passivity based control
framework for elastic joint robots that aims at preserving
the intrinsic compliant dynamics. Aiming at a compliance
controller, in [7] we utilized a physical interpretation of joint
torque feedback as a scaling of motor inertia and implemented
the desired compliance on the motor side. While this showed
good performance on robots with rather stiff joints, it turned
out that for highly elastic robots the vibration damping of
the motor side damping in combination with a pure joint
torque feedback was not sufficient. In robots with series elastic
actuators (SEA) or variable impedance actuators (VIA) one
often deliberately incorporates a compliant element in the
drive train with a stiffness that is low enough such that the
energy storage in the compliant element can be exploited
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during motion generation [8]. For this type of highly compliant
robots, we recently proposed a different control approach that
is based on the idea of preserving the structure of the open loop
dynamics [9], [10] but, in contract to [7], aims at implementing
the damping directly on the link side instead of the motor side.
Moreover, in [11] we extended this approach from link side
damping to full Cartesian impedance control. While this was
analyzed for a SEA in [11], in the present paper we introduce
the application of this design idea to a robot with visco-elastic
actuators. Despite their similarity in the physical structure,
SEA and visco-elastic actuators have quite different control
properties. Considering the link side position as an output, the
SEA dynamics has a relative degree of 4, while it is at most 3
for a visco-elastic joint [12]. In this paper we will show that
the design idea from [11] applied to a visco-elastic actuator in
general leads to dynamic state feedback. However, we show
that if the generalized elastic force produced by the actuators
is a linear function of spring deflections, a tracking control
of the link side variables can be achieved, where dynamic
feedback can be avoided. A practically relevant advantage of
highly compliant visco-elastically actuated systems is the me-
chanical robustness against external impacts, since the system
inherent visco-elastic elements in the power-train act as a low-
pass filter on external forces [13]. Thereby, the system does
not suffer from bandwidth limitations of any real controller
implementation. While the control algorithm of [12] has been
validated only in simulation yet, we show by experiments that
our approach performs on a real visco-elastic hardware system.

II. PROBLEM STATEMENT

For this work, we consider a reduced model of a n-link robot
with visco-elastic joints which is based on the model proposed
by Spong in [1], see Fig. 3a. It is given by the following
nonlinear differential equations

M(q)g + C(q.9)g + g(q) =7(6,0,4,q) + Tex (1)
BO +7(6,0,q,9) =u (2)
7(6,6,4,9) =D[1)(0 — ¢) + YO —q). (3)

Herein, @ € R" and q € R”" represent the motor and link
coordinates, respectively.

M e R™" is the inertia matrix of the rigid links, B € R™"
is the diagonal matrix of the actuator inertias reflected through
the respective gearboxes'. They have the following properties:

'More precisely, the motor inertias about their principal axis of rotation
are multiplied by the square of the respective gear ratios, see [1] for further
details.



Property 1. The inertia matrices M (q) and B are symmetric,
positive definite.

Property 2. The singular values of M (q) and B are bounded
from above and bounded from below away from zero, thus both
M~ and B~ exist and are bounded.

These conditions are fulfilled for all pure rotational and pure
prismatic joint robots and in some special cases for robots
that feature a mix of rotational and prismatic joints, see [14]
for an in-depth discussion. We denote the vector of Coriolis
and centrifugal forces by C/(q,q)q. Vector g(q) represents
the gravitational forces. We define C(q, ¢) via the Christoffel
symbols, such that (1) features the following property:

Property 3. The matrix M(q) — 2C(q, q) is skew symmetric
for all (q,q) € R* X R".

The vector function 7 : [0,00] X R" X R" X R" X R" — R”
maps the system states to the visco-elastic joint torques that
connect the motor with the link side. The first term represents
the torques that are due to the adjustable damper. Here, D(f) €
R™" is the diagonal, positive definite joint damping matrix
which is assumed to be adjustable and therefor considered to
be a function of time . The second term in (3) represents the
torques that are due to the elastic elements. In general, these
elastic torques 1)(¢) are a nonlinear function of the spring
deflection ¢ = 0 — q.

Assumption 1. The elastic torques V(@) are derived from the
spring potential function Uy (@) as follows

oU(¢)
¢

The spring potential function is assumed to be positive definite
and its Hessian is invertible for all ¢ € R".

(@) =

e R". 4)

We denote the local spring stiffness, i.e. the Hessian of the
potential function Uy, as

H(P) e R™". )

0¢ =g,

The dynamics (1)-(3) represent an under-actuated system,
where only the motor coordinates @ can be directly actuated
via the motor torques uR" which serves as control input.
This under-actuation makes control of the link configuration
variables a challenging task.

k(o) =

III. CoNTROLLER DESIGN

Our goal is to provide a torque interface on the link-side of
robots with visco-elastic actuation while preserving the visco-
elastic structure and inertial properties of the system. To this
end we consider the following reference dynamics

M(@)g + C(q.q) + g(q@) =7(1, 1,4, q) + 7; (6)

Bij +7(1).7.4.q) =@ )

where p,n € R" are virtual link and motor coordinates of
the reference system, respectively. Our new control input is

@ € R". The torques that are due to the visco-elastic actuation
are specified by the same function 7 of our original system (3).
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Fig. 1. (a) Graphical representation of a single visco-elastic joint. (b)

Achieved closed-loop dynamics with link and motor-side torque interface 7;
and @, respectively. (c) Achieved closed-loop dynamics that shows link-side
impedance and tracking behavior.

Vector function 7; : R" — R” represents the torque interface
on the link side. Restrictions on 7; follow later in this section.

In the following we derive a control input w for our original
system such that both systems, i.e. (1)—(2) and (6)—(7), behave
equivalently. In particular, we want the links of the original
system (1)—(2) to behave identical to the links, of the reference
system (6)—(7) with additional torque input. As such, we
impose equality of the link coordinates

p(1) = q(t) Vi € [19, ), ®)

where #; represents the starting point in time of our consider-
ation. Our desired dynamics become

M(q)g+C(q,9) +g(q@) =7(1,1,4,q) + T; 9
Bij+1(1,m,4,q) =u. (10)

We start by imposing equivalence of the link dynamics (1) and
(9). To this end we equate the RHS of (1) and (9). This gives
us a relation between the original system states 6,0, q, q] and
the reference system states [, 1, g, q] of the form

(1)

Under the assumption that (11) can be solved explicitly for
0 we can choose 7; arbitrarily. It might be even a function
of the system states or their higher derivatives. It can also
be an explicit function of time. In general this differential
relation between the original and reference coordinates cannot
be solved analytically for . In the following, whenever the
knowledge of 7 is required we assume it to be determined by
numerical integration of (11). Then, 7) follows directly from

(1n).

7(6,0,4,9) = T(1,1.4,9) + T, 4, q).



A. Control Law Derivation

We derive the coordjnate transformation (11) with respect
to time and solve for 6. This gives us
6 =D (+(.m.q.q) + + - D), (12)
where
7=Dqg-40-q +. (13)

Next, we substitute (12) in the original system dynamics
(1)—(2) and get

BD™' (+(.n.4.q) + 7 — DO) + T(1.1.4.@) + 7 = u.

We derive the controller in three steps such that the final

control law is composed of three terms
u=1u+u+a. (14)

We start with pre-compensating some undesired terms with

4w=BD'#-D6) +1 (15)
which yields the following intermediary dynamics
7(1.1.4.q) + DB™'7(1,n.4.q) = DB (& +w). (16)

Next, we choose 4 such that we achieve equivalence of the
motor dynamics (16) and (10). With

@=BD"'(-Dj+(D+rm-)0-)+a (17
we get for the motor dynamics (2)
Bij+71(1,n.4,9) = u.

Thus, we have accomplished our goal of achieving equivalence
of the plant dynamics (1)—(2) and our desired dynamics
(6)—(10). The link and motor dynamics, respectively, of both
systems evolve equally over time.

IV. Link-SipE IMPEDANCE
In this section we discuss one particularly interesting choice
of 7;. By choosing 7; as follows?
7-l(t9 é’ q~) = _an - qu~ + Q(Q) + M(ta Q)Qd + C(t, &’ q)Qd
(18)
with
d=q-qu (19)
we can realize a desired link-side impedance and tracking
behavior. The closed-loop link dynamics (9) becomes

(20)
2n

M(t7 q)q + C(ta é’ qN)q + qu + I(qu~ :T(ﬁ’ 77, q’ q)
Bij+7(1.m.4.q) =0.
Herein, K, € R™" is a constant positive definite stiffness

matrix. With appropriate choice of matrix D, € R™" we can
inject a desired link-side damping behavior.

Assumption 2. The damping matrix D, € R" can be cho-
sen arbitrarily as long as the corresponding quadratic form

2We use the following abbreviations: M(f,§) = M(q — qu(¢)) and

C(t,q.9) = C(q - 4a(1). q — qu())

(jTquj is positive for any non-zero link-velocity-error vector
(*1 € R™n

Figure 2 shows a graphical representation of the closed-loop
dynamics (20) for the single joint case. The multi-joint cased
can be imagined as an interconnection of n such elements.
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Fig. 2. Achieved closed-loop dynamics that shows link-side impedance and
tracking behavior.

V. AvoipaNce oF Dynamic FEEDBACK

An interesting question that may arise when looking at
control law w is, whether we can achieve a closed-loop
structure with link-side torque interface that is similar to
(9)-(10), but without the explicit knowledge of the new motor
states 7, 7. As we show in the remainder of this section, this is
can at least be done for systems featuring visco-elastic joints
with linear-elastic springs. Lets assume, the joint torque in
(1)—(2) is of the form

T=DnO-¢+ KO -q), (22)

where K € R™" represents a diagonal, constant and positive
definite joint stiffness matrix. Again, we aim to preserve the
visco-elastic structure of the system, but this time the coupling
torque between link and motor side shall be of the form

7= D0 - @ + K(n-4q),

instead of 7, where D, represents a diagonal, possibly time-
variant damping matrix. A discussion of D, is given in at the
end of this section. Our desired link dynamics is of the form

(24)

(23)

M(q)g+C(q,q9)q +g(q) =T+,

where 7 shall now be the coupling torque between the link and
motor side. The link-side torque interface is again represented
by 7;. By forcing equivalence of the original link dynamics
(1) and our desired link dynamics (24) we get the following
relation between the old and new system states

7(0.6.4,9) = T(1,1.4.§) + 7. (25)

We now proceed analogously to Sec. III. We derive (25) with
respect to time and solve for 6

6 = D '(+ +% - Dé). (26)
Substitution of (26) in the original motor dynamics (2) gives

BD'F+4+DO)+7+T1 =u.



Again, we derive our control input w in three steps such that
the resulting control law is composed of three terms

u = aadf + fbadf + Waqy- 27

Choosing

Ugyp = BD™' (#+ D) + 7, (28)

results in the following intermediary dynamics
#(11,1.4,9) + DB (1), 1.4, @) = DB™ (@uaas + Gady)-
(29)
Next, we choose
 d

t,yp = BD™'— (-D,g - K.q)

dt (30)

which yields
Bij+ D, + D;' D7 = D' Dy,

where D,, = BD;! (Dx +K ) Last, we shape the time-
variant motor inertia to the constant inertia B with

a=(I-D"'D,7. (31)
This results in the final motor dynamics
Bij+ Dyn+7=0. (32)

Compared to (10) we have an additional damper term that
purely acts on the motor inertia B.

Assumption 3. The damping matrix D, has to satisfy the
same assumptions as D. But in addition, one has to ensure
that the quadratic form 7" (D)C + K ) 1) is always positive for
nonzero velocity vectors 7). One sufficient condition would be,
that the minimum local stiffness values K;; have to be greater
than the corresponding rates of decrease of the elements D, ,.

Remark 1. This means, as long as D changes sufficiently slow,
i.e. the local stiffness values are greater than the corresponding
rates of decrease of D, we can set D, equal to D. In this case
we would fully preserve the original visco-elastic element for
closed-loop dynamics.

VI. Passiviry ANALYSIS
In this section, we analyze the passivity properties of the
closed-loop systems (20)—(21). The physically motivated de-
sign approach of the reference dynamics, c.f. Fig. 3, motivates
the following intuitive storage functions

. I, .
4@ @) = 53" M1, 0)q + Uy (), (33)

1
$y(1.m,@ = 51" B+ U(n - ). (34)

The sum § = S, + S, comprises the total virtual energy of
the closed-loop system (20)—(21). By virtue of Prop. 3, the
time derivative of the storage function, expressed along the
solutions of the closed-loop dynamics, gives

S{@.4) =-4"Dg+q vm-q +§" Tou,
S,(.m.@) = -1n"Km - §"pn - §.
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Fig. 3. Graphical representation of the achieved closed-loop behaviors on the
basis of a single viscous-elastic joint as depicted in (a). (b) Added link-side
torque interface 7;. (c) Achieved closed-loop dynamics that shows link-side
impedance and tracking behavior.

We can identify three kind of terms. First, the term g v(q—n)
corresponds to an interconnection port between the motor and
link dynamics. Second, §"T., represents an interconnection
port that allows energy exchange between the robot and its
environment. Third, we have terms that correspond to the
power dissipation that is due to dampers. The result so far
motivate the following proposition:

Proposition 1. The closed-loop system (20)—(21) represents a

passive map from external forces T,y to the velocities q.

Proof. The time derivative of the storage functions S, ex-
pressed along the solution of (20)—(21), is given by

S1,1.4.§ =-§"D,g— (0" -§"D,©0 - §)

< < (35
+ qTText < qTTm-

which completes the proof. O

The storage function S allows us to make an analog
statement for the closed-loop dynamics (18),(24),(32).

Proposition 2. The closed-loop system (18),(24),(32) repre-
sents a passive map from the external torques T,y to the
velocities §.
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Fig. 4. Passivity properties of the closed-loop dynamics (20)—(21).

Proof. The time derivative of the storage functions S, ex-
pressed along the solution of (20)—(21), is given by

S@,M,4.4) =-4" Dyg— @' —§"HDy(n - &)

. e . (36)
- 77TDn”l + qTText < qTText-

which completes the proof. O

VII. STABILITY ANALYSIS

In this section we present a formal stability analysis of the
closed-loop systems (20)—(21) for the free motion case, i.e. in
absence of external generalized forces.

Under consideration of Assumptions 1, we obtain the fol-
lowing unique equilibrium point of the closed-loop system
(200-(21)

n=0,m=q, G=0, §=0}. (37)

The time derivative of the storage function S, cf. (35),
motivates the following proposition.

Proposition 3. Consider the closed-loop dynamics (20)—(21)
in absence of external forces T.y. The equilibrium point (37),
is globally uniformly stable. The velocities § and 7 converge
to the origin as t — oo.

Proof. We invoke Lyapunov’s direct method for non-
autonomous systems [15] to show stability. Consider

V(t,m,1.4,9) = St.7,1,q,4) (38)

as Lyapunov function candidate. The positive definiteness
follows directly from the assumptions made in Sec. II. The
time derivative of V along the solutions of (20)—(21) is given
by

V([» 77’ n, &s q) = _&Tan - (77T - QT)D(f)(W - Q)

which is a negative semi-definite function. Thus, (38) qualifies
as Lyapunov function. In order to extent the statement of
statement of stability to global uniform stability we have to
show the existence of a time-invariant upper bound V* s.t.
V*(1,m,q,§) > 0. To this end, consider the following upper

K . A~ 1 W 2 1 o o ~ ~
Vi,n.§.4) = §M||q||2 + EnTBn + U, () + Uy(n - 4)

which satisfies the condition. Herein, M € R is defined as
follows

M = max o(M(t,§)).

teR*,geR"

Under the assumptions made in Sec. II the existence of M is
ensured [14].

Cable transmission

Motor unit
&
harmonic drive

Fig. 5. Experimental setup with motor unit (left), link (right) connected by
the coupling mechanism (middle).

In order to show converges of the velocities, i.e. g—0
and 7 — 0 as t — oo, we invoke Barbalat’s Lemma [16].
In order to apply Barbalat’s Lemma we have yet to show the
V(t, 1,m,§, d) is uniformly continuous in time. For that it is
sufficient to proof the boundedness of V, see [17]. The second
time derivative of V along the solutions of (20)—(21) is given
by

V(t,m.n.4.6 =-4D,g- 0" - §"HD®) - §)
- -g"HDO® - §)

Above we have shown already stability of the closed-loop dy-
namics (20)—(21). With this in mind, and under consideration
of Prop. 1, we can directly conclude the boundedness of 7} and
g and thus the boundedness of V. This means, all conditions
of Barbalat’s Lemma are satisfied which suggests that V — 0
for t — oco. Considering (38) allows us to conclude converges
of the velocities 7 and § to the origin. i

In analog fashion we make a similar statement for the
closed-loop dynamics (18),(24),(32).

Proposition 4. Consider the closed-loop dynamics
(18),(24),(32) in absence of external forces Toy The
equilibrium point (37), is globally uniformly stable. The

velocities q and M) converge to the origin as t — oo,

Proof. We can use the same Lyapunov function from above,
(38), and proceed analogously. )

VIII. EXPERIMENTS

To evaluate the performance of the control approach, two
experiments are conducted. In this section the experimental
setup is described followed by an analysis of the tracking
performance for a step response and a chirp signal.

The experimental setup is shown in Fig. 5. It consists
of three main components, the motor unit on the left hand
side, the link inertia on the right hand side and the coupling
mechanism in between. The drive component in use is a re-
purposed LWR robot drive with a harmonic drive gear, a rotary



TABLE I
SYSTEM PARAMETERS OF THE TESTBED
Parameter Symbol  Value Unit
Link-side inertia M 0.45 kgm?
Motor-side inertia B 1.53 kgm?
Joint stiffness K 350 Nmrad~!
Joint damping D 31 Nmrad~!'s
Motor torque (w) limits - +100 Nm
0.2
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Fig. 6. Experimental results for a sequence of steps in the desired link position
qq. First: system states 6, g and desired position g4. The grey areas illustrates
the position of the end stop. Second: control error §. Third: the torque in the
visco-elastic element 7 as measured by the torque sensor of the drive unit.
Forth: control input # with the limits denoted as red dashed lines.

encoder and a torque sensor. A rigid beam, together with a
rotary encoder and an external force sensor, constitute the link
side inertia. The link and motor side are connected by two
antagonistic tendons. In the upper tendon a novel viscoelastic
element is integrated, the lower contains only a steel spring.

The viscoelastic element itself is composed of two coun-
teracting air springs and an adjustable hydraulic damper. The
combination of the non-linear air springs allow a near-linear
stiffness characteristic. Table I displays the essential numeric
values.

The step response experiment shown in Fig. 6 contains a
sequence of five steps. All but the forth step move the link to
positions in free space. The forth step drives the link into the
end stop at g = 0. This results in a saturation of the motor
torque and a non-zero static error. The motor can provide a
maximum torque of + 100 N m.

Fig. 7 shows the tracking performance for a chirp refer-
ence signal that rises from 1 to 5Hz. The performance is
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Fig. 7. Experimental results for a chirp signal. Top: system states and desired
position g4. Middle: link torque 7. Bottom: system input u with the limits
denoted as red dashed lines.

degraded by the presence of significant coulomb friction in the
viscoelastic element which will be reduced in the future. As
expected, the performance further degrades when the system
input saturates.

Interestingly, the controller remains stable even it situations
where the control input saturates, c.f the impact phase of the
first experiment and chirp experiment.

IX. SuMmMARY AND CONCLUSIONS

In this paper we presented a novel control approach for
robots with visco-elastic joints. The main design idea is to
render the closed loop dynamics such that a desired virtual
joint torque is acting on the link side, while the intrinsic
visco-elastic joint dynamics is preserved. By means of this
virtual joint torque one can implement position tracking and
impedance tasks. An important aspect of this controller design
is the fact that the desired modification of the effective link side
dynamics requires a change of coordinates on the motor side,
leading to a virtual motor coordinate 7. In our previous work
[11] this design approach was already analyzed for robots with
series-elastic actuators without joint damping. The additional
damping in visco-elastic joints has the important consequence
that, in general, the virtual motor coordinate cannot be directly
computed any more by a simple state transformation, but has
to be integrated over time. The controller thus becomes a
dynamic state feedback, in contrast to the static state feedback
in [11]. We also show that by a modification of the controller
this dynamic feedback can be avoided if one allows a digress
from the intrinsic visco-elastic joint dynamics. In addition to a
stability and passivity analysis, the control approach was also
verified by preliminary experiments with a single visco-elastic
joint.



APPENDIX

If we had stopped our controller design at (16) we would
have achieved a closed-loop dynamics with decoupled torque
error dynamics. By introducing a new state variable ¥ € R”
and replacing 7(7, 1, §, §) with ¥ in the coordinate transfor-
mation (11) we get after rearranging some terms

F=700,0,q4,9) — . (39)

As such, ¥ can be interpreted as the torque error between
the real physical torque 7(0, 0, ¢, q) and the desired link-side
torque T;. Substituting 7(7),m, ¢, q) with ¥ in (16) we get

#+ DB '# = DB (4 + ). (40)

By choosing & = @ = 0 we would get a decoupled torque-
error dynamics that converges exponentially to zero. The
converges rate is determined by entries of the inertia matrices
and diagonal damping B and D, respectively. The total control
input w; would ultimately reduce to

u=1u (41)
and we get the following torque error dynamics.
++DB'¥=0. (42)

This results in a control law with ’smart’ gain selection as
all ’gain matrices in front of the state feedback terms in u;
are determined by the system properties. The gain selection
can be considered ’smart’ in some sense as the convergence
rate of the torque errors 7; decreases with increasing motor
inertia B;; and it decreases with increasing damping values
D; ;. This kind of control performance trend is precisely as one
would expect. Clearly, lower motor inertia lead to higher motor
accelerations. Higher damping values increase the joint torque
bandwidth. Both effects eventually should lead to increased
control performance, i.e. faster convergence of the torque. If
the user wishes to set the convergence rate manually one can
choose

i, = BD'K,# (43)

instead, where K, € R™" can be considered as a diagonal gain
matrix with constant entries. The final control law w, = @+,
results in the following torque dynamics

#+ K, =0, (44)

where the convergence rate of the individual torque errors 7;
depends on the corresponding entries in K.

By exploiting the triangular system structure of the non-
autonomous closed-loop systems (9),(40) and (9),(42), respec-
tively, one can show global uniform asymptotic stability in
analog fashion as has been done for the decoupling based
torque controller for flexible-joint robots presented in [18].
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